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A Hele Shaw cell contains two fluids seperated by an interface. Because the 
fluids are held in a narrow regions between two plates the cell can be described 
by a set of two-dimensional hydrodynamic equations, which determine the 
velocity fields in the fluids as well as the motion of the interface between them. 
A discretized version of these equations can be implemented in terms of the 
motion of random walkers. The walkers have the effect of carrying pieces of the 
fluid from one place to another. They simulate a discrete version of the Laplace 
equation and obey the appropriate boundary conditions for the fluid. The 
walker-hydrodynamic connection is explored in the limiting situation in which 
the viscosity of one of the fluids vanishes. An algorithm is constructed and a few 
exemplary simulations are shown. 

KEY WORDS: Chaos; interface; hydrodynamic instability; random walk; 
Hele Shaw; Green's function. 

1. I N T R O D U C T I O N  

One of the very simplest problems illustrating hydrodynamic stability and 
instability involves two immiscible fluids moving through a porous 
medium. The two-dimensional version of this problem seems particularly 
accessible. It can be studied experimentally using the Hele-Shaw (1) cell: a 
flow contained between narrowly spaced glass plates. This cell has a 
behavior which is described by the very same set of equations as those for 
two-dimensional flow in a porous medium. The basic equations are very 
simple. They involve the pressure, p, the velocities in the two fluids, v 1 and 
v2, and the common normal flow velocity at the interface, u, which is also 
the velocity of interfacial motion. Because of the friction, the flow velocities 
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are proportional to the pressure gradients, with different constants of 
proportionality, ~:i, in the different media. Thus, we have 

vi = - ~ i V p  (1.1) 

Here x is an abbreviation for the permeability of the porous medium 
divided by the viscosity of the fluid. If we view Eq. (1.1) as an analog of 
Ohm's law, j =crE, then we say that ~c is analogous to a kind of conduc- 
tivity for the fluids. Equation (1.1) holds everywhere except right at the 
interface. The fluids are considered to be incompressible so that the 
divergence of the velocity fields vanish. In terms of the pressure this is the 
statement that 

V2p=O (1,2) 

except right at the interface. We set up two boundary conditions to define 
the behavior at the interface. One of these is the statement that the normal 
components of the fluid velocites are equal and are exactly the interfacial 
velocity: 

( V t ) n = ( V 2 ) n = U  (1.3) 

The other boundary condition defines the pressure discontinuity across the 
boundary. This capillarity condition states that the discontinuity depends 
upon the radius of curvature of the surface, i.e., that at the surface 

P l  - P2 = e / R  (1.4a) 

Here ~ is a material-dependent constant while R is the radius of curvature 
of the surface. The right-hand side of Eq. (1.4a) is termed the s u r f a c e  ten-  

s ion.  In a quasi-two-dimensional geometry in which the flow is held 
between two glass plates, the wetting angle of the film with the glass 
produces the largest curvature in the problem. In that case one (t) rewrites 
Eq. (1.4a) in the form 

Pl  - P2 = fi + c~/R (1.4b) 

Here fl is ~ times the curvature produced by the glass. So long as /~ is 
independent of position it drops out of the flow problem. However, as we 
shall see, the dependence of the pressure difference upon the orthogonal 
curvature (the ~ term) is all important. 

That is all there is to the basic equations for this system. Very simple. 
But the solutions. Not so simple. When a less viscous material, one with 
larger k, is pushing a more viscous material there is a long-wavelength 
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instability (2) on a flat surface set perpendicular to the flow. As a result, at 
first, the surface ripples. After a time, the ripples can get complicated and 
produce beautiful and apparently chaotic 2 patterns. This behavior has been 
illustrated in, for example, the experiments of Saffman and Taylor (3) and 
the simulations of Tryggvason and Arel. (4~ However, when the fluids are 
confined in a channel of finite width, W, the chaotic behavior is only 
present for a finite period of time. (3) If the pushing velocity is constant, 
after a time, one of the ripples turns into a very long finger, which 
dominates the channel, and the resulting long-time behavior is quite 
orderly. Figure 1 is a sequence of pictures which illustrates this effect. 

