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Consider the following boundary value problem in the domain D

∇2P = 0 (1)

With these boundary conditions:

P |Γ1 = −γκ; P |Γ2 = 0, (2)

Where Γ1 is the inner boundary, specified by the radius vector

R1(θ, t) = R1(t)(1 + εη(θ, t))r̂ (3)

and the outer boundary is a circle of radius R2. Assume that R2 � R1, and
that epsilon is a small quantity. Velocity of the fluid everywhere in D is given
by the Darcy’s law, u = −∇P ; in particular, this says that the boundaries
move with the local velocity of the fluid.

We want to analyze how the perturbation η(θ, t) evolves in time; in par-
ticular we consider perturbations of the form η(θ, t) = N(t) cos(mθ), where
N(t) is the amplitude and m is the wave number. If, for a given m, N(t)
grows in time, that particular wave number is unstable; if N(t) decreases,
that wave number is stable.

Base problem: Put ε = 0. From (1) and (2), we obtain the solution for
the base pressure

P0 = − γ

R1

(
1− ln r/R1

lnR2/R1

)
(4)
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The Darcy’s law then gives the base radial velocity

u0r =
γ

r

1

lnR2/R1

(5)

Linear stability analysis: Now, allow for ε 6= 0. However, since ε is small,
neglect all the terms which are proportional to εn, n > 1. Assume that all
quantities of interest can be expanded as follows:

P = P0 + εP1(r, θ) (6)

u = u0r̂ + εu1(r, θ) (7)

κ = κ0 + εκ1; κ1 = −η + ηθθ
R1

(8)

(κ1 includes only leading order terms). Since P0 satisfies Laplace equation,
P1 will satisfy the Laplace equation as well. Therefore, write the solution for
P1 in the form

P1 = Fm cosmθ r−m (9)

where Fm is a constant. Then, the boundary condition requires that

(P0 + εP1)|R1(1+εη) = −γκ|R1(1+εη) = −γ
(

1

R1

− εη + ηθθ
R1

)
(10)

Next, use ln(1 + ε) ≈ ε to calculate P0 from (4), and also ηθθ = −m2η. The
result for P1(r, θ) is

P1(r, θ) =
γ

R1

(
1

lnR2/R1

+ (1−m2)

)
r−mη (11)

correct to O(1); this is all what is needed since P1 is multiplied by ε in (10).
From the Darcy’s law, the result for the radial component of velocity, to
O(ε), calculated at r = R1(1 + εη) is then

ur|R1(1+εη) =
γ

R1

1

lnR2/R1

+ εγ
m

R1

(
1

lnR2/R1

+ (1−m2)

)
η (12)

where (5) was used.
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Knowing ur, we can now analyze the time evolution of the interface. One
easy way of doing that is to use the following trick:

d

dt

(
1

2
R1 ·R1

)
= R1 ·

dR1

dt
(13)

where R1 is given by (3), and to realize that

R1 ·R1 = R2
1(1 + 2εη) (14)

and that dR/dt = urr̂. Next, calculate the time derivative:

d

dt

R2
1

2
(1 + 2εη) = R1Ṙ1(1 + 2εη) +R2

1εη̇ (15)

where Ṙ1 = dR1/dt = u0r(r = R1). For simplicity, put now R1 = 1, so that
Ṙ1 = γ/ lnR2 to reduce (13) to this equation:

η̇ = Ṙ1

[
−1 +m

(
1 +

γ

Ṙ1

(1−m2)

)]
η (16)

Assume now that the quantity in the square brackets is a constant, call it σ.
The solution of the last equation is then

η(m, t) = η(m, t = 0)eσt (17)

The quantity σ is often called growth rate, since it determines the “growth”
of the perturbation η. If σ > 0, η grows, and the perturbation is unstable;
otherwise, it is stable. Stability obviously depends on the wave number of the
perturbation, with the perturbations characterized by large m being stable
(due to the term proportional to −m3). This is what we expect due to known
stabilizing effect of surface tension.

This result expresses the competition between the destabilizing effect of
viscosity contrast (destabilizing), and the surface tension (stabilizing). [Re-
call that dimensional form of Darcy’s law includes viscosity, as well as the
gap separation].
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