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VISCOUS FINGERING IN 

POROUS MEDIA 

G. M. Homsy 

Department of Chemical Engineering, Stanford University, Stanford, 
California 94305 

INTRODUCTION 

Scope 

"Viscous fingering" generally refers to the onset and evolution of insta­
bilities that occur in the displacement of fluids in porous materials. In most 
but not all cases, the mechanism of the instability is intimately linked to 
viscosity variations between phases or within a single phase containing a 
solute-hence the term "viscous fingering." Shown in Figure I are three 
examples of the complex and intriguing patterns that evolve as a result of 
this instability. Figure la shows the fingering pattern that occurs when a 
more viscous material is displaced by a less viscous one fully miscible with 
it by injecting from one corner and withdrawing from the diagonal corner 
of a horizontal square Hele-Shaw cell; in this case the fluid consists of 
water injected into glycerine. Although the mixture is fully miscible, it is 
obvious that less viscous material tends to penetrate and finger through 
the more viscous material. In this particular example, the patterns are 
driven by the difference in viscosity and influenced by the diffusive mixing 
between the fluids. In Figure Ib, we show an example of the extreme 
patterns that are formed when a less dense, less viscous fluid penetrates a 
more dense, more viscous fluid immiscible with it when a large Rele-Shaw 
cell is tipped into a vertical position. In this case both gravity and viscosity 
are important forces in driving the instability. Finally, in Figure Ie we 
show the pattern that results when a low-viscosity Newtonian fluid injected 
from a source penetrates a Rele-Shaw cell filled with a miscible but strongly 
non-Newtonian fluid. We discuss these examples in more detail below, but 
even though the experiments were done in the relatively simple geometry 
of Rele-Shaw cells, the detailed dynamics leading to the observed patterns 
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272 HOMSY 

are not fully understood. However, one feature in common in these 
examples is the fact that the physical conditions of the experiments allow 
a wide spectrum of length scales to occur. Below we provide a detailed 
discussion of the mechanisms that govern these flows, which we refer to 
as shielding, spreading, and splitting, that will enable us to at least quali­
tatively understand these fascinating patterns. 

Such phenomena are important in a wide variety of applications, includ­
ing secondary and tertiary oil recovery, fixed bed regeneration in chemical 
processing, hydrology, and filtration. Indeed, the phenomena are expected 
to occur in many of the myriad of fields of science and technology in which 
fluids flow through porous materials, and thus the literature is a diverse 
one. Many combinations of configurations, important fluid-mechanical 
forces, and boundary conditions have been studied. Thus, we cannot 
provide an exhaustive review, and many important areas of research are 
omitted from our discussion. In addition, recent activity in the field has 
been explosive to such an extent that this review is destined to be out of 
date, perhaps seriously so, by the time it has appeared. Luckily, the editors 
of this series have provided me with both a time deadline and a page limit, 

A 
Figure 1 Examples of viscous fingering in Hele-Shaw cells : (a) miscible flow in a five-spot 
geometry (E. L. Claridge, personal communication, 1986); (b) immiscible flow in gravity­
driven fingering (Maxworthy 1986); (c) miscible flow of a non-Newtonian fluid in radial 
source flow (Daccord et al. 1986). With permission. 
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VISCOUS FINGERING 273 

behind which I take refuge against inevitable criticisms of the timeliness 
and scope of this review. 

The areas to be covered are as follows: We are interested in viscous 
fingering in homogeneous porous materials and thus do not discuss the 
important and emerging area of the interaction between viscous fingering 
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274 HOMSY 

and permeability heterogeneities. Furthermore, we cannot give a treatment 
of all possible geometries and boundary conditions. Thus, we deal exclu­
sively with the three simple geometries of rectilinear displacement, radial 
source flow, and the so-called five-spot pattern, which are sketched in 
Figure 2. In each case there is a characteristic macroscopic length L, a 
characteristic velocity U, a permeability K, and a characteristic viscosity 
f.1. We are primarily interested in two-dimensional flows, as little has been 
done on three-dimensional problems, especially nonlinear ones. We also 
confine ourselves to'cases in which the orientation of gravity, should it be 
important, is colinear with the displacement direction. In limiting the 
review in this manner, we hope to emphasize mechanisms and current 
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Figure 2 Common geometries and their defining parameters: (a) rectilinear flow; (b) radial 
source flow; (c) "five-spot" pattern. 
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VISCOUS FINGERING 275 

research for this restricted class of problems. We deemphasize almost 
entirely the case in which instabilities are driven solely by buoyancy, 
although this is a field with an equally rich range of phenomena. 

A subject of current focus is the extent to which viscous fingering may 
be analogous to other free-boundary problems that exhibit similar pattern 
formation, notably the growth of crystals from melt or solution. Unfor­
tunately, this is a question that, while intriguing, is outside the scope of 
the present review, although many of the more recent references given here 
discuss this issue. Also, in the discussion of immiscible flow in porous 
materials, we touch only briefly on those aspects of displacement that are 
dominated by capillarity in the microscopic pore space, and that rightly 
form a subset of percolation phenomena, on which there exists an extensive 
literature. Some aspects of viscous fingering have been well reviewed else­
where, and we simply refer the reader to those sources as appropriate. 
These include the review by Wooding & Morel-Seytoux (1976) on the 
more general subject of multi phase flow in porous media; that by Aref 
(1986) on modern approaches to simulations of such flows, and features 
these flows have in common with other well-studied nonlinear problems 
in fluid mechanics; the monograph edited by Ewing (1983), in which 
some of the numerical-analysis aspects of the simulation of displacement 
processes are discussed; and the reviews by Bensimon et al. (1986) and 
Saffman (1986), which deal exclusively with fingering in Hele-Shaw flows. 

Mechanisms of Viscous Fingering 
Consider a displacement in a homogeneous porous medium, characterized 
by a constant permeability K. The flow will typically involve the dis­
placement of a fluid of viscosity J1! and density p! by a second of viscosity 
J12 and density P2' These differences in physical properties may result from 
using two different, immiscible phases, or from injection of a solvent fully 
miscible with fluid 1. It is the variation of these properties across some 
front that is important. As noted above, we limit ourselves to the forces 
of gravity, viscosity, and (if the fluids are immiscible) surface tension. In 
the case of miscible systems in which differences in viscous forces are due 
to differences in solute concentration, we must also consider the molecular 
diffusion and mechanical dispersion of the solute. 

The following simple argument may be made in order to understand the 
basic mechanism of the instability. Under suitable continuum assumptions, 
the flow may be taken to satisfy Darcy's law, which for a one-dimensional 
steady flow may be written 

dp 

dx 
= -J1U/K+pg. (1) 
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276 HOMSY 

Now consider a sharp interface or zone where density, viscosity, and solute 
concentration all change rapidly, e.g. a zone such as that shown in Figure 
2a. Then the pressure force (p2-Pl) on the displaced fluid as a result of a 
virtual displacement bx of the interface from its simple convected location 
is 

(2) 

If the net pressure force is positive, then any small displacement will 
amplify, leading to an instability. Thus we see that a combination of 
unfavorable density and/or viscosity ratios and flow direction can conspire 
to render the displacement unstable. For example, for downward vertical 
displacement of a dense, viscous fluid by a lighter, less viscous one, we 
have (Ill - 1l2) > 0, (p 2 - P I) < 0, and U > 0. Thus, gravity is a stabilizing 
force, while viscosity is destabilizing, leading to a critical velocity Uc above 
which there is instability : 

(3) 

There are three other obvious cases depending upon the signs of Ap, U, 
and 111l: one in which gravity drives the instability and viscosity stabilizes 
it, and the two cases when both basic forces are either stabilizing or 
destabilizing. 

A simpler statement may be made when the gravity force is absent, e.g. 
in a horizontal displacement. In this case, instability always results when 
a more viscous fluid is displaced by a less viscous one, since the less viscous 
fluid has the greater mobility. Thus we see that the two basic forces 
responsible for the instability are gravity and viscosity. More refined analy­
ses, discussed below, will show that surface tension and/or dispersion can 
modify but not stabilize a flow characterized as unstable by this simple 
criterion. 

As in many areas of fluid mechanics, interest lies in the behavior of the 
flow for conditions that exceed the critical limits, and perhaps the most 
fascinating behaviors are those that occur for highly supercritical con­
ditions. In this respect, viscous fingering is no exception. 

