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A B S T R A C T

We model porous membrane filters as networks of connected cylindrical pores via a random network generation
protocol, and their initial pore radii via a uniform distribution of widths that vary about some mean value.
We investigate the influence of network and pore size (radius) variations on the performance of membrane
filters that undergo adsorptive fouling. We find that membrane porosity variations, independently of whether
induced by variations of the pore radii or of the random pore network, are an important factor determining
membrane filter performance. Network and pore size variations still play a role, in particular if pore radii
variations are significant. To quantify the influence of these variations, we compare the performance metrics
of networks built from pores of variable radii to their (equal porosity) counterparts built from pores of uniform
radius. We show that the effect of pore radii variations is to increase throughput, but also to reduce foulant
control.
. Introduction

Membrane filtration is an important separation process used in
any industrial and commercial applications such as treatment of

adioactive sludge, water purification, beer clarification [1], semi-
onductor and microelectronics processing [2], air filtration [3] and
embrane bioreactors [4]. Membrane filters used in these applications
ave a wide range of architectures, ranging from single layer thin
orous films to multilayered porous membranes [5,6] to large scale
ontinuous sheets of layered fibrous material [7–9].

Many models to describe the underlying membrane pore structure
nd/or geometry have been proposed and studied in recent years. For
xample, there are simple theoretical models to analyze the perfor-
ance of membranes composed of multiple layers of different porous
aterials [6,10], or membranes with simple branched structures that

an incorporate porosity gradients [11,12], among many others). As
ecent advances in imaging techniques have greatly contributed to the
bility to compare such structural models to experiments ([13–16];
lso see [17] for detailed images), more sophisticated models of mem-
rane architecture have also been formulated, with a recent focus on
ccurate modeling of membrane filters with a network-type structure,
or example, membranes where the solid component is comprised of
ibers (so-called node–fibril type membranes) or those that transport
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feed through networks of capillaries [18–20] (also used in the context
of condensate banking [21].

The present paper focuses on the latter type of pore network model
that captures the sponge-like structure of the membrane selective
layer [22–24]. Our analysis of pore size variations builds on a model
introduced previously in [20]. Briefly, a network model involves ver-
tices and edges that represent pore junctions and throats respectively
(referred to simply as junctions and pores from hereon respectively).
Each pore is assumed to be a circular cylinder of fixed radius, with
Hagen–Poiseuille flow, and conservation of fluid flux is imposed at
each junction. Foulant is advected through pores by fluid and deposits
on pore walls via adsorptive fouling. Membrane filter performance is
analyzed by recording total throughput (volume of filtrate collected
during the lifetime of the filter) and accumulated foulant concentration
at the membrane outlet.

The primary findings of [20] that motivate the present work are the
following relationships. Firstly, the initial porosity (pore void volume
divided by total domain volume) of the network is demonstrated to
be an important material feature that predicts total throughput by a
power law, which holds particularly well when initial porosity > 0.5.
Secondly, it was found that the accumulated foulant concentration at
the membrane outlet decays exponentially with the initial tortuosity
of the network (defined as the average distance traveled by a fluid
vailable online 2 June 2022
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particle from membrane inlet to outlet, see Appendix A.4 for a detailed
definition).

In addition to the features discussed above, pore size (radius) vari-
ation is another important aspect of membrane filter design, which
has been investigated by a number of authors, in particular regarding
how it affects membrane selectivity and particle retention in a variety
of applications [25–29]. It has not, however, been extensively studied
in the context of network models for membrane filters: though such
models allow for cylindrical pores with a distribution of lengths [19,
20], random variations of the pore radii have not, to our knowledge,
been considered. Accordingly, in this paper, we focus on membrane
filters whose pores may be considered as a network of interconnected
capillaries of different initial radii. Henceforth in this work, the phrase
‘‘pore size variations’’ refers to variations in the initial pore radii, unless
otherwise specified.

We present a novel characterization of the membrane pore network
and model pore size variations via a set of random initial conditions
for the radii of pores. Our assumption on the pore size distribution,
in contrast to the log-normal distribution usually assumed in applica-
tions [30], has the advantage of avoiding extreme values and offering
easier control over the variance, while still providing a reasonable
description of effects such as inhomogeneities during the manufactur-
ing process. Other pore size distributions (including the log-normal)
tend to have input parameters that affect both the mean and variance
simultaneously; furthermore, distributions that can potentially yield
very large pore radius values would require more complicated fluid
flow models than considered in this work.

