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Motivation: 
Saffman-Taylor instability has real world applications in understanding and improving 
the recovery of gases and oil from the earth. I 
 
Experimental: 
Two large plates of plastic were used as a rudimentary Helle-Shaw cell. The plates were 
separated using small pieces of transparency and a hole was drilled in the middle for 
injection purposes. The cell was filled with glycerol and then colored water or air was 
injected resulting in fingering. 

  
 
Derivation of Darcy’s Law 
 
Start with Navier-Stokes equation 
 

 

 
 
We are looking at flow in a Helle-Shaw cell and assume no-slip condition and uniform 
flow. 

 
 
Because it is a uniform flow we can reduce the equation to: 
 

 



Because we are in a Helle-Shaw cell and h is so small we look at it as a 2D problem we 
can neglect gravity 

 

Due to no-slip condition 

 

 

since h<<L we can throw out the x-direction and y-direction components 

  

the equation then becomes: 
 

 

 
then the left hand side can be reduced 
 

 

  



 

Experimentally this is approximately 

 

 
0.001717 << 1 so it would appear this is a reasonable step  
 
Note: the Reynolds number of the glycerol is R = 0.38461 
 

If << 1 then we can neglect  

This is because if we divide the order of the term in question by the order of a significant 

term if we get something small like << 1 then that term can be neglected. The 

equation reduces to: 
 

 
 
 
Then add the first term to the other side and then multiply both sides by ρ, then  
µ=ρν 
 

 
 
Grad P can and u can now be separated into its components to form the following 
equations 
 



 

 
Since change in pressure in the z direction is significantly small than in the x and y 
direction so we can approximate P with just the x and y equations. We can then solve 
them by just integrating twice with respect to z to get: 
 

 

 
Then put u and Ps components back together 
 

 

 
Now take the average value  

 

 

 



 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
Darcy’s Law 

 

 
Laplace-Young Boundary Conditions: 
 
Here we assume that the inner pressure being greater than the outer pressure. If this were 
not the case the interface would not grow.  

 
Laplace-Young boundary conditions are that Pinner – Pouter = γκ 
 



Where, 
 
γ is surface tension 
κ is curvature 
 
Saffman-Taylor Instability: 
 
Saffman-Taylor instability is what we call the instability that arises when you displace a 
more vicious fluid by a less viscous fluid. Experimentally we injected water into glycerol 
and air into glycerol in order to see the effects of Saffman-Taylor instability on the 
interface between the two fluids which resulted in interesting fingering patters as seen 
below:    

 
 
Nondimensionalize Equations: 
 
Darcy’s Law 

 

 

 

 
 

 
where U is the typical flow velocity 
 
 
 
 
 
 



Capillary Number: 
 
Capillary number describes t the ratio of the destabilizing viscous force to the surface 
tension and is calculated by using the following formula: 
 

 

where 
 

- density times viscosity 

- velocity of inner boundary 
- radius of inner boundary 

- surface tension 
- gap width between plates 

 
 
Find units of Capillary number: 

 
 
 
 
 
 

 
The following is for an air and water scenario: 
 

= 1 g/cm • 1 cm-g-sec = 1 g2-sec 

= 5 cm/sec  
= 6.5 cm                      

= 72.8 dynes/cm 
h = 0.05 cm 
 

 

 
 
 
 
 



Circular Boundary Problem: 
 
The following solves for pressure in a circular boundary problem as shown: 

 

        B.C.’s         P (R0) = P0       P(R1) = P1 

 

 

 

 
 
 
 
 
 
 
 



 
 

 

 

 

 
The below graph uses the above solution with: 
P0 = 1     R0 = 1 
                R1 = 10 
 

 
 



 
Linear Stability: 
 
If everything were perfect then the interface between a more viscous fluid being 
displaced by a less viscous fluid would grow as a circle. However, in the real world 
things are not perfect. Experimentally as the interface grows small disturbances occur due 
to dust, inhomogeneities in the fluid, imperfections in the plates, etc. and because the 
interface is instable these perturbations grow and form the fingering patters that are seen.  
In order to theoretically look at this we have to mathematically introduce perturbations. 
We can do this by perturbing the initial inner boundary. Then we want to find out how 
these perturbation evolve; when do you grow and when do they heal. All of this though is 
only valid near the initial time. At the very beginning the interface grows as a circle 
because its circumference is smaller than the critical wavelength for fingering to occur; 
this will later be derived  
 

 
 

 

 
Let the inner boundary be 
 
R1(θ,t) = R1(t) (1 - εη(θ,t) ) 
where 
 
η(θ,t) =  N(t) cos(m θ)         
 
N(t) is amplitude 
 
m is wave number 
 
and  ε<<1 
 
Base Problem: 
 

         

 



         1/R1 

Let ε=0 
 
R1(θ,t) = R1(t) 
 

 

 
 

 

 
Now apply an approximate form of Darcy’s Law to get the radial velocity 



 
 

 
Find grad P 
 

 

 
Linear Stability Analysis: 
 
Now let ε≠0 
 
We look at the terms where powers of ε are not greater than 1. 
 

 

   

 

 
Assume solution form from Fourier series for P1, which is a good assumption since it 
satisfies Laplace equation. 
 