A Historical Note 
It is interesting to trace the literature in order to establish priority for the 
discovery and understanding of viscous fingering in terms of the fluid 
mechanics involved. Despite the fact that this instability is discussed in 
many fluid-mechanics textbooks and literature papers as the "Saffman­
Taylor Instability" and is attributed to Saffman & Taylor ( 1 958), the 
phenomenon had been noted and recorded in many earlier works, although 
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VISCOUS FINGERING 277 

not always with a clear understanding of the mechanics and the basic 
mechanism. The first scientific study of viscous fingering can reasonably 
be attributed to Rill ( 1952), who not only published the simple "one­
dimensional" stability analysis given above, but who also conducted a 
series of careful and quantitative experiments for both gravity-stabilized 
viscous fingering in vertical downflow and the curious counter-case of 
viscous stabilization of a gravitationally unstable configuration in the case 
of vertical downward displacement of a light, less viscous fluid by a heavy, 
more viscous one, which can be stabilized for velocities above Uc• In all 
cases, the critical displacement velocity measured via flow visualizations 
was in quantitative agreement with Equation (3). Those interested in either 
the history of viscous fingering or an example of concise scientific writing 
should consult this beautiful paper. The next significant development 
occurred in the late 1 950s, when Chouke et ai. ( 1959) and Saffman & 
Taylor ( 1958) published their now-classical papers. Both these papers, 
submitted within six months of one another, contain essentially identical 
line�r-instability analyses of one-dimensional displacement, leading to 
Equation (7) below. Significantly, Saffman & Taylor state that "the result 
is not essentially new, and that mining engineers and geologists have long 
been aware of it," and they further attribute the inclusion of surface tension 
in the analysis to "Dr. Chouke." They then go on to study experimentally 
the evolution and shape of the now-famous single dominant finger and to 
discuss its theoretical description. The paper of Chouke et aI., on the other 
hand, refers only to a presentation of the linear-instability analysis by 
Chouke at a technical meeting in 1 958, with no mention of Saffman & 
Taylor, although they do reference Hill's work. Given the delays involved 
in publishing research from an industrial laboratory, it seems plausible 
that credit for the first rigorous stability analysis of viscous fingering be 
given to Chouke, but that the phenomenon under discussion should almost 
certainly be called the "Rill Instability." There is unfortunately little 
chance of this designation gaining general acceptance. 

HELE-SHA W FLOWS 

The Simplification of Hele-Shaw Flows 

Since most porous materials are opaque, a convenient analogue to study 
is that of the Rele-Shaw model, the geometry of which is shown in the 
definition sketch in Figure 3. Flow takes place in a small gap of thickness 
b, and there is a second, macroscopic dimension L. Rele-Shaw theory and 
experiments seek to describe the two-dimensional features of the flow, 
depth-averaged over the thin gap. It is well known that in single-phase flow, 
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278 HOMSY 

these two-dimensional equations are 

V·ii = 0, 

V P = - 12110/ b2 + pg, 

(4a) 
(4b) 

which hold in the limit of low-Reynolds-number flow, and e = b/L --+ o. 
We see that the flow satisfies Darcy's law, in which the equivalent per­
meability of the medium is simply b2/12. Thus, single-phase Hele-Shaw 
flow is analogous to two-dimensional incompressible flow in porous media. 
It might be supposed that the same analogy would hold for viscous finger­
ing in porous materials. However, as we shall see, the analogy is imperfect. 
In the case of miscible fluids with concentration gradients, Taylor dis­
persion will occur due to the velocity profile in the thin dimension, making 
the mixing or dispersion characteristics in Hele-Shaw flow highly aniso­
tropic in ways that porous materials may not be. In particular, if mech­
anical dispersion is important, it usually affects both the longitudinal and 
transverse dispersion coefficients in porous media, whereas in Hele-Shaw 
flow, only the longitudinal component is affected. 

The analogy fails completely in the case of flow of immiscible fluids, 
since flow in porous materials in this case is truly mu/tiphase, as opposed 
to two phase, and the forces associated with the propagation of menisci 
through the pore space comprising the medium cannot be neglected and 
are not modeled in the Hele-Shaw geometry. Furthermore, the geometry 
of the solid matrix can also influence the fingering patterns observed. 
Nevertheless, the case of Hele-Shaw flow is of fundamental interest in its 
own right and permits us to establish some useful concepts. Furthermore, 

Average Velocity U 

Figure 3 Detailed schematic of Hele-Shaw flow in the case where the displaced fluid wets 
the wall. The interface moves with normal velocity U, surface tension l' acts on the interface, 
and R is the radius of curvature in the plane. 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

98
7.

19
:2

71
-3

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

02
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



VISCOUS FINGERING 279 

it allows us to discuss the processes of shielding, spreading, and splitting 
alluded to in the Introduction. 

Immiscible Displacements in Hele-Shaw Cells 

In the Appendix of their paper, Saffman & Taylor (1958) showed that 
equations of the form of (4) also govern the flow of two immiscible phases 
in Rele-Shaw cells, provided that the film of displaced fluid left on the 
plates is of constant thickness, but that the effective viscosities and densities 
appearing therein depend upon the property ratios as well as the thickness 
ratio. Thus we adopt them as the field equations in each phase in regions 
away from the interface between the phases. It remains to give boundary 
conditions that apply at the location of the interface, taken as a two­
dimensional depth-averaged surface. The only analyses of the details of the 
flow in the thin dimension, which must then be depth averaged in order 
to give jump conditions for the fields ii and ft, are those of Park & Romsy 
( 1 984) and Reinelt (1986). For the case in which the displaced fluid wets 
the wall, these conditions depend upon the local capillary number of the 
flow, Ca = f.1U/y, as well as on the magnitude of the surface tension y. In 
terms of the quantities defined in Figure 3, these conditions are, for small 
Ca, 

[Ifill =;' ( l  +3.8 Ca2/3+ . . .  )+ � [n/4+0 (Ca2/3)], 

[In- iii] = O(Ca 2/3). 

( Sa) 

(5b) 

Most analyses of Rele-Shaw flows pertain to the limit Ca == O. In this case, 
the equations simplify to 

[Ifil] = 2y/b+yn/(4R), 

[In' iii] = o. 

(6a) 

(6b) 

Much of the literature on the subject uses these boundary conditions, with 
the constant 1.0 appearing in place of n/4, but a simple rescaling of surface 
tension allows these existing results to be carried over without change. 
This constant may be simply computed as a function of the contact angle 
in the thin dimension (Park 1 985) and is set to unity in what follows. 
Furthermore, the leading constant in (6a) is often set to zero without loss 
of generality. Equations (4), together with these simpler jump conditions 
[Equations (6)], have been referred to as the Hele-Shaw equations, and 
they hold asymptotically in the limit of small capillary number and small 
ratios of the gap thickness to any macroscopic dimension. These equations 
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280 HOMSY 

have been the object of much study, and many features of their solutions 
have been discussed elsewhere (Aref 1986, Bensimon et al. 1986, Saffman 
1986). 

The Hele-Shaw equations may be scaled in a straightforward way by 
using a macroscopic length as the characteristic length and Lj U as the 
characteristic time to show that solutions may be expected to depend upon 
three basic parameters: 

Ca' = 
12111 U (Ljb)2 

Y 

A = (Ill -112) 

(Ill + 112) 

G = 
(PI - P2)gb2 
12(111 +1l2)U 

modified capillary number, 

viscosity contrast, 

modified Darcy-Rayleigh number. 

The modified capillary number measures the viscous forces relative to 
surface tension. Other equivalent definitions for this parameter are also in 
use, involving other numerical factors depending upon the choice oflength 
and velocity scales, and the inverse of Ca' is sometimes used, as it occurs 
naturally in the boundary conditions of the problem. Unfortunately no 
universal convention for this controlling parameter has been adopted in 
the literature, and care must be taken in comparing results of different 
investigators. The group G similarly measures the relative importance of 
buoyant to viscous forces. The property ratio A is self-explanatory. 

The linear-stability analysis of one-dimensional rectilinear displace­
ments with the action of surface tension is due to Chouke et al. ( 1 959). In 
the usual fashion, if disturbances are taken to be of the form of normal 
modes proportional to exp (O"t+ iky), one finds the following dispersion 
relation for the growth constant of the instability : 

or in dimensionless form, 

(A + l)k3 
0" = (A+G)k-

2 Ca' 

( 7a) 

(7b) 

It may be seen that the critical speed for which 0" > 0 is given accurately 
by the simple analysis of Hill ( 1952), since it holds for long waves, but that 
for unstable situations, the inclusion of surface tension leads to a wave 
number of maximum growth rate and a cutoff wave number. For the 
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VISCOUS FINGERING 281 

simple case of both gravity and viscosity driving the instability, the 
maximum growth rate occurs for a wave number 

= 
[2(A + G) cal] 1/2 km 3(A+ 1 )  

(8) 

The simple physical interpretation of these results is that surface tension 
will damp short waves, whereas the basic mechanism favors them, leading 
to competing effects and the occurrence of a preferred mode in a manner 
similar to many other stability problems. The ratio of unstable length 
scales to the macroscopic scale decreases as Ca' increases, which implies 
that many scales of motion are allowed in the limit of very large capillary 
number (small surface tension). Thus we expect the dynamics of fingering 
to become complex in this limit. 

It has proven difficult to quantitatively verify the dispersion relation 
[Equation (7)], but the available body of information is in general agree­
ment with it. Many of the experiments pertain to relatively simple measure­
ments of the apparent wavelength of fingers in their early stages of growth, 
as typified by those of White et al. (1976). These measurements are found 
to compare favorably with those given by Equation (8). Park et al. (1984) 
have provided the only available measurements of growth rates and sum­
marize previous investigations on the initial development of the instability. 
Recently, Schwartz ( 1986) has reanalyzed the linear-stability problem 
using Equation (Sa) rather than (6a), which results in an improved agree­
ment between theory and the experiments of Park et al., but the data are 
not sufficiently accurate to provide a critical test of the theory leading to 
(6a). 