This behavior is well known but only partially understood. The 
present paper will have very little to add to the understanding of the basic 
phenomena at hand. But, this problem provides a prototypical situation 
with behaviors ranging from chaotic to orderly. It then furnishes a 
beautiful case on which we can test our analytical, computational, and 
simulational methods. It is the purpose of this paper to set out a somewhat 
novel computational method. 

Clearly, one test of any approach to this class of problems is that it 
should lead to the qualitative results described above (and more completely 
in the references). However, this problem is particularly nice in that there 

2 Here the word "chaotic" is used to suggest that the patterns are complex and sensitively 
dependent upon initial conditions. 

m i 

A ~ C 

Fig. 1. Three successive states in the motion of the interface. In the first view, the instability 
produces a few small fingers. Then, the biggest ones tend to grow, leaving the others behind. 
Finally, in part C one finger has outstripped the others. 
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are quantative but only partially understood results to serve as a basis of 
comparison. There exist experimental results which plot the shape and 
width of the steady-state tongue in terms of the two dimensionless 
parameters which define the problem. One of them is an assymetry 
parameter, A, which describes the difference in viscosities between the two 
fluids 

A =  ~c2- tq (1.5) 
K' 2 q- K71 

In addition, one needs a dimensionless version of the surface tension. This 
parameter has been defined in Ref. 3 to be 

2~K 1 K2 
B = (1.6) 

u~ W2(~:1 - ~c2) 

Here W is the width of the channel (see Fig. 2) and u~ is the velocity of 
fluid 2 at the far end of the channel. (In Ref. 3, the velocity in fluid 1 is 
actually chosen as the reference, but this is a trivial difference.) The 
parameter, B, has a very simple physical interpretation. The surface tension 
and channel width, W, together set a characteristic velocity: the speed of 
motion of an interface with curvature of order W set a distance of order W 
from a flat surface. In view of Eqs. (1.1), (1.2) and (1.4) this characteristic 
speed is ~ c / W  2. Then Eq. (1.2) defines B to be the ration of this surface-ten- 
sion characteristic velocity to the pushing velocity, u~.  

Another parameter, which is perhaps even more relevant to our 
understanding of given physical situation is the characteristic length, 

= 2 n w ( B )  1/2 (1.7) 

t W 

Fig. 2. A portion of a Hele Shaw cell. The fluids move toward the top of the page and are 
bounded by the walls shown. 
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This quantity, ~, is the wavelength of marginally stable perturbations upon 
a flat interface. If the perturbations have a wavelength longer than ~ they 
grow; if shorter they decay. 

Clearly ~ is only one of several quantities which we should monitor in 
trying to understand the system. This quantity describes the behavior of 
flat surfaces. Another involves the long-time domain in which the system 
settles into a steady flow in which one fluid forms a tongue within the other 
(see Fig. 1). A very simple parameter to measure is 2, the ratio of the 
tongue width to channel width. Saffman and Taylor measured 2 for small B 
and found it to be close to 1/2. McLean and Saffman (6) then found 2 as a 
function of B by doing a full numerical calulation of the steady-state 
velocity pattern. They then found 2 to be 1/2 in the limit as B goes to zero. 
Hence at least in this point, experiment and calculation agree. However, 
later work showed this "steady-state" profile to be totally unstable. In fact, 
when the surface tension parameter, c~, is zero, all possible patterns seem to 
show instabilities for arbitraily small wave vector. (7) Shraiman and Ben- 
simon have solved an initial value problem at B = 0 and found that in a 
finite interval of time the solution leads to cusps in the surface profile, and 
that, after this time their B = 0 solutions makes no sense. (7) Subir Sarkar (8) 
has proven that, in one particular geometry, cusps seem to arise from 
"almost all" initial conditions. Hence, even though we have a solution at 
B = 0, we have an insufficient understanding of what the solution really 
means. 