We use our network representation to investigate the effect of pore
size variations on the performance of membrane pore networks, as
characterized by foulant concentration and total throughput of filtrate
over the filter lifetime. We expect our results to improve our under-
standing of particle retention inside membrane pore networks and
of how the rate of membrane fouling depends on input parameters.
We note that other authors have taken complementary approaches
to such issues; for example, see [31] for numerical comparisons of
a number of pore size distributions, [32] for a study of the influ-
ence of pore size distribution on rheology in two-phase porous media
flow, [33] for experimental discussions, and [34] for a discussion of
related considerations in tissue engineering.

The paper is structured as follows: in Section 2, we describe the
network model setup and introduce the key performance metrics. In
Section 3, we set out our investigation strategy for pore size variation
in an algorithm and declare the main nomenclature used in the analysis.
In Section 4, we present and discuss our main results and in Section 5,
we conclude our findings.

2. Setup: General pore networks

In this section we construct our model of a membrane filter rep-
resented by a random network of connected cylindrical pores. In Sec-
tion 2.1, we describe how we generate a network that represents the
internal pore structure of a membrane filter; in Sections 2.2 and 2.3, we
utline the governing equations for the Hagen–Poiseuille fluid flow, for
he advection of foulant particles carried by the flow, and for the pore
volution in time; in Section 2.4 we specify our notation; in Section 2.5,
e provide the relevant physical scales; and in Section 2.6, we intro-
uce two metrics to characterize the performance of a membrane filter
ith a specified pore network.

.1. Network generation

We first demonstrate the 3D random network generation protocol
mployed in this work (following [20]). In Fig. 1, for illustration
urposes, we show a 2D schematic of this protocol: the domain is
rectangular cell (square prism in 3D) of lateral height two times

ts horizontal width 𝑊 , assumed to repeat periodically at the lateral
2

r

Fig. 1. 2D schematic of the 3D network generation with periodic boundary conditions
showing: interior junctions int (red filled circles); pore inlets in (blue filled circles)
and outlets out (black circles) induced by the cutting process; the cutting planes blue
dashed lines; discarded points (magenta filled circles). Solid lines represent pores, while
dash-dotted lines are pores that arise from the periodic boundary condition (red are
interior to the membrane). 𝑙max𝑊 and 𝛿𝑊 are prescribed maximum and minimum pore
lengths respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

boundaries (more details in Appendix A.1). We generate a pore network
by first uniformly distributing 𝑁total (a large integer to be prescribed)
points as the junctions (nodes of the network) inside the domain. We
construct pores (the edges of the network) by connecting all pairs of
points that lie within a prescribed maximal distance 𝑙max𝑊 , but at least
some minimal distance 𝛿𝑊 apart. We then cut the prism horizontally
t two locations (see blue dotted lines in Fig. 1), and discard the end

pieces to produce a square (or cube in 3D), which will represent an
element of a membrane filter. The intersections of the two cutting
planes and the pores (edges) naturally form membrane inlets and
outlets, respectively (see Fig. 2 for a 3D realization, with lengths scaled
by 𝑊 ).

2.2. Fluid flow

We next characterize fluid flow in the membrane network. The flow
through the pores (which, within the current model, are cylinders of
circular cross section) is assumed to obey the Hagen–Poiseuille model,
valid provided the pores have sufficiently small aspect ratio (ensured
in practice by choice of 𝛿). The Hagen–Poiseuille equation states that
fluid flux 𝑄 is proportional to pressure difference 𝛥𝑃 along each pore,

𝑄 = 𝐾𝛥𝑃 , 𝐾 = 𝜋𝑅4

8𝜇𝐿
, (1)

where the conductance 𝐾 depends on 𝑅 and 𝐿, the radius and length
espectively of the pore, and 𝜇 is fluid viscosity. To drive the flow, we
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Fig. 2. Schematic of a 3D network with 𝑙max = 0.15 and 𝑁total = 2000. Solid red lines are
interior pores; dashed red lines are pores created by the periodic boundary conditions.
Blue dots are inlets. Black dots are outlets.

prescribe the transmembrane pressure by setting the values on the top
(𝑃0) and bottom (0) membrane surfaces, while the pressures at interior
junctions are unknown. At each junction, we impose conservation of
fluid flux, which leads to a system of equations (a discrete Laplace
equation for these junction pressures, see Appendix A.2 for details).
Once the pressures are found, flux through each throat is determined
by Eq. (1).