The linear instability of radial source flow was first treated by Wilson 
(1975), and thereafter by Paterson (1981). The velocity field in radial 
source flow is given by 

u = Q/r, (9) 

where Q is the two-dimensional source strength. The characteristic scalings 
change somewhat for this case, but a modified capillary number still 
determines the cutoff scales. Since both the velocity and characteristic 
length change with time, the analysis of the linear instability is based upon 
a quasi-static analysis that treats the velocity U at a radius R as locally 
constant. The results, in dimensionless form, are 

(J = Am-l-Ca'm (m2-1) (A+ 1)/2, ( 10) 

where A and Ca' are defined above using an instantaneous velocity and 
radius, and m is a discrete azimuthal wave number. Analysis of Equation 
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282 HOMSY 

(10) is simple only when A = 1, in which case all waves with wave numbers 
satisfying 

m ::;; 1/2[1 + (1 + 4Ca') 1/2] (11) 

are unstable, with a wave number of maximum growth rate, as before. 
Experiments by Paterson (1981), shown in Figure 4a, show the evolution 

of fingering patterns in source flow for displacement of glycerine with air. 
For short times, there is reasonable agreement with the expectations of 
the linear theory. Radial source flow is also a good short-time approxi­
mation to the flow in a five-spot pattern, and the above theoretical results 
should hold for that case as well. 

The classical experimental study of Saffman & Taylor focused on the 
nonlinear evolution of fingers in the limit A = 1, G = O. They found that 
after the initial instability, a single finger appeared to dominate the flow. 
The reason for this can be understood simply in terms of shielding. Since 
the tendency is for fingers of mobile fluid to grow in the direction of the 
pressure gradient in the more viscous fluid, a finger slightly ahead of its 
neighbors quickly outruns them and shields them from further growth. 
(An equivalent argument can be made using the fact that the pressure in 
the less mobile phase is harmonic and the interface is nearly isopotential, 
leading to a larger flux of fluid near the tip of any finger that is ahead of 
neighboring ones.) 

Steady solutions describing finite-amplitude solutions in rectilinear flow 
have been much discussed in the recent literature, which we briefly sum­
marize here. Saffman & Taylor (1958) sought solutions of the Rele-Shaw 
equations in the limit A = 1, Ca' = 00, G = O. They found that there was 
a continuous family of solutions, all of which were linearly unstable (Taylor 
& Saffman 1958). The traditional parameter characterizing these solutions 
is A, the ratio of the finger width to the characteristic macroscopic length. 
Thus A is not uniquely determined for Ca' = 00. McLean & Saffman 
(1981) and, more recently Vanden Broeck (1983) solved the steady free­
boundary problem numerically for finite Ca' and examined the limit 
Ca' » 1. There exists an apparently infinite family of discrete solutions, 
An(Ca'), all of which tend toward the same shape with An = 1/2 as 
Ca' -400. 

Large-scale numerical simulations of the evolution of such finger shapes 
have been provided by Tryggvason & Aref (1985), De Gregoria & Schwartz 
(1986), and Liang (1986). Tryggvason & Aref (1983, 1985) applied vortex­
in-cell methods to study a number of problems in viscous fingering, and 
their simulations show the typical growth of the dominant finger by shield­
ing. The results they obtain for the steady shape, for the cases in which 
they have good numerical accuracy (Ca' ::;; 50), are in agreement with the 
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Figure 4 Fingering in immiscible radial source flow into a Hele-Shaw cell. (a) Multiple 
exposure showing growth at early time; (b) tip splitting at later time (Paterson 1981). With 
permission. 
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284 HOMSY 

branch calculated by McLean & Saffman (198 1) .  DeGregoria & Schwartz 
(1 986) developed a solution technique based on the fact that from Equa­
tions (4), the pressure satisfies Laplace's equation if the viscosity is constant 
almost everywhere. Thus, boundary integral techniques are appropriate. 
They too reproduce the McLean & Saffman branch, extending the range 
of numerical solutions to Ca' � 0 ( 1 03). Finally, Liang (1986) has recently 
discussed a numerical method based upon random-walk simulations of 
the solution of Laplace's equation, which is claimed to be superior to 
conventional techniques for very large capillary numbers and which goes 
over to solutions of diffusion-limited aggregation (DLA), discussed below, 
when Ca' = 00. The physical significance of certain key features of this 
method are obscure, however. His simulations show shielding, of course, 
and evolve to the McLean & Saffman branch of solutions. Thus, at present 
the other branches of steady shapes have not been realized in any initial­
value calculation, which has led to speculation that these branches are 
unstable; calculations in support of this speculation are given by Kessler 
& Levine ( l986c). Most intriguing in the simulations of DeGregoria & 
Schwartz and of Liang is the fact that as Ca' becomes large, the steady 
finger shapes are not always stable. We discuss these observations in more 
detail below. 

We also mention the recent analysis of Kessler & Levine ( 1986b), who 
show that a periodic array of steady fingers is unstable to any spanwise 
modulation. They further speculate that the preferred mode is one cor­
responding to an annihilation of nearest neighbors, which leads to a pairing 
process that, if the resulting finger is stable, would persist until only one 
finger from the array remained. The mechanism of this spanwise instability 
can be easily understood in terms of the shielding effect discussed above. 

Thus we see that surface tension, however weak, acts to spread the 
dominant finger to a particular width. This will be important in interpreting 
patterns of fingering at high Ca'. The mathematical description of how 
this selection mechanism can remain present in the limit of extremely small 
surface tension has been treated very recently by Shraiman (1986), Hong 
& Langer (1986), and Combescot et al. (1986). 

Experimental attempts to measure the shape of the steady dominant 
finger as a function of Ca' are not conclusive. Pitts ( 1980) reports a curious 
experimental finding that the shapes at finite capillary number form a self­
similar family, a result not shared by the theoretical shapes. There also 
exists a discrepancy between the experimental shapes and any of the 
theoretical branches of solutions. Recently, Tabeling & Libchaber (1986) 
have suggested that this may be due to the fact that experiments have not 
been done in the regime of applicability of the Hele-Shaw equations. With 
reference to Equations (5) and (6), the Hcle-Shaw equations pertain to the 
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double limit e -+ 0, Ca -+ 0, Cal = e-2 Ca finite. Uniform neglect of the 
additional pressure jump due to the existence of a wetting film, the 0 (Ca2/3) 
term in Equation (Sa), requires e Ca -2/3 » 1 .  It is difficult to satisfy all of 
these restrictions in experiments. Generally, the experiments of Saffman 
& Taylor and of Pitts were carried out for finite Ca, with e moderately 
small. The experiments of Tabeling et al. (1986), in which e was varied 
systematically, were again generally for small e but for values of Ca as 
large as 1 .0. The experiments of Park & Romsy ( 1985), which utilized a 
very small aspect-ratio cell, were done for small Ca and e Ca -2/3 � 0 (0.5). 
Thus we see that many of the widely quoted experimental studies have not 
been conducted in the region of validity of the Rele-Shaw equations, and 
comparison between experiment and theory must be approached with 
some caution. Numerical solutions of the equations that include the par­
ameters e and Ca separately instead of the combination Cal = e-2 Ca are 
not available, but the ability of Tabeling & Libchaber ( 1 986) to collapse 
available data on finger width using a modified scaling parameter based 
upon Equation (Sa), is encouraging. Quantitative investigation of the effect 
of the wetting layer must await solution to a set of equations that take 
explicit account of its existence. 

There are also unanswered questions regarding the stability of the single 
dominant finger. Taylor & Saffman (1 958) and McLean & Saffman ( 198 1)  
provided stability analyses of the steady nonlinear shapes that indicated 
that such shapes should be unstable for infinite and finite Cal, respectively. 
However, the experiments of Saffman & Taylor and of Pitts indicated 
stability. Recently, a number of workers have shown experimentally that 
the single finger is subject to a tip-splitting instability (Nittmann et al. 
1985, Park & Homsy 1985, Tabeling et al. 1 986). Partial rationalization 
of this paradox between the observation of stable fingers on the one hand 
and prediction of instability on the other has been provided by Kessler & 
Levine ( 1986a,c), who suggest that previous analyses of the stability of 
the single finger are inaccurate. [The stability calculations of McLean & 
Saffman are apparently incorrect (Saffman 1986).] Kessler & Levine 
analyze the full spectrum of the linear operator for instability modes 
that grow in space, and they solve the resulting eigenvalue problem by 
numerical means. The range of accurate numerical results is limited 
to Cal::;; 0(103), for which steady fingers are stable. Unfortunately, the 
numerical solution of the linear-stability problem becomes ill conditioned 
at high Cal, in a manner similar to the Orr-Sommerfeld equation at high 
Reynolds number. Thus reliable results for very large Cal are not available, 
but Kessler & Levine speculate that stability persists to Cal = 00. The 
numerical results of DeGregoria & Schwartz ( 1 986) show that the McLean 
& Saffman branch of steady solutions is apparently stable for Cal < 1 03 
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286 HOMSY 

but unstable to a symmetrical tip-splitting mode for Ca' > 1 03• They also 
provide numerical evidence that the onset of the tip-splitting instability 
depends upon the amplitude of the imposed perturbation, indicating that 
the instability is a sub critical bifurcation. They further argue that the 
bifurcation, in addition to being subcritical, is from infinity, i.e. fingers are 
stable to infinitesimal perturbations for all but infinite Ca', a point of 
view that is only partially supported by their calculations. DeGregoria & 
Schwartz ( 1986), using an improved version of their algorithm that allows 
asymmetrical solutions, have observed tip splitting above Ca' = 1 .25 x 103• 
Liang ( 1986), using random-walk simulations, has also observed both 
steady fingers and tip splitting. However, as noted above, several 
aspects of the algorithm used are not clear. As an apparent result of 
insufficient spatial resolution, he observes splitting for very low Ca', for 
which the dominant finger should be linearly stable. An attempt to analyze 
the nature of the bifurcation has been made by Bensimon ( 1986). His 
analysis clearly indicates the subcritical nature of the instability, but 
because of the qualitative nature of the model, in which he considers 
perturbations that are not dynamically admissible, further work is needed 
to settle the issue of the nature of the bifurcation. 