All of the above is intended to say that the problem under con- 
sideration is sufficiently interesting to merit some serious effort. In par- 
ticular, this paper is aimed at numerical methods of expressing and solving 
this problem. And indeed there have been, in the recent past, a reasonable 
number of other numerical calculations aimed at this class of problems. (4'6) 
The novelty of the method proposed here is that it is based upon 
representing the solution to Laplace's equation in terms of random walks. 
It is well known, of course, that the probability that a random walker will 
land at a given point obeys the Laplace equation. In discussing the 
behavior of the random walker, one can reach for the experience in an 
entirely different branch of theoretical knowledge: the study of the kinetic 
behavior of aggregating particles. Here, a seminal piece of work was 
provided by Witten and Sander, (9~ who studied the problem which has 
come to be known as diffusion-limited aggregation, DLA. In DLA an 
aggregate is defined to occupy some region of space. A "drunken" or ran- 
dom walk is performed, starting from far away from the cluster. As the 
walker touches the aggregate, it is absorbed by the aggregate, which thus 
grows. In this way, a very disorderly and chaotic structure is produced. It is 
easy enough to show that random walks have a probability density which 
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is described by Laplace's equation. Hence there must be some connection 
between the Hele Shaw problem and DLA. A part of this connection has 
been pointed out by L. Patternson. ~1~ But Patterson's proposed answer is 
only partial and heuristic. Section 2 of this paper is devoted to describing in 
a precise manner a lattice problem which in one limit is DLA and which 
might well have as its continuum limit the hydrodynamic problem under 
discussion. Section 3 contains a discussion of algorithms which might be 
used to implement a simulation of the lattice problem and then shows some 
simulation results. 

2. A R E S T A T E M E N T  AS A LATTICE R A N D O M  W A L K  

To define a solution to Laplace's equation one can specify the fields on 
the exterior boundary of a region U of space. The fields on the exterior will 
determine the fields everywhere inside. One formal way of setting up this 
boundary value problem is to define a Green's function, g,(r, s), which 
depends upon two points, r and s. Here r may lie either in the interior of U 
or on its boundary OU, while s is required to lie on the boundary. (See 
Fig. 3.) In a lattice version, the Green's function obeys 

[ ]  g . ( r ,  s) = 0 

Here g is the lattice version of the Laplacian, i.e., 

(2.1) 

[~f(x, y)=4f(x, y ) - f ( x + l ,  y ) - f ( x - 1 ,  y ) - f ( x ,  y+ 1 ) - f ( x ,  y - I )  

(2.2) 

and 3 is the usual 6 symbol. Equation (2.1) is to be solved with the boun- 
dary condition that g vanishes whenever r is on the exterior boundary of 
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Fig. 3. The lattice used in this work. 
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the region--except that, at r equals s, g.  = 1. In symbols, when r is on the 
boundary 

g.(r, s) = 8(r, s) (2.3) 

This Green's function serves to solve the boundary value problem, since if 
we set the value of the potential, p, to be ~ on the boundary of region U, 
then the solution of the Laplace equation, will be simply that 

p(r) = ~ g.(r, s) 0(s) (2.4) 
S 

where the sum runs over all points on the boundary. Once one has g. ,  then 
one has the solution. The solution is manifestly correct. For our later work, 
we shall need a slightly different Green's function, one which is connected 
with the bonds lying on the boundary of our region. We call these par- 
ticular links between the interior and the remaining world, exterior bonds. 
These bonds are depicted in Fig. 3. Each exterior bond, b, is connected 
with one and only one interior point r, but an interior point neighboring 
the boundary may be connected with more than one such bond. We define 
a bond, bond Green's function, Gv(b~, b 2 ) .  G is defined only for surface 
bonds, and is essentially a special case o fg . .  In particular, Zb2 G~(bl, b2) is 
identical with g.(r~, r2), with the condition that bond b~ has its interior end 
be r~ and that all summed bonds, b2 have interior ends r2. Unlike g~, 
which is defined asymmetrically, the bond Green's function Gc~ obeys the 
symmetric condition 

Gv(bl, b2) = Gu(b2, bl) (2.5) 