2.3. Advection and adsorptive fouling

Feed solution enters the membrane top surface with a fixed foulant
concentration (simply referred to as concentration from hereon), which
serves as a boundary condition. Foulant particles are advected by the
fluid while depositing on the pore walls, causing pores to shrink and
eventually close up, a process known as adsorptive fouling. For each
pore, let 𝐶 (𝑌 , 𝑇 ) be the particle concentration at any point 𝑌 of the
pore at time 𝑇 , where 𝑌 is a local coordinate measuring distance along
a pore in the direction of fluid flow. The concentration is assumed to
satisfy the steady state advection equation (see [20] and references
therein)

𝑄𝜕𝐶
𝜕𝑌

= −𝛬𝑅𝐶, 0 ≤ 𝑌 ≤ 𝐿, (2)

𝐶 (0, 𝑇 ) ∶= 𝐶up (𝑇 ) . (3)

Here, the right hand side of Eq. (2) is a sink of concentration that
models foulant particles depositing on pore walls as they traverse the
edge, with 𝛬 (units of velocity) a parameter that captures the affinity
between foulant particles and the membrane material. In reality 𝛬
could change during filtration due to different affinities between the
particles and the clean membrane, and the particles and the fouled
membrane, the latter being more akin to particle–particle interactions;
for simplicity, however, we assume 𝛬 is a constant. In Eq. (3) 𝐶up (𝑇 )
is the concentration at the upstream entrance of a pore. For pores
connected to the membrane top surface (at inlets), we prescribe a
constant concentration 𝐶up (𝑇 ) = 𝐶top as the upstream boundary con-
dition, representing the concentration in the feed solution. The foulant
concentrations at interior junctions are solved for using conservation of
foulant particle flux 𝑄𝐶; that is, the total combined incoming particle
flux from upstream pores must be equal to that entering downstream
pores. Similar to the fluid flux conservation, this law can be expressed
by a system of equations that accounts for the network connectivity
(see Appendix A.2 and [20]).
3

Table 1
Key dimensional quantities.
Dimensional quantity at time 𝑇 Symbol

Length of pore 𝑖𝑗 𝐿𝑖𝑗
Radius of pore 𝑖𝑗 𝑅𝑖𝑗 (𝑇 )
Membrane unit length 𝑊
Maximum pore length 𝑙max𝑊
Minimum pore length 𝛿𝑊
Pressure at junction 𝑖 𝑃𝑖 (𝑇 )
Concentration at junction 𝑖 𝐶𝑖 (𝑇 )
Flux in pore 𝑖𝑗 𝑄𝑖𝑗 (𝑇 )
Deposition Coefficient 𝛬

Lastly, as foulant particles deposit on the pore wall, pore radius
decreases at a rate depending on local upstream concentration 𝐶up (𝑇 ),

𝑑𝑅
𝑑𝑇

= −𝛬𝛼𝐶up (𝑇 ) , 𝑅 (0) = 𝑅0, (4)

where 𝛼 is a parameter related to particle volume (see the appendix
of [20] for details). The filter lifetime 𝑇f inal is reached when the
outgoing flux at the membrane’s downstream surface falls to zero.

Eq. (4) implicitly assumes that the radius of each pore is a func-
tion only of time 𝑇 and is independent of the local coordinate 𝑌
during its evolution, which is determined only by the upstream par-
ticle concentration. A more accurate model would be 𝜕𝑅(𝑌 , 𝑇 )∕𝜕𝑇 =
−𝛬𝛼𝐶(𝑌 , 𝑇 ); however, the simplification represented by Eq. (4) yields
only minor differences in model outcome, while providing significant
computational benefit since it permits analytical solution of Eq. (2),
leading to immense computational speed-up (more than 100 times
faster than the alternative). See [20] for further discussion, including
a sufficient condition for this simplification to be reasonably valid. In
particular, we have verified that the more accurate model leads to only
a modest increase (at most 10%) in total throughput. The difference in
accumulated foulant concentration is smaller still, and differences in
the models’ predictions of both performance measures are particularly
insignificant when 𝑙max (the ratio of the maximum pore length to the
membrane thickness) is small. The computational savings afforded by
this simplification facilitate the large number of simulations carried out
in Section 3, needed to obtain reliable statistics.