Careful experimental studies of the tip-splitting instability are only now 
beginning. Park & Homsy ( 1985) were the first to attempt to measure the 
critical Ca' for onset of splitting, which they report to be Ca' = 600. Since 
the instability is subcritical, this value may not stand the test of time; 
indeed, Tabe1ing et al. ( 1986) report delay in the onset of splitting to 
Ca' = 2-3 x 103 by reducing the noise level in the experiment. Much more 
experimental work needs to be done in order to characterize the critical 
conditions for onset of tip splitting, as well as the regime of flow in the 
postinstability regime. Figure 5 shows a cgmparison between the experi­
ments of Park ( 1 985) and the calculations of DeGregoria & Schwartz 
( 1985) and of Liang ( 1986). The qualitative similarity between the patterns 
observed is encouraging in the sense that the experimental behavior 
appears to be contained within the He1e-Shaw equations. 

The mechanism by which such patterns are formed can be understood 
in the following way. As surface tension becomes weak, the front of the 
steady finger is susceptible to a viscous-fingering instability by the basic 
mechanism associated with a less viscous fluid displacing a more viscous 
one. After a split, each of the new lobes of the finger is stable as a result 
of their being thinner than the finger from which they split. As a result of 
shielding, one of these lobes will eventually outgrow the other and, owing 
to surface tension, will then spread to occupy the appropriate width of the 
cell. In the process, it reaches a width that is again unstable to splitting, 
and the pattern repeats. Thus, surface tension plays a subtle but essential 
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dual role; it must be weak enough for the tip front to be unstable, but it 
is also the physical force causing the spreading and ensuing repeated 
branching. In this sense, it is analogous to the dual role of viscosity in the 
instability of parallel shear flows. We thus arrive at a scenario in which 
shielding, spreading, and splitting are all important processes in determining 
the dynamics of viscous fingering. 

Once the existence of the tip-splitting instability is known and the mech­
anism understood at least qualitatively, more complicated patterns such 
as those observed by Maxworthy (1986), shown in Figure l b, and those of 
Paterson (1981), in Figure 4, can be understood. Maxworthy's experiments 
(which incidentally are far outside the region of validity of the Rele-Shaw 
equations) were done at extremely large Ca' (Ca' = 5 x 104), values for 
which tip splitting takes place over a range of length scales, leading to a 
cascade of splittings, including secondary splittings of the side branches. 
Such primary and secondary events may be clearly identified in the 
sequence of photographs leading to Figure l a  (Maxworthy 1986; see also 
the photographs published by Reed 1985). This cascade continues in time, 
leading to geometrical shapes that are not simple and that may have 
statistical features describable by a fractal geometry [see Maxworthy 
(1986) and Nittmann et al. (1985) for a further exposition of this idea]. 

(a) 

�I 
(b) 

�I 
(c) 

Figure 5 Comparison of tip splitting in experiments and in simulations of the Hele-Shaw 
equations: (a) tracings from experiments for Ca' = 1.3 x 103 (Park 1985) ; (b) simulations 
for Ca' == 1.3 x 103 (DeGregoria & Schwartz 1985); (c) simulations for Ca' = 600 (Liang 
1986). With permission. 
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The observations of Paterson ( 1 981), shown in Figure 4b, as well as similar 
ones by Ben-Jacob et al. ( 1985) in radial source flow may be similarly 
understood. For a given Ca', there will be a preferred azimuthal wave 
number from Equation ( 10) when the critical radius is reached. Following 
growth of the preferred mode, the lobes of the pattern again spread laterally 
as a result of surface tension until they exceed a local stability limit 
and undergo another fingering instability at the tip. Although this will 
presumably continue indefinitely, little experimental work past the first 
one or two generations of splittings has been reported, and there is no 
evidence one way or the other for a regime of fractal splitting. 

Few studies have been made to characterize the effect of the other two 
dynamic groups, G and A, on fingering. Maher ( 1985) reports observa­
tions in small Rele-Shaw cells. By using two fluids n-ear a thermodynamic 
critical point, he is able to achieve small A while maintaining immiscible 
conditions. Because the mobilities of both phases are nearly equal, the 
strong shielding present when one phase essentially controls the pressure 
drop is reduced or eliminated, with the result that all fingers grow, at least 
for short times, and the pattern is not characterized by the emergence of 
the single dominant finger. It is not clear if this regime persists for long 
times and large displacements, but at short times it is clearly qualitatively 
different from the A = 1 case. Furthermore, the experimental observations 
are in good qualitative agreement with the calculations of Tryggvason & 
Aref (1983) for small A .  Without the growth of the dominant finger 
and its subsequent splitting instability, the patterns of fingering are also 
correspondingly different. 

Although the effect of the gravity group G is superficially similar to that 
of an imposed flow in that density differences impose a vertical pressure 
gradient far from the boundary of the finger, the dynamic effects of gravity 
and viscous forces are not interchangeable except when the interface is 
nearly flat and perpendicular to the motion, as indicated in Equation (7b) 
above. Thus, much work remains to be done to fully characterize the 
parametric dependence of nonlinear viscous fingering upon the remaining 
groups G and A .  

Miscible Displacements in  Hele-Shaw Cells 

An important consequence of immiscibility in the case of Hele-Shaw flow 
is that the viscosity is constant in each phase, with a jump at the interface. 
This is not necessarily the case for miscible displacements. In miscible 
displacements, there is no interface, and as a result a single-phase Darcy's 
law [Equation (4)] holds throughout the domain. Viscous fingering may 
still be driven, however, by variations in viscosity that result from vari-
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VISCOUS FINGERING 289 

ations in the concentration of a chemical component in the fluid. If we let 
the concentration be denoted by c, scaled between zero and one, then the 
equations governing the system are 

V'U = 0, 

Vp = -/1(c)u/K+pg, 

Dc 
Dt 

= V'(D'Vc), 

/1 = /1(c). 

( l 2a) 

( 12b) 

( 12c) 

. 
(l2d) 

(Note that although we are discussing Rele-Shaw flow, we have written 
the permeability as K rather than b2/12, as the theory for homogeneous 
porous media, treated in the next section, is identical to Rele-Shaw theory 
in the special case of isotropic dispersion.) The concentration is taken to 
obey a convection-diffusion equation, perhaps with an anisotropic dis­
persion tensor, and the relation between concentration and viscosity must 
also be given. If we select a macroscopic length L, a viscosity /11, and a 
velocity U as scaling parameters, then the solution to these equations 
depends upon the following dimensionless parameters : 

Pe = UL/Do 

A = /
11 -/12 

/11 +/12 

G = �L1_pg,----K_ 
(/11 +/1z)U 

D*(u) 

PecIet number, 

Viscosity contrast, 

Gravity group, 

Dimensionless dispersion function, 

/1* (c); M- 1 < /1* < 1 Dimensionless viscosity function, where M is the 
viscosity, or mobility, ratio /1I!f-L2' 

In these definitions, /1]' /12 are the viscosities without solvent and with the 
maximum solvent concentration, respectively ; Do is a reference value of 
the dispersion coefficient, usually taken as the zero-velocity diffusion limit 
or the longitudinal dispersion at the reference velocity; and D*, /1* are 
dimensionless functions describing the material behavior of the medium 
and the solute/solvent mixture, respectively. 

Discussion of the linear stability theory for this case is complicated by 
the fact that, unlike the case of miscible displacements, there is no simple 
steady solution to the relevant equations, since dispersion will always act 
to render the concentration profile and hence the viscosity profile time 
dependent. Thus we must deal with the stability of time-dependent base 
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states, a subject of some difficulty. However, consider for the moment the 
case of infinite Peclet number (zero dispersion). For rectilinear flow, the 
solvent concentration will be independent of time in a convected coordinate 
system, and the above stability results, specialized for the case of zero 
surface tension, apply. We see that 

(J = (A+G)k, ( 1 3) 

a nonphysical result that indicates that smaller and smaller wavelengths 
are increasingly unstable. Clearly, dispersion or some other physical effect 
will act on such short-wavelength disturbances, leading to a cutoff. The 
first analysis of the effect of dispersion was given by Chouke almost 30 
years ago, and reported recently in the Appendix to Gardner & Ypma 
(1982). Expressed in the present variables, for the case of a jump in viscosity 
(i.e. a base-state profile corresponding to zero axial dispersion), but allow­
ing both axial and transverse dispersion to act on disturbances, Chouke's 
result reads 

(J = 1 /2 [Ak-Pe- 2k3 -k(Pe-2k2 + 2APe- lk) 1/2] 
with a cutoff wave number 

kc = PeA/4, 

while the growth rate is a maximum at 

km = Pe(2j5-4)A/(4) � 0. 12PeA. 