Now one can see the connection to random walks very simply. Con- 
sider N random walkers who all start out at s. They walk at random, obey- 
ing but one condition: when they reach the boundary of U, they disappear. 
Their only contact with the boundary or the exterior is at the very first 
step. Now, measure the number of times any walker lands upon r. Call this 
N(r). In the limit as N goes to infinity, I claim that the ratio P(r) defined to 
be N(r)/N will approach g.(r, s). Why? In the interior, since the sites get 
occupied by hopping from one site to its neighbor, the occupation 
probability must obey the discrete Laplace equation. On the boundary, by 
construction, we have P(r) being 1 or 0. All that is being said is the well- 
known statement that the random walk probabilities solve the Laplace 
equation. Along the same lines, the bond Green's function Gu(b, c) also has 
a very simple probabilistic interpretation. Given a random walk which is 
known to enter the region via external bond c, Gu(b, c) is the probability 
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that the walk will leave the region via the bond b. This interpretation at 
once implies the sum rule 

Gu(b, c) = 1 (2.6) 
c 

It is time to translate our considerations into statements appropriate 
to the porous medium flow problem. The connection we shall draw is 
between a random walk problem and a particular version of the fluid 
problem. Specifically we consider the situation in which the filled sites or 
the aggregate represent the vacuum or a void and the region through 
which the walkers wander is the one filled by actual fluid. This describes 
the situation in which the first "fluid" has very low viscosity so that it can 
respond very easily to pressure changes. In this extreme situation, the A of 
Eq. (1.5) equals - 1. 

The reader should notice that there is some ambiguity about how to 
take the limit in which the viscosity of one fluid goes to zero. The difficulty 
can best be seen by considering a drop of this fluid. If the "fluid" is actually 
vacuum and hence infinitely compressible, then the size of this drop may 
expand and contract. If the drop is composed of an incompressible fluid it 
cannot change its volume. If, however, the drop is connected via a channel, 
no matter how narrow, to a reservoir of this fluid held at constant pressure, 
then the very slender neck permits the drop's volume to vary. As long as 
the topology is of two infinitely large regions of fluid connected at a simple 
interface then there is no ambiguity in the zero viscosity limit. As soon as 
these are inclusions and droplets, an ambiguity arises. In this paper, we 
resolve the ambiguity in the limiting process, xl goes to infinity, by allow- 
ing "fluid 1" to be compressible. 

As an additional simplification, let the remaining fluid (fluid 2) be 
completely surrounded by boundaries (Fig. 3) and for the moment assume 
that the pressure on the exterior is the predefined function, ~(s). Then, the 
pressure in the interior of the fluid is exactly given by the right-hand side of 
Eq. (2.4). To actually generate the fluid problem, we must also define the 
motion of the interface. This motion is, in the continuum fluid, propor- 
tional to the gradient of the pressure normal to the surface. To get the lat- 
tice version of this motion, isolate a bond at the surface (as in Fig. 4) and 
say that in the end the velocity of motion along this bond will be propor- 
tional to the difference in pressures between the point on the bond just 
exterior to the region, s, and the point just within the region r. In symbols, 

u = - C [ ~ ( s ) -  p(r)]  

= C ~  gu(r, s,) q ( s , ) - -  C ~  gu(s, s,) ~(s) (2.7) 
Sl Sl 
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Fig. 4. Motion in the lattice system. Part A shows the situation just before the move; part B 
is just afterward. The motion is driven by differences between the pressure on occupied cells 
(e.g., s in part A) and that on neighboring unoccupied ones (e.g., r). These can then be con- 
verted into differences between two occupied sites (e.g., s and sl). 

The last sum in Eq. (2.7) is exactly unity in virtue of Eq. 2.6. Conver t  
Eq. (2.7) into a statement about  bonds. Connect  with the points a bond  b, 
and with sl a bond  bx. Then write Eq. (2.7) as 

~= c ~  C~(b, b~) V(s,)- Cy~ G~(b, b,) V(s) (2.8) 

Now, let us give a r andom walk interpretat ion to Eq. (2.8). Consider  ~(s)  
to be positive for all values of s. Visualize independent  r andom walkers 
entering our  region at a rate equal to Cry(s), walking th rough  the region, 
hitting the boundary ,  and disappearing. As each such walk is completed,  
see Fig. 4, one bit of fluid is removed on the exterior end of  the entry bond  
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and added at the interior end of the exit bond. In this way, the random 
walk process almost fully simulates the hydrodynamics. 

