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What is it?

When a more viscous fluid 1s-displaced by a
less viscous fluid Saffman-Taylotinstability
occurs along the interface of the two fluids.

If you do 1t the other way around nothing
interesting happens because it 1s stable.




Basic Idea

Inject air or dyed water into
a makeshift Hele-Shaw cell
which contains glycerol at a
constant pressure.

Due to ST instability
fingering will occur

Look at this theoretically
and try to simulate
numerically



Theory

If everything was perfect even with the
instability the fingering wouldwot arise

Fingering occurs due to the instability and

the introduction of small perturbations‘along
the interface of the two fluids.

In stable situations these perturbations
would heal back into the interface rather
than finger




Fingering

Initially the interface 1s circle centered at the
injection point.

As the less viscous fluid is 1njected a‘circle
grows at first because surface tension
prevents fingering.

While circumference of the interface is less
than the critical wavelength then fingering
does not occur.




After the circumference grows beyond the
critical wavelength, fingers start to form due
to perturbations which occur from the fluid
not being homogeneous throughout.

We can look at this instability and
perturbations using linear stability model;
but first we need Darcy’s Law.




Darcy's Law

Darcy’s Law can be derived from Navier-Stokes equation

ou Vyu="2-VP+ sV +
o (22 V)u P 7 g

Assume uniform flow

Gravity neglected in Hele-Shaw Cell
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Assume no-slip condition
e U(z=0)=0 U(z=h)=0

Then greatest change in velocity is with respect to the Z direction.

W1 2u ) ) d2u/dz2

After additional simplifying assumptions




We then solve the resulting equations by
direct integration and get




Then after taking the average value of the
function we get Darcy’s Law




Linear Stabillity

— W1} 1s surface tension and (¥} 1s curvature

Laplace-Young BC are
— The mnner domain pressure 1s greater.than the outer
domain pressure
— Pressure jump from Inner Boundary to outeris

P = MWW

outer

Pinner'

The inner boundary 1s defined by the following function
R (R¢],t) = Ry(t) (1 - R (¥l
N(t) 1s the amplitude

m 1s the wave number

¥Wi(¥],t) = N(t) cos(m {¥])




As we 1ncrease the value of
perturbations more significant.

Notice 1f we set {¥] = 0 the inner boundary
reduces to a circle and which would just
stably expand. So when {¥]{¥;0 we have
instability.

We are interesting in determining 1f
¥i(¥],t) will grow into finger or heal back
into the interface.




We need to know how

after some work we arrive at [W}’(

W

=[-1+m(1+(

W

W] ([¥],t) evolves, so

=R’ [-1+m (1 + (}¥)/ R —

/R) (1-m?)) ]

and 1s assumed to be constant

(m,0) e




(mt)= (mM,0)e !

This tells us what will happen to the perturbation




=[-1+m@@+( /R4)(1-

Looking at
dependent on

1. m — wave number







Fingering related to Injection P

Q 1s rate at which water 1s injected and 1s inversely
proportional to finger width

Fast injection — small finger width

Slow 1njection — larger finger with




Numerical Simulation




Numerical Simuation

Procedure for Simulating Bubble Expanding
Into a viscous incompressible fluid
Step 1.

— Define Initial Boundaries:

o Inner boundary R(Q) — g+ € COS(WI 6)

e Outer boundary







Step 2

Discretenize

— Find all the points inside the domain (which is
formed between two boundaries) that we want
to solve™ for

e *Find pressures
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Step 3

Solve Laplaces Equation for pressure at the
orid points using finite-difference method
with Laplace-Young BCs.

— Use two point differencing to calculate
curvature in the boundary condition

— Use Gauss-Seidel to iteratively solve that linear
system




_ ks (ky + e )y
/ (kiky + Iy, )by + by )k + k)

il T hlui—l,j )+ hhy (b +h, )(k2ui,j+1 T klui,j—l)
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Step 4: Update boundaries
according to Darcy's Law

Calculate gradient of pressure at points,inside the
domain using two-sided differences

— Extrapolate in two dimensions using Lagrange
Polynomial at inner and outer boundaries to
find gradient of pressure at the two boundaries
(Only local points are used)

— Use Forward Euler to calculate new coordinates

X = X, H(-M)*P_ *timestep
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Step S5

Continue Time evolution by goig back to
step 2




Analysis of Results




Analysis

The results of the program runs‘do not
create real fingers

Although our numerical calculations were
very close to the analytical solution for the
initial time step and circular boundaries, at
later times 1t did not seem that the
boundaries grew as they should
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Comparison Cont.

The reason we think that only the.initial
evolution 1s correct, 1s since more points are
needed 1n between the boundaries to
simulate an actual growth further on

But such a conduct 1s impossible when tried
on a computer, since 1t would take ages to
run with a small timestep