(14) 

( 1 5) 

( 16) 

The effect of gravity on these results may be simply included through the 
parameter G, as in the above discussion. As in the case of immiscible 
displacements, there is a physical parameter that leads to a cutoff length 
scale, in this case the Peelet number. Correspondingly, we again expect 
complex behavior when the Peclet number becomes very large. Thus 
we see that transverse dispersion is responsible for controlling the length 
scales of fingers, even when axial dispersion has not yet distorted the con­
centration profile. 

There have been many subsequent attempts to analyze the stability 
characteristics of miscible displacements, including the dispersive widening 
of the zone of viscosity variation. Heller ( 1966) approximated the profiles 
by straight-line segments and invoked a quasi-static approximation in 
neglecting the time dependence of the base state relative to the growth of 
disturbances. Schowalter ( 1965) dealt with fingering driven by both density 
and viscosity variations and used a constant-thickness diffusive zone to 
describe the mobility profile. He assumed a steady base state (which is not 
allowed by the equations), special boundary conditions, and a competition 
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VISCOUS FINGERING 291 

between viscosity and density stratifications. Both these works give dis­
persion relations with cutoff wave numbers, but the questionable assump­
tions make their general validity suspect. Wooding ( 1 962) made one of the 
few attempts to treat the stability of a time-dependent base state. He 
considered buoyancy-driven fingering and expressed the disturbance quan­
tities as a Hermite expansion. By analyzing a one-term truncation, he 
concluded that the dispersion relation has the general characteristics of 
Equation (14) above, but that the cutoff length shifts with time to larger 
values, corresponding to the dispersive widening of the profile, and that 
ultimately all disturbances must decay if dispersion is given an infinite time 
to act. Recently, Tan & Homsy (1986) have discussed this problem in the 
limit G = 0, J1*(c) = exp (-c In M) for fingering in rectilinear flow in 
unbounded domains. They treat both isotropic and highly anisotropic 
media and solve for the stability of the time-dependent mobility profiles 
by utilizing both a quasi-static assumption and a numerical solution of the 
initial-value problem for the growth of small-amplitude fingers. They find 
that for the isotropic case, the analysis of Chouke is essentially correct in 
predicting the magnitudes of the growth rates and preferred wave numbers, 
but that as time proceeds dispersion acts to shift the scales to larger wave 
lengths and to stabilize the entire flow somewhat. Figure 6 shows typical 
results for the quasi-static growth rates for fingering in infinite domains, 
which indicate these general trends. Tan & Homsy also utilize Chouke's 
technique to determine how anisotropic dispersion characteristics influence 
the linear-stability characteristics. Not surprisingly, small transverse dis-

.... 
c: 
<tI 
iii 

0.2 

c: 
o 0.1 () 

.c 

i 
o ... " 

1=0 

0.1 

0.5 

Wave Number k/Pe 
Figure 6 Linear-stability results for fingering in miscible displacements with isotropic dis­
persion M = 20 (Tan & Homsy 1986). With permission. 
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persion will result in a shift to smaller length scales. Recently, Hickernell 
& Y ortsos (1986) have analyzed the stability of rectilinear displacements 
for the case when there is a zone of mobility variation of finite thickness 
but zero dispersion. This corresponds to the situation in which the solvent 
is injected in varying amounts over time, resulting in a spatially varying 
mobility profile. In this case, the finite thickness of the zone of viscosity 
stratification provides a cutoff scale, similar to the "regularization" of 
other ill-posed problems [see Aref ( 1986) for examples). 

Curiously, there are no experimental studies of fingering in rectilinear 
flows in Hele-Shaw cells with which the theory can be quantitatively com­
pared, although there have been a large number of experiments, char­
acterized by those of Benham & Olson ( 1 963), which record results of 
engineering importance, such as the time history of the production of 
solute. Experiments in porous media, which are elosely related, are dis­
cussed below. Buoyancy-driven fingering, while outside the primary scope 
of this review, deserves limited mention here. Wooding ( 1969) has reported 
observations of such instabilities for A « 1 ,  G -=f=. 0 in Rele-Shaw cells and 
has discussed the evolution of nonlinear fingers. Some of his photographs 
are reproduced in Figure 7. Here dispersion plays a dual and subtle role 
similar to that of surface tension in the immiscible case. Transverse dis­
persion sets the initial length scale of fingering, but it also leads to the 
lateral spreading of fingers in the nonlinear regime. As spreading occurs, 
the tips of fingers may become unstable as their characteristic breadth 
exceeds the cutoff scale. Thus lip splitting may occur in miscible as well as 
in immiscible flows, and it is the primary mechanism of pattern formation. 
The similarity lies in the fact that physical phenomena-dispersion and 
surface tension, respectively-are responsible both for determining the 
allowable scales of splitting and for causing the tip spreading. An important 
difference, at least as far as these experiments are concerned, is that sub­
stantial shielding does not take place, as it does when A = 1 .  In Figure 7a, 
the Peelet number is apparently below a critical value, which is presently 
unknown, and tip splitting does not occur, whereas Figure 7b shows the 
tip splitting that occurs at higher Peelet number. We mention here the 
simulations of Tryggvason & Aref ( 1983) in the limit of small A and 
large Ca', which bear a superficial resemblance to the fingering pattern of 
Wooding. However, as they discuss, these simulations cannot describe 
spreading and the continuous change in the length scales caused by dis­
persion. Numerical methods capable of accurately describing the long-time 
effects of weak dispersion at very high Peelet numbers are not presently 
available. In fact, the pioneering attempt at such a simulation by Peaceman 
& Rachford ( 1 962) failed because of the dominance of numerical errors 
and has led to a misconception in the petroleum-engineering literature that 
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VISCOUS FINGERING 293 

Figure 7 Fingering in gravity-driven miscible displacements showing (a) nonlinear fingering 
with transverse spreading at moderate Peclet number, and (b) tip splitting at high Peclet 
number (Wooding 1969). The different panels represent a time sequence. With permission. 
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permeability heterogeneities are essential in causing fingering instabilities. 
For a further discussion of the difficulty in accurate simulation at high 
Peclet number, see Claridge ( 1972) and Christie & Bond ( 1986) .  Similar 
considerations of the accurate resolution of dispersion in numerical simu­
lations of miscible displacements also pertain to other geometries ; for a 
discussion of five-spot patterns, see Ewing (1983). 

The linear-stability characteristics of radial source flow in the absence 
of dispersion can be obtained directly from the analysis of Wilson ( 1975) 
and have been summarized by Paterson (1985). Not surprisingly, we again 
obtain a dispersion relation that has no cutoff azimuthal wave number, 
i.e. from Equation ( 10) we obtain 

(J = Am - I .  ( 1 7) 

Paterson has suggested that as a result, fingers will occur in Hele-Shaw 
cells on all scales down to a scale comparable to the gap width. If this is 
true, then in experiments, a cutoff occurs because of phenomena not 
included in the two-dimensional Hele-Shaw equations leading to Equation 
( 17) above. He gives a heuristic argument based upon energy dissipation 
in the gap, by which this cutoff, which scales with the gap width b, may 
be computed. Shown in Figure 8 is a set of photographs from his paper 
that display fingering in miscible displacement of glycerine by water. The 
process of areal spreading followed by tip splitting is a familiar one, being 
reminiscent of that occurring in immiscible radial source flow. The small 
tick marks on the photographs indicate the cutoff wavelength estimated 
by the heuristic argument, and it is seen that the estimate is qualitatively 
correct. No theory for the stability of radial source flow that incorporates 
dispersion is currently available by which one could distinguish cutoff by 
dispersion vs. cutoff by three-dimensional effects in these experiments, but 
it seems clear that the latter predominate, at least in this range of Peelet 
numbers. 

Let us return to Figure la, whieh shows the fingering observed in 

o 1 0  20 em 

Figure 8 Fingering in miscible radial Hele-Shaw source flow (Paterson 1985). The tick 
marks indicate the scale of the gap width. With permission. 
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extremely thin-gap Hele-Shaw cells (E. L. Claridge, personal communi­
cation, 1 986). [Numerous tracings of similar experiments, which unfor­
tunately do not capture the finer details of these patterns, are to be found 
in Stoneberger & Claridge ( 1985).] Examination ofa time sequence of such 
patterns reveals that fingers grow, spread by transverse dispersion, and 
split at the tips, in the same manner as described by Wooding ( 1969) for 
buoyancy-driven fingering. In this case, fingering does not occur down to 
the scale of the gap width, this length being exceedingly thin in these 
experiments (0.01 cm). This would seem to indicate that the heuristic 
argument of Paterson (1985) that fingering occurs at all scales down to 
the Hele-Shaw gap width is not generally applicable. Unfortunately, too 
few experiments that specifically study the effect of the Peelet number are 
available, and in many cases insufficient data exist to allow a calculation 
of Peelet numbers for the conditions of a given experiment. This is a 
curious situation, given the key role dispersion plays in fingering in miscible 
systems, and it is hoped that careful experiments at high Peelet numbers 
might be reported in the near future. In summary, we have seen that the 
phenomena of shielding, spreading, and splitting are all important in 
determining the dynamics of fingering in miscible displacements, that 
the parameter analogous to the modified capillary number is the Peelet 
number, and that interesting and complex behavior occurs at high Peclet 
number. 