Almost. There is, of course, a modest difficulty. The lattice and the 
random walkers are grainy, "quantized." The real hydrodynamics is con- 
tinuous. If fluctuations are not important and if there is a well-defined con- 
tinuum limit, then the walkers give it. If, however, the continuum limit is ill 
defined, then there are no statements about the hydrodynamics to be made. 
Soon, we shall discuss how this works out. 

But, before turning to this crux of the matter, a bit more effort must be 
spend upon boundary conditions. To simplify the analysis, we are consider- 
ing the case in which only one of the fluids feels an appreciable frictional 
resistance. The other fluid has K equal to infinity and might be visualized as 
vacuum. In this fluid, the pressure is constant. Take it to be zero. Then, 
Eq. (1.4) gives the preseure in the other fluid as 

p = [1 + a / R  (2.9) 

We are about to replace this fluid problem with a mathematically 
equivalent random walk problem. In the latter, instead of a pressure one 
has a probability. The vacuum region of the fluid problem translates into 
the region filled by aggregate in the random walk problem. The walkers do 
their random motion in the region filled by the finite-K fluid. Equation (2.9) 
now translates into a statement about the probability of finding a walker at 
site s at the edge of the aggregate, ~(s). Assume that we can define a local 
radius of curvature, R(s) in a lattice situation. (11) Then to make contact 
with the fluid problem we shall want ~(s) to obey 

v(s)  = P + ~/R(s) (2.1o) 

At this point, one version of the hydrodynamics problem has been 
described in terms of walkers. To see what this come to, consider 
specifically the case in which a constant flux of walkers proceeds from 
infinity toward a finite aggregate. To get the simplest possible set of 
equations, let us--for  the moment--assume that the surface tension of 
Eq. (2.10) is 0. The resulting model is very simple indeed. Random walkers 
are released at infinity. They walk along until they hit an aggregate. When 
they hit they stick. This is exactly the DLA model of Witten and Sander (9) 
with the trivial, and unimportant, difference that, in their model, when a 
walker arrives at a site neighboring the aggregate it sticks there while, in 
this model, the walker hits the aggregate and is the placed upon the 
15revious (unoccupied) site upon its path. Earliear simulations (t2) have 
shown that such tiny differences do not affect the qualitative properties of 
the resulting structure. It can then be expected to be fractal, (1~) scale- 
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invariant, (14) and consequently cannot be the continuum limit of anything. 
It will be both highly ramified and highly chaotic. 

Paterson (1~ has already made some arguments along these lines. He 
discusses that the removal of particles from a preexisting aggregate via the 
DLA algorithm gives a very close correspondence with the hydrodynamics 
equations. This process, which he called anti-DLA, gives a orderly struc- 
ture with an apparently well-defined continuum limit. By the arguments 
given here, anti-DLA should have a very close correspondence with 
hydrodynamic behavior in the small surface tension limit. Indeed, Paterson 
argued for this point of view, but without the detailed Green's functions 
treatment given here. He also argued that DLA in its raw form might be 
applicable to real flow through a real and somewhat disordered porous 
medium. The point of view outlined here does not really permit us to com- 
ment upon whether or not the two kinds of fluctuations, (i) the random 
behavior of walkers and (ii) the pore size distribution in random media, are 
effectively interchangeable. 

It is not too difficult to introduce surface tension into the problem. 
Previous workers ~ have introduced analogs of surface tension by 
allowing the probability that a DLA particle will stick to depend upon the 
curvature of the surface or of the density of particles near the surface. The 
argument given here strongly suggests that a better representation of sur- 
face tension is to allow walkers to move from point to point on the 
aggregate with the probability or frequency of a given random walk being 
proportional to the difference in ~ between the beginning and the end of 
the walk. In the next section of this paper, algorithms for realizing this idea 
will be discussed. 

3. A L G O R I T H M S  A N D  S I M U L A T I O N S  

3.1. The  W a l k s  

Here we consider methods for converting the ideas outlined in the 
previous chapter into real simulations. The specific geometry under con- 
sideration is a channel which is closed on three sides and open at the top 
(Fig. 5). The walkers are free to enter from the top. At the side and bottom 
walls, the walkers obey reflecting boundary conditions. 