 
 
B.C. become 

 

 
 
 
Applying B.C’s to the assumed solution form of P1 since ln(1+ε)≈ε and ηθθ=-m2η and  
results in 



 

 

 
Apply Darcy’s law and evaluate at R1(1+εη) 
 

 

 
We want to know how the interface evolves and we know ur, we can use this derivative 
of products trick that can be used 
 

   

 
Now manipulate actual equation for R1 so we can us the above 
 

 
 

 
 
We can throw away the last term cause its ε of order higher than 1 and we get 
 

 

 

 
 
Now put it all together 
 

 

 

 

To make things simpler let R1 = 1  and so  



We then can get  
 

 

 
Assume the quantity in the square brackets is constant σ 
 

 
 
We can see that if σ>0 then the perturbation will grow exponentially. However if σ<0 
then the perturbation will heal back into the interface since it would then exponentially 
decay. By looking at σ we can see what quantities stability is dependent on: surface 
tension, wave number, and velocity of inner boundary. σ is known as the growth rate. 
There is a critical wave number where the growth is maximal.  
 
Lets look at how σ and the critical wave number depend on velocity 

 
This graph makes sense when we look at the experiments. If we inject the water quickly 
the fingers are smaller, that’s because it has a larger wave number and the finger width is 
inversely proportional to wave number. If we inject the water slowly the fingers are 
thicker because they have a smaller critical wave number.  
 



Lets find the critical wavelength from σ. First take its derivative with respect to m and 
then set it to zero. Then replace m with 1/  where  is wavelength. 
 

 

 
Experimentally this was approximately 
 

     which seems resonable 

 
 
 
 
 
 
 
 
 
 
 

Numerical Simulation 
 



We use the following procedure to simulate a bubble expanding into a viscous 
incompressible fluid: 
 

1. Define the two initial boundaries  
2. Discretenize: Find all the points inside the domain (which is formed between the 

two boundaries) that we want to solve for. 
3. Solve Laplace’s equation for pressure inside the domain with Laplace-Young BCs 

using finite-differences method  
a. Use two point differencing to calculate curvature in the boundary 

condition 
b. Use Gauss-Seidel to iteratively solve the linear system. 

4. Update boundaries according to Darcy’s law 
a. Calculate gradient of pressure at points inside the domain using two-sided 

differences 
b. Extrapolate at inner and outer boundaries to find gradient of pressure at 

the two boundaries 
c. Use Runge-Kutta to calculate new coordinates 

5. Continue time evolution by going back to step 2. 
 
Initial Boundaries 
 
The initial inner and outer boundaries are defined by the following polar equation: 
 

 
 

with different parameters a, ε, and m.  Note that we could have used different shapes for 
boundaries then ones described by the above as long the domain formed is closed and the 
two boundaries do not cross.  The above was also chosen to compare results with linear 
stability analysis. 
 
 
Figure 1: Sample Boundary. Outer boundary has a = 10 and ε =0. Inner boundary has 
a=3, ε =0.1, m=8  
 



 
 
 
 
 
 
Finding Grid Points  
 
Figure 1 shows points used in discretinization.  The red colored dots represent points 
inside the domain. We’ll solve pressure at each of these points.  The green colored dots 
are points on the inner boundary that are needed when using finite differences. Similarly, 
the yellow colored dots are points on the outer boundary that are used when solving 
Laplace’s equation. Note that those points are not (the only) ones used for advancing the 
boundary. 
 
 
Figure 3: Grid Points 



 
 
 
 
 
 
Finite-Differences  
 
Laplace’s equation was solved in Cartesian coordinates.  Since the spacing can be 
unequal near the curved boundaries, we need to modify our approximations to the 
derivatives.   
 
Alternating notation and plugging it to a two-sided difference formula we get the 
following approximation to the second derivative. 
 



 

 
 
where point ui,j is located as in the following figure: 
 
Figure 2: Point Orientation 

 
 
 
Formula for the second partial with respect to y is analogous. 
 
Plugging the approximations to the second derivative with respect to x and y and solving 
for ui,j we get the recursive formula for pressure at point ui,j: 
 
 

 

 
 
Calculating Velocity of Boundary points 
 
In order to find the velocity at the two boundaries we first calculated the velocities at the 
grid points (those are easy to calculate since we always know the pressure to the left, 
right, up, and bottom of that point).  We then extrapolated in two dimensions for each 
point on the two boundaries using Lagrange polynomial.  Only local points were used in 
extrapolation since using all the grid points can lead to large errors. 
 
Results: 
 
To verify our calculations we initially made the domain annular.  Our numerical 
calculations for pressures, boundary condition, the partial derivatives inside the domain 
as well as on the boundaries were very close to the values obtained with the analytical 



solutions.  We thus assumed our methods in steps 2 through 4 were correct.  However for 
larger time the results of the program runs do not create real fingers.  The reason we think 
that only the initial evolution is correct, is since more points are needed in between the 
boundaries to simulate an actual growth further on.  But such a conduct is impossible 
when tried on a computer, since it would take too long to run with a small enough time 
step.  Because of that we think calculations of the velocities at the boundaries using 
extrapolation of the gradient of pressure is incorrect. 
 
 
 

 
 