We elose this subsection by discussing the intriguing work of Nittmann 
et al. ( 1985) and Daccord et al. ( 1986). They conducted experiments in 
both rectilinear flow and radial source flow of water into a Rele-Shaw 
cell initially containing a non-Newtonian, viscoelastic fluid. The fingering 
patterns observed are qualitatively different from those observed with 
conventional fluids---compare Figure Ie with Figures Ib and 8. In these 
experiments the pattern grows by extremely localized tip splitting, and the 
shielding is much stronger than in the case of Newtonian fluids. They 
present data suggesting that the geometry of the patterns has a fractal 
structure, and the measured fractal dimension is close but not equal to 
that obtained from simulations of diffusion-limited aggregation (DLA), 
discussed below. Visual comparison with DLA clusters reveals a lesser 
degree of side branching in the experiments. They argue that such a 
choice of fluid pairs is necessary in order to obtain such structures, since 
Newtonian fluids do not have sufficiently high viscosity contrast. Such a 
elaim does not stand up under close scrutiny, since the viscosity ratio 
enters the problem as the parameter A, not the absolute ratio, and for large 
viscosity ratios, the dominant length scales become sensibly independent of 
this ratio. Thus, systems of any reasonable viscosity contrast, such as those 
for the systems used by Paterson and by Claridge, have A = 1, but do not 
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exhibit such ramified patterns. It is quite probable that these results, while 
fascinating, are linked to the viscoelastic nature of the displaced fluid used 
in their experiments. It is tempting to speculate on the mechanism that 
leads to dramatic structures such as those shown in Figure Ie, but until 
more work is done, these structures will remain unexplained and in sharp 
contrast to the results available for Newtonian fluids. 

POROUS MEDIA FLOWS 
There is a distinction to be drawn, where appropriate, between viscous 
fingering in model systems like Hele-Shaw cells and "real" porous 
materials, since some of the phenomena are distinctly different and some 
of the mathematical models used are less fundamentally based. Many of 
the mechanisms discussed above still pertain ; however, in many cases it 
becomes necessary to recognize the particulate nature of the medium. In 
this section we review the available understanding of fingering in real 
media, with the anticipation that this knowledge will be incomplete in 
significant ways. The description of fingering will in turn depend strongly 
on the length scales at which we choose to view the flow. Thus we face at 
the outset a fundamental issue of the level of detail of description of pore­
level fluid mechanics that is desirable or even possible. There is at present 
no general agreement on this issue, and therefore we briefly discuss both 
continuum approaches, which seek to describe the fingering on scales large 
compared with typical pore dimensions, and discrete approaches, which 
are essentially discontinuous descriptions. As we shall see, both approaches 
involve large elements of modeling and simulation, as opposed to funda­
mental prediction obtained as a result of solving an agreed-upon set of 
equations. 

Miscible Displacements in Porous Media 
If we begin by adopting a continuum description of miscible displacements 
in which we average over scales comparable to the scales of pores or grains 
of the medium, then the single-phase Darcy equations with vari­
able viscosity hold [Equations ( 12)]. Furthermore, we recognize that the 
effective dispersion tensor of the medium arises as a result of mixing 
and mechanical dispersion on the pore scale. Thus we have in effect 
accomplished whatever averaging is necessary to obtain the continuum 
description, which will certainly be valid in describing any instability 
that is smooth on the continuum length scale. The theoretical studies of 
fingering in miscible systems reviewed above pertain equally to Hele-Shaw 
cens and to porous media as long as the dispersion tensor is evaluated 
appropriately. The dynamic dimensionless groups are as we have indicated 
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above, with the Peclet number the main determinant of the scale of finger­
ing. We expect, therefore, to find a close similarity between Hele-Shaw 
results and porous-media results in the limit of isotropic dispersion. 

As we have seen, both transverse and longitudinal dispersion lead to 
preferred wavelengths for fingering, and that in the strict absence of dis­
persion, fingering will occur on all scales, with growth rates that increase 
with decreasing scale. Scales will ultimately be reached for which the 
continuum hypothesis no longer holds, and a pore-level description is then 
appropriate. Thus the nature of fingering at very high Peelet number may 
be more conveniently described in noncontinuum terms. As noted above, 
there are very few continuum analyses available of either the linear-stability 
characteristics or the nonlinear miscible fingering. Those that exist indicate 
that as dispersion acts to spread the mobility profile, there is a shift to 
longer wavelength fingers. No analyses to date have been able to describe 
tip splitting in the nonlinear regime. 

There have been many experimental studies of fingering in porous 
materials, most of which have appeared in the petroleum-engineering 
literature. In these studies, great care has typically been taken to ensure 
the homogeneity of the media by constructing them from sand or other 
unconsolidated materials. Since porous materials are generally opaque, 
very few visualizations of fingers exist in thick media. We take special note 
of some early X-ray studies by Slobod & Thomas (1 963) and Perkins et 
al. ( 1965). As an illustrative example, we show in Figure 9 two of the X­
ray pictures of Slobod & Thomas taken during the same experiment 
in quasi-two-dimensional horizontal displacement. Viscous fingers whose 
characteristic length is many times the characteristic pore size are clearly 
evident, as is the trend toward longer scales as time progresses. Note the 
similarity between these patterns and those of Wooding (1969) in Hele­
Shaw cells, shown in Figure 7a. Unfortunately, insufficient time-resolved 
information is available to determine the mode of finger growth in these 
experiments, i.e. whether it occurs by tip splitting or simply by spreading 
due to transverse dispersion. Since the transverse Peelet number is com­
paratively low, the latter seems the more probable. Tan & Homsy ( 1986) 
have compared the apparent wavelengths in visualizations like Figure 9a 
to the linear-stability calculations shown in Figure 6, with reasonable 
agreement between theory and experiment. 

Although the X-ray visualizations apparently did not show tip splitting, 
there are other experiments that do, most notably the celebrated five-spot 
experiments of Habermann ( 1960), done in relatively thin media and 
shown in Figure lOa. Although the Peclet number is not known for these 
experiments and no time sequences are shown, it is obvious that significant 
growth of the pattern has occurred at the tips due to shielding, and that 
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repeated tip splitting has also occurred, resulting in the characteristic 
pattern shown. Note the similarity with the Hele-Shaw experiments of 
Claridge (Figure I a), also done at high Peelet numbers. It is also interesting 
to note that the fractional recovery of the displaced fluid as a function of 
mobility ratio M is nearly equal in the porous-media experiments of 
Habermann and the Hele-Shaw experiments of Stoneberger & Claridge 
( 1 985), which indicates the similarity of the mechanics in the two cases. 
There are many empirical correlations of the fractional recovery that 
indicate that this quantity is relatively insensitive to the Peelet number for 
sufficiently large Pe, which implies that the large-scale geometric properties 
of the pattern become independent of Pe as Pe � 00. This is a concept 
familiar to researchers who study the large-scale features of turbulent flows 
at high Reynolds numbers. 

In spite of the geometrical complexity of Figures l a  and l Oa, in both 
cases the dominant length scales are much larger than any microscopic 
pore scale. This is not true when one studies fingering at ever-increasing 
Peclet numbers at ever-decreasing scales. Paterson et al. ( 1982) have stud­
ied miscible fingering in packed beds that shows patterns similar to those 
occurring in DLA. Obviously, for a given pore scale there is a crossover 
between the continuum and discrete descriptions, but very little quan­
titative information is available to indicate when this crossover occurs. 

A challenging and interesting question pertains to the structure of non­
linear fingering in the limit in which phenomena leading to a cutoff scale 
are entirely missing, i.e. the case of zero dispersion or molecular diffusion 
in the examples above. Because of the properties of the linear-stability 
theory in this limit, the initial-value problem is ill posed, but we may 
seek solutions that have discontinuities or other singularities. Neglecting 
dispersion preserves sharp jumps in viscosity profiles for all times, with 
the result that the pressure obeys Laplace's equation, with prescribed 
boundary conditions at the moving boundary. Various types of singu­
larities can occur in the solution as a result, and very little work exists on 

(b) 
Figure 9 Fingering in miscible displacement in opaque media, at two different times, as 

visualized by X-ray absorption (Slobod & Thomas 1 963). Compare Figure 9h with Figure 
7a. © 1963 by SPE-AIME : with permission. 
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R 8 8  

8T 

Figure 10 Fingering in five-spot patterns : (a) two-dimensional porous-media experiments 
of Habermann (1960) © 1960 by SPE-AIME ; (b) lattice simulations of Sherwood ( l986b). 
Compare these two with Figure la. With permission. 
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the subject. However, we can anticipate that different non uniformities will 
appear in different boundary-value problems. In this regard, we mention 
the work of Shraiman & Bensimon ( 1984) and Howison ( l986a,b) on cusp 
formation in fingering problems. 