The approach is based upon the consideration of two kinds of walks3: 

i. Some walks (see A in Fig. 5) representing the flux from outside the 
region under consideration. This walk starts at "infinity" and terminates 

3 Nigel Goldenfeld has informed me that Eshel Ben-Jacob, Len Sander, and he have also been 
thinking about the relation of interface motion to DLA and that they independently had the 
idea that surface tension should be represented by "moves." 
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Fig. 5. 
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The two kinds of paths. Path A adds a particle ~om outside; path B produces a 
motion of a particle already in the cluster. 

when the walker lands on the occupied region. When the landing occurs, a 
new "particle" is placed upon the edge of the aggregate. Specifically, it is 
put upon the last unoccupied site visited by the walker. We terms these 
walks "additions," since they add particles to the aggregate. 

ii. Other walks (see B in Fig. 5) start upon a boundary bond of the 
lattice and continue until the walker lands upon the aggregate. We term 
these walks "moves." 

There is a parameter, m, in the model which sets the relative frequency 
of these two kinds of walks. Let w be the width of the channel and let Nb 
be the number of exterior bonds in the system. The probability of a walk of 
type one will then be given in terms of these quantities as 

Pi = w/(w + mNb) (3.1) 

To describe the effect of the move-type walk, one specifies the values of 
the surface tension, ~1 and ~2 at the two ends of the walk. One can think 
of at least two different ways to use the walks to construct the surface ten- 
sion boundary condition. The conceptually simplest one is to choose r to 
always lie between 0 and 1. Associate a direction (the arrows in Fig. 5) with 
each walk. Take the y-value at the beginning of the walk. Interpret the r 
as a probability that the walk will occur. Then if a use of the random num- 
ber generator determines that the walk does take place, remove a particle 
from the tail end of the walk and place it at the head end. Note the full 
correspondence between this description and Eq. (2.8). 

Actually it is probably slightly more efficient to use an ahnost 
equivalent algorithm. Determine 

A = (r  -- r (3.2) 
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If A is positive then let the motion go from 1 to 2, if A is negative the 
motion will go in the opposite sense. If A is smaller than unity in 
magnitude, allow the random number generator to determine whether the 
motion will actually occur. If A is greater than unity, take a number of par- 
ticles equal to the integer part of A from a neighborhood of the beginning 
of the path and move them along the path and put them at unoccupied 
points in the neighborhood of the end of the path, then finally use the ran- 
dom number generator to determine whether a motion will occur in virtue 
of the remaining, fractional, part of A. 

In our actual simulations, to ensure that the clusters formed are 
reasonably compact, when adding a particle we consider all possible unoc- 
cupied sites within the "most immediate neighborhood" of the site which 
terminates our path and actually perform the addition upon the unoc- 
cupied site with the largest number of nearest neighbors. Similarly, when a 
particle is removed the "most immediate neighborhood" of the removal site 
is polled to find the occupied site with the smallest number of nearest 
neighbors. In cases of ties, a random choice is made among the "equally 
good" sites. For the simulations shown below, we give an operational 
definition to the "most immediate neighborhood" of a given point by tak- 
ing this to mean the point itself and the eight points nearest to it. 

When the random walk passes far from the aggregate, the walker may 
take many steps in a region far from the one of interest. The calculation of 
these steps tends to lengthen the simulation. Fortunately the methods of 
the previous section enable one to set an algorithm for dealing with such 
walks through regions of little direct interest. Let this uninteresting region 
be V. Consider Gv(bl ,  b2), the Green's function for this region as defined in 
Section 2. Let the walker enter the region V via the bond bl. Then 
Gv(bl ,  b2) is the probability that the walker will leave via bond b 2. If V is 
simple enough, one can calculate G v analytically and never have to deal 
numerically with walks in this region. 