2.4. Network notations

In Sections 2.2 and 2.3, we introduced fluid flow and adsorptive
fouling in each individual pore and described the conservation laws
that govern the physical quantities of interest in a pore network. Since
describing the dynamics of such quantities requires coupling of all junc-
tions and pores, we introduce the following indexing scheme. We use
a single index (⋅)𝑖 to indicate junction dependence only, e.g. pressure
𝑃𝑖 at junction 𝑖. We use a double index (⋅)𝑖𝑗 to indicate dependence on
the pore connecting junctions 𝑖 and 𝑗. We do not distinguish between
𝑖𝑗 and 𝑗𝑖 for scalar quantities such as conductance 𝐾𝑖𝑗 ; however, we
do for quantities with a notion of direction, e.g., 𝑄𝑖𝑗 as fluid flux from
pore 𝑖 to pore 𝑗. We summarize all physical quantities in Table 1.

2.5. Scales

We nondimensionalize the fluid flow and foulant transport model
described in the previous sections as follows:

𝐿𝑖𝑗 = 𝑊 𝑙𝑖𝑗 ,
(

𝑅𝑖𝑗 , 𝑅𝑖𝑗,0
)

= 𝑊
(

𝑟𝑖𝑗 , 𝑟𝑖𝑗,0
)

,

𝑃𝑖 = 𝑃0𝑝𝑖,
(

𝐶𝑖, 𝐶𝑖𝑗
)

= 𝐶top
(

𝑐𝑖, 𝑐𝑖𝑗
)

,

𝛬 =
𝜋𝑊 𝑃0
8𝜇

𝜆, 𝑇 = 𝑊
𝛬𝛼𝐶top

𝑡,
(5)

where the upper case symbols are dimensional quantities (listed in
Table 1). Parameter values are listed in Table 2. We comment briefly
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Table 2
Key dimensionless parameters.
Parameter Symbol Values

Initial number of junctions 𝑁total 500,775
Maximum pore length 𝑙max 0.3
Minimum pore length 𝛿 0.06
Unperturbed pore radius 𝑟0 0.01
Noise Amplitude 𝛽 0.06, 0.25, 0.5, 0.7
Number of networks 𝑁net 1000
Number of noise realizations 𝑁noise 500
Deposition coefficient 𝜆 5 × 10−7

regarding the parameter 𝜆: its main influence is in determining the time
scale on which fouling occurs in the problem, and how deep within
the pore network fouling particles penetrate. The numerical value of
𝜆 is expected to be small; such values promote more efficient use of
the filter by allowing particles to permeate deeper into the membrane
interior (larger 𝜆 values lead to a majority of fouling occurring very
close to the membrane top surface). Our choice of the specific value,
while somewhat arbitrary, satisfies this requirement. Further work,
beyond the scope of this paper, would be needed to explore how
the exact value assigned to this quantity influences the statistics of
membrane performance metrics. We have confirmed numerically that
moderate variations in 𝜆 do not change the trends that we describe in
this work.

2.6. Performance metrics

We evaluate the performance of a membrane network using the
following two metrics: (1) total throughput (ℎ) and (2) accumulated
foulant concentration at membrane outlet (𝑐). Total throughput is the
total volume of filtrate collected at the membrane outlet over the
lifetime of the membrane network filter (at time 𝑡f inal, when the flux
through the membrane falls to zero). Accumulated foulant concentra-
tion measures the aggregate concentration of foulant particles in the
collected filtrate when the filter is exhausted. Precise definitions of
these quantities are given in Appendix A.3.

. Investigation methods

We study pore size variations by prescribing a random initial con-
ition for each pore radius, 𝑟𝑖𝑗,0. More precisely, we consider perturba-
ions to uniform pores by imposing a multiplicative noise,

𝑖𝑗,0 = 𝑟0
(

1 + 𝜖𝑖𝑗
)

, (6)

where 𝜖𝑖𝑗 ∼ Unif (−𝛽, 𝛽) is a uniform random variable with noise am-
plitude 0 < 𝛽 < 1, independent for each pore. For the rest of this work,

hen we use the terms perturbation or noise, we are referring to Eq. (6).
This assumption on the distribution of pore size variations has the
advantage that we can directly control the width of the distribution
via the input parameter 𝛽, making the analysis and interpretation of
the results simpler.

We will study selected simulation outputs, 𝑓 , as model parameters
vary, with a primary focus on the influence of noise amplitude, 𝛽.
Specifically, in this work 𝑓 will be one of the following:

• ℎ, total throughput (throughput),
• 𝑐, accumulated foulant concentration at membrane outlet (con-

centration),
• 𝜙, initial network porosity (porosity),
• 𝜏, initial tortuosity (tortuosity),

where the abridged terms in parentheses