Also of interest are the large number of recent papers that attempt to 
construct discontinuous solutions by random-walk calculations of the type 
used in DLA. The first observation of the relevance of DLA to fingering 
in porous media is due to Paterson (1984), who commented on the formal 
equivalence between DLA and fingering in miscible systems at infinite 
Peclet numbers and A = 1 ,  and who reported simulations in which he 
claimed to describe fingering in five-spot patterns. Similar approaches, but 
modified to account for different geometries, boundary conditions, and 
finite mobility ratios, have been discussed by Sherwood & Nittmann 
(1 986), DeGregoria (1 985), and Sherwood (1 986a,b). For A = 1 ,  these 
approaches capture the effect of shielding quite accurately, and growth of 
fingers is seen to occur primarily at the tips. Figure lOb shows the results 
of a two-dimensional simulation in a five-spot pattern at the point of 
breakthrough for A = I (Sherwood 1 986a). When this simulation is com­
pared with the experiments of E. L. Claridge (personal communication, 
1 986) and of Habermann (1960), a striking geometrical similarity is 
observed. The resulting pattern, since it can access all scales above the 
scale of the lattice on which the simulation is performed, has the geometrical 
properties of a fractal object. The analogy with DLA is not so clear in the 
case of finite mobility, as the rules for sticking the random walkers to 
the aggregates must be modified to account for the finite mobility of 
the "aggregate" phase. However, Sherwood & Nittmann (1986) and 
DeGregoria (1985) have suggested rules for simulations at finite mobility 
ratio that advance the interface at a point with a probability propor­
tional to the local pressure gradient. Sherwood & Nittmann argue that 
such rules model physical dispersion, but the physical significance of 
some aspects of these algorithms, including the rules for trapping of the 
displaced phase, is not clear. 

While these approaches to discrete simulations of viscous fingering 
seem to hold much promise, there are at least two drawbacks to their 
quantitative accuracy. First, at their present state of development, they do 
not account for the spreading of fingers due to weak dispersion, and as a 
result they cannot capture all of the physics of tip splitting that are so 
important in determining much of the fascinating structure of fingering 
patterns. Second, many parameters of scientific and engineering interest, 
e.g. the fractional recovery of the displaced fluid, depend upon the lattice 
size, sometimes sensitively so (see, e.g., DeGregoria 1 985) .  Thus, these 
simulations involve an artificial cutoff related to a lattice size, which at 
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VISCOUS FINGERING 30 I 
present cannot be related to any quantity of physical significance and 
which must be used as a fitting parameter in order to obtain results other 
than those represented solely by the geometry of the fingered pattern, i.e. 
other than the fractal dimension. DeGregoria ( 1985) has argued that once 
this size is fit to a given physical system, the effect of varying the mobility 
ratio may be quantitatively predicted, and he gives a calculation of the 
fractional recovery as a function of mobility ratio that agrees well with 
experiments. Further research needs to be done to connect these discrete 
simulations to smooth but steep solutions of the continuum equations. 

Immiscible Displacements in Porous Media 

The problem of viscous fingering in immiscible systems is arguably one of 
the most difficult problems pertaining to porous media flow. This is so 
because of the wide variety of phenomena occurring that involve a myriad 
of pore-scale phenomena, including the details of wetting behavior and 
wetting films, the movement of contact lines and dynamic contact angles, 
the static stability of capillary bridges, the dynamic instability of blobs of 
immiscible, nonwetting fluid, the propagation of these blobs, the phase 
transitions during flow, the heat and mass transfer across interfaces, and 
many others. Some of these areas have been touched on in the review by 
Wooding & Morel-Seytoux (1976), and some of them are sufficiently rich 
that they have been the subject of specialized reviews in this series [e.g. the 
review on "ganglia" mechanics by Payatakes ( 1982), that on contact lines 
and contact angles by Dussan V. ( 1979), and that on capillary instabilities 
by Michael ( 198 1). Further compounding the complexity of the subject 
is the fact that the distributions of menisci within the material, together 
with the configuration of phases within the medium, are under some 
circumstances strongly coupled to the topology of the underlying solid 
matrix, the description of which is a subject of much current research in 
the field of disordered media. It is clear that we cannot give a detailed 
account of all these issues, so our discussion is necessarily limited to those 
situations in which viscosity plays a major role. As we have commented 
above, this focus excludes a large and interesting emerging literature on the 
slow, capillary-dominated propagation of menisci on lattices and within 
disordered materials, which finds a natural setting within the framework 
of percolation phenomena. 

Once again, we face the major problem that "real" media are opaque, 
and as a result very few visualizations are available, certainly not enough 
for us to understand the detailed dependence of viscous fingering upon the 
parameters of the process. As in the case of miscible fingering, instructive 
observations are again ones that were done some years ago, in this instance 
by van Meurs ( 1957). Some of these visualizations, accomplished by work-
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ing with displaced fluids of the same index of refraction as the medium, 
have already been reproduced in the article by Wooding & Morel-Seytoux 
( 1 976), and the interested reader is urged to consult that reference. This 
beautiful time sequence shows that the processes of shielding, spreading, 

and splitting are present in real porous materials and determine the patterns 
of fingering in essential ways. Shown in Figure 1 1  are similar observations 
of fingering from Chouke et al. ( 1959), which show the variation of the 
length scales of fingering with increasing velocity and viscosity contrast, 
i.e. with increasing capillary number. Fingering apparently takes place on 
many scales, including a macroscopic one, and thus one might assign a 
characteristic macroscopic length scale (if not a wavelength) to what is 
seen. It is obvious from these and other visualizations that the scale of 
fingering changes, becoming smaller when either the velocity or the vis­
cosity of the displaced fluid is increased. From these and other observations 
on both three- and quasi-two-dimensional media (see, e.g., Peters & Flock 
1981 ,  Paterson et al. 1 984a,b, White et a1 1 976, Maloy et al. 1986, and the 
references quoted therein), the following may be observed : 

1 .  Wetting properties are important : There is a qualitative difference in 
fingering when the invading fluid does or does not wet the medium. 
In the former case fingering is characterized by some macroscopic 
continuum scale, whereas in the latter fingering is more likely to be 
confined to the pore scale, with shielding dominating over spreading, 
as might be expected. 

2. Characteristic macroscopic scales, if present, decrease with increasing 
capillary number Ca = Ji. l Uly. 

3. When the invading fluid is nonwetting, the pattern is a probe of the 
topology of the microstructure and is characteristic of percolation 
behavior, with a backbone that may have a fractal character. 

4. There is simultaneous flow of both phases in a zone behind a dis­
placement front, assuming such a front may be identified. 

The above observations are oversimplifications of complex behavior, but 
they will help to fix our ideas. 

The first attempt to provide a theoretical analysis of the onset of finger­
ing was by Chouke et al. ( 1959). They assumed that there was complete 
displacement of one fluid by the other and ignored the zone of partial 
saturation or volume concentration of the displacing fluid behind the 
front. This reduces the equations in each phase to the single-phase Darcy 
equations [Equations (4)]. In order to avoid the short-wave catastrophe 
that, as we have seen, occurs, Chouke took the bold step of applying the 
jump condition [Equation (6a)] at the front, but with a constant y* that 
is different from the molecular surface tension. He provides a heuristic 
justification based upon energy arguments, which is incorrect. This has 
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been referred to as "the Chouke boundary condition," and the resulting 
predictions will be referred to as Hele-Shaw-Chouke theory. This bound­
ary condition has been used in similar contexts by White et al. ( 1976), 
Peters & Flock ( 198 1), Paterson et al . ( 1 984a), and many others. It is by 
no means clear how surface tension, acting as it must on menisci at the 

a 

b 

c 

Figure 11 Fingering in immiscible displacement in porous media (Chouke et aL 1 959) : (a) 
Ca = 2 x 10-5 ; (b) Ca = 1 .2 x 10-4 ; (c) Ca = 3 x 10-3• © 1959 by SPE-AIME : with 
permission. 
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pore level, can provide a restoring force proportional to macroscopic 
curvature, as implied by Equation (6a). However, it is found that estimates 
of the characteristic macroscopic length from observations such as those 
shown in Figure 1 1  compare well with those given by Equation (8) if the 
empirical "effective surface tension" y*, which is found to depend upon 
wetting conditions, is fit at one value of the capillary number. This is 
essentially equivalent to the statement that the length scale of fingers scales 
with the modified capillary number Ca' = (/l I UL2/y*K) as 

k '" O(Ca/ 1/2). ( 1 8) 

Alternative theoretical descriptions of fingering attempt to model the 
fact that variations in the saturation behind the front can reduce the 
mobilities of both phases there, and that because of these saturation 
gradients, there will be a tendency, depending upon the wetting conditions, 
for one fluid to displace the other by the action of capillary imbibition. 
This leads to a process of spreading, which appears in the equations 
[Equations (22) below] as a diffusive effect. 

While it is clear that the continuum description of such pore-scale events 
of simultaneous flow of both phases and capillary invasion is not well 
understood, the set of equations that is thought to describe these events 
involves modifications of Darcy's law as follows : 

i = 1 , 2, ( 1 9) 

where 

Ai = Ki(C)//li (20) 

is the mobility of phase i, and the quantity K; is the permeability of phase 
i, dependent upon the local concentration or saturation of the phases, c. 
Without loss of generality, we take c to be the relative saturation of the 
invading phase. It is common to factor K; as the intrinsic permeability 
times the relative permeability. The difference between the pressures in the 
phases, which models the invasion by the wetting phase, is also dependent 
upon saturation and is taken to scale with a characteristic pore scale and 
the molecular surface tension, i.e. 

(21 )  

which i s  the defining equation for Pc, the dimensionless capillary pres­
sure. These equations must be augmented by continuity equations for the 
individual phases. With suitable manipulations, the problem reduces to an 
evolution equation for the saturation c of the general form 

oc ( 00 )  I 

ot + V '  1+ M- 1 = Ca*- V ' [G(c)Vc] (22a) 
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with 

M(c) = A2(C)!A 1(C) 
and 
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(22b) 

(22c) 

Here Uo is the volume average velocity of the mixture, and the modified 
capillary number Ca * is defined as 

(23) 

which differs from that appearing in Hele-Shaw theory by the factor 
involving the ratio of macroscopic to microscopic length scales. As noted, 
these equations have some physical intuition embodied in them and are 
routinely used in the petroleum-engineering literature, but they cannot 
be rigorously justified and have never been derived from a pore-level 
description, even for simple geometries. For a further discussion of these 
equations, see Wooding & Morel-Seytoux ( 1 976) and the references 
therein. 

Solutions of these equations will depend upon the modified capillary 
number, the mobility function M(c), and the capillary pressure function 
Pc(c). It will be important later to note that models from percolation 
theory and data suggest that M(c) vanishes at a finite value of c, related 
to the percolation threshold. Analyses of these equations in the limit of 
Ca* = C1J go under the general designation of Buckley-Leverett theory. 
Since Equation (22a) with Ca* = (JJ is a nonlinear hyperbolic system, it is 
not surprising that the solutions develop shocks at a finite time, with a 
rarefaction wave of saturation that disperses as time proceeds. For specific 
choices of the function M(c), simple one-dimensional solutions are well 
known. For large but finite Ca*, the problem is a singularly perturbed 
one, and Wooding ( 1975) has analyzed the continuous structure of the 
front region using matched expansions. He finds that this region is 
O(Ca*- I) in thickness, as opposed to the more probable O(Ca*- 1/2) for 
nonlinear diffusion problems. 

Stability analyses of these one-dimensional solutions have only just 
recently begun (Yortsos & Huang 1 984, Huang et al. 1 984, Jerauld et al. 
1 984a,b). There are several conceptual as well as practical difficulties in 
performing such analyses. The first is that the profiles are inherently time 
dependent, as in the case of miscible displacements, and thus one must 
discuss the stability of time-dependent flows. This has been circumvented 
in some cases by applying inflow boundary conditions corresponding to 
injection of both phases at saturations that allow steady solutions to the 
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Buckley-Leverett equations. Even then, the predictions ars; specific to the 
choices of the material functions M(c) and Pc(c), so only a few features of 
a general nature are known. The first is that, unlike Hele-Shaw-Chouke 
theory, it is incorrect to infer stability or instability from evaluation of the 
viscosity ratio of the fluids ; rather, it is the mobility contrast at the front, 
together with the saturation profile behind the front, that determines 
stability. In this sense the stability characteristics share much in common 
with graded mobility processes analyzed by Gorell & Homsy (1 983) for 
immiscible processes, and by Hickernell & Yortsos ( 1986) for miscible 
displacements at infinite Peelet number. Thus, depending upon the 
mobility function, a displacement that has an unfavorable viscosity ratio 
may still be linearly stable, even at infinite Ca*. Yortsos & Huang (1984) 
have analyzed the linear stability by using a quasi-static approximation 
for the saturation profiles, and straight-line approximations to the mobility 
profiles, in the spirit of Heller ( 1 966). They find that without capillary 
pressure, there is no cutoff scale, which is a familiar property of sharp fronts 
with mobility jumps but with no dissipative mechanism. With capillary 
pressure, they find a cutoff wave number 

kc � O(Ca*), (24) 

as opposed to that given by Hele-Shaw-Chouke theory [Equation (1 8)]. 
Huang et a1. ( 1 984) have analyzed more general spatially varying profiles. 
They find certain profiles that are neutrally stable even in the absence of 
capillary pressure. They also solve the eigenvalue problem by numerical 
means, a process that becomes difficult at high Ca*, in a manner similar to 
the ill conditioning that occurs in Hele-Shaw theory at high Ca', in miscible 
displacements at high Peelet number, and in Orr-Sommerfeld theory at 
high Reynolds numbers. They find that the critical viscosity ratio below 
which displacement is stabilized by the graded mobility profile may be 
simply estimated from the inlet saturations and the mobility jump from 
Buckley-Leverett theory. Chikhliwala & Yortsos (1 985) have provided 
long-wave expansions of the eigenvalue problem that they elaim capture 
most of the qualitative features of the numerical calculations. Jerauld et 
a1. ( 1984a,b) hav:e analyzed a elass of steady solutions of the Buckley­
Leverett equations in a manner similar to that of Y ortsos & Huang (1984) 
and Chikhliwala & Yortsos ( 1985), including long-wave expansions and 
numerical solutions to the related variable-coefficient eigenvalue problem, 
and find similar results of stabilization due to spatially varying mobility 
profiles, and stability at viscosity ratios greater than one. They also 
comment on the differences in predicted scales given in Equations ( 1 8) and 
(24). The linear-stability calculations done to date must be considered as 
providing only preliminary understanding of the solution properties of a 
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set of model equations, which must be further tested and validated by 
comparison with more extensive experimentation. 

As can be seen, there is a formal similarity between immiscible dis­
placements, described by the fractional flow equations (22) above, and 
miscible displacements, described by Equations ( 1 2) .  Differences appear 
in the material behavior of the function M(c) or /1* (c), in the fact that 
M(c) has a zero, and in the fact that the dispersive term in each continuity 
equation has different functionalities, being isotropic and dependent upon 
saturation on the one hand, and anisotropic and dependent upon velocity 
on the other. However, it is probable that these differences become only 
ones of detail in the limits of Pe -+ IX) and Ca* -+ IX), respectively. 

Insufficient experimental evidence exists to adequately test any of these 
predictions. Both approaches provide scalings, given in Equations ( 1 8) 
and (24), which capture the qualitative trends shown, e.g., in Figure 1 1  of 
decreased scales of fingers with increasing velocity and displaced fluid 
viscosity, but careful experiments that vary all the parameters over wide 
ranges and that distinguish the differences between Equations ( 1 8) and 
(24) have yet to be reported. However, the observations by Chouke et al. 
( 1959), White et al. ( 1976), Peters & Flock ( 1981 )  and Paterson et al. 
( l984a) provide compelling evidence in favor of the Hele-Shaw-Chouke 
theory, which in this author's opinion is presently unexplained. 

Qualitative experimental studies on rectilinear displacements in two­
dimensional etched networks by Lenormand & Zarcone ( 1 985) have sug­
gested that continuum model equations have a restricted range of validity. 
The authors conducted displacement experiments for both favorable and 
unfavorable mobility ratios as a function of capillary number Ca = /1 1  Ujy, 
where U is the average interstitial velocity. For favorable mobility ratios, 
they found that below Ca '" 10-4-10-\ displacement was by invasion 
percolation, for which a continuum description is not possible. For 
Ca > 10-3, displacement proceeds in a fashion appropriate to Buckley­
Leverett theory. For unfavorable mobility ratios for which viscous finger­
ing is possible, they observed a crossover at Ca = 1 0-8-10-7, from invasion 
percolation behavior to that characterized by DLA, without observing a 
continuum regime. Lenormand ( 1985) has proposed a "phase diagram" 
of these different regimes that involves mobility ratio and capillary number, 
which can at present be considered to be only qualitative and specific 
to the apparatus used, and most certainly dependent upon wetting 
conditions. 

Fingering resulting from invasion of nonwetting fluids into porous 
media remains a poorly understood and complicated subject. Recently, 
Maloy et al. ( 1986) have reported fingering in radial source flow at high 
capillary number, defined using the superficial velocity, in which the 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

98
7.

19
:2

71
-3

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

02
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



308 HOMSY 

pattern is claimed to have a fractal geometry with dimension appropriate 
to DLA. Since this is an immiscible displacement of nonwetting fluid, it is 
not clear why DLA should apply at all, and since their apparatus consisted 
of only a monolayer of particles between solid plates, the results cannot 
be considered to have applicability to porous materials. 

Recently, King ( 1 985) and King & Scher ( 1 986) have presented some 
probabilistic lattice simulations for both rectilinear and five-spot flow, 
similar in spirit to those of Sherwood and of DeGregoria discussed above, 
but for the Buckley-Leverett equations [Equations (22) in the singular 
limit of Ca* -4 00]. As stability analyses show, this is in general an ill­
posed problem unless the mobility function and inlet saturations are 
specially chosen, and a cutoff due to the finite lattice spacing exists. The 
patterns produced are as intriguing and suggestive as those shown in 
Figure l Ob, but as the authors point out, fractional recovery is sensitively 
dependent upon the lattice spacing. Again, this spacing must be connected 
to some parameter of physical significance before this approach can 
be generally useful. Finally, we note briefly the comments by Chen & 
Wilkinson ( 1 985), who point out that the probabilistic rules used by 
DeGregoria, Sherwood, and King can be considered as models for the 
natural variation of pore-scale features such as pore radius, since patterns 
in deterministic network models with variable geometrical features are 
directly comparable to those observed in probabilistic simulations. 
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