For example, let V be the upper portion of our cell: all coordinates 
(i, j) with j greater than a maximum height H. Then a walker enters the 
region via an upward step starting from (io, H) and returns via a 
downward step ending at (llr, H). If g ( i - i ' , j - j ' )  is the Green's function or 
the infinite lattice, the Green's function for the region V is 

g v ( i , j ; i ' , f ) = g ( i - i ' , j - j ' ) - g ( i - i ' , j + j ' - Z H )  (3.3) 

Given the form (3.3) gv  automatically obeys the discrete Laplace equation 
in U and vanishes at the boundary, j =  H. Then the bond-bond function 
G v is simply given by putting j and j '  on the external boundary to find 

G v ( i -  i') = g ( i -  i', O) - g ( i -  i', 2) (3.4) 
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Since we know the Fourier transform of g to be (4 - 2 cos k x -  2 cos ky) 1, 
we thus know Gv and need not compute any walks in the upper region of 
our system. 

3.2. Radius of Curvature  Estimates 

To calculate the surface tension in the neighborhood of a given point, 
I use a variant of a method originally due to Vicsek3 H~ Consider a circle of 
diameter L centered about  the site in question. Let the number  of occupied 
sites within the circle be N. Then is the radius of curvature, R, is very large 
in comparison to L one can estimate R by using the formula 

N I L  3 = c 1 q- c 2 / R  (3.5) 

Here N is the number  of occupied sites. The constant c 2 is 32/5. The other 
constant cl is quite irrelevant to the remaining calculation since the moving 
probability depends upon the difference between values of ~ at two dif- 
ferent points while ~ is choosen to be proport ional  to the inverse of the 
radius of curvature, 

~(r) = FIR(r) (3.6) 

where F is one of the parameters of our model. To relate our parameters, m 
and F, to the original system parameter,  B, we should notice that in the 
"time" it takes the computer to add w particles to the aggregate, the com- 
puter will have examine each bond in the system 2m times to see whether it 
should be involved in a rearrangement [see Eq. (3.1)]. Let us choose the 
lattice constant to be our unit of length and this "time" to be our unit 
interval. Thus, we have choosen units in which the basic velocity u~ is 1. 
The other fundamental velocity is the speed of a surface with curvature R 
set at a distance X from a flat surface. In our model, this velocity is mF/RX.  
In the real fluid, this same velocity is c~c/RX. Hence, we have found B in 
terms of the model parameters as 

B = 2 F m / W  2 (3.7) 

3.3. The Simulat ions 

Figures 6 and 7 show two examples of simulations constructed with 
the algorithms discussed above. Each of the simulations starts from a flat 
interface. In each case, reflecting boundary conditions are used at the bot- 
tom and side walls. Figure 5 shows a low B simulation. To form this 
simulation, we choose m = 10, a cell width, W, of 256 lattice constants, and 
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(0) (b) 

(c) 

Fig. 6. Successive stages in a low B simulation. Some features of this result are probably 
affected by "computer noise." 

L = 3. We end up with B =  0.0007. The snapshots shown in Fig. 6 suc- 
cessively contain 4656, 8256, 12 256, and 16 256 particles. At first (see 
Fig. 6a) many fingers are formed. Later snapshots, Figures 6b-d, show a 
competition in which the fingers which reach out higher can grow and the 
others cannot. Because the system is relatively unstable, the details of the 
succession shown are probably considerably affected by the fluctuations in 
the Monte Carlo simulation. 

The simulation shown in Fig. 6 runs, starting from a flat interface at 
the bottom of the area shown, in about two hours on an FPS 164 array 
processor. 

Figure 7, however, shows a case in which I believe the development of 
the simulation is not much affected by noise. Here we depict a case in 
which L is 6, m = 10, and W =  64. Now the B value is considerably larger, 
B~0.03. At the stage shown, the number of particles is 4864. In this high B 
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Fig. 7. 

!i!!!ii ii!iiii !iii! iiiiiiiiiiiii!iii!i iiii iiiiii!iii!i 
A simulation in which the system forms a single finger. Noise probably does not affect 

this run very much. 

simulation, only two fingers form themselves. The snapshot shows the 
situation in which one of these fingers has gotten ahead and fills over half 
the channel. Henceforth, the longer finger will grow. 

These simulations show that a program built upon the principles dis- 
cussed in this paper  can be made to give results in qualitative agreement 
with the results of Hele Shaw experiments. Further papers will describe 
more quantitative tests of this kind of model. 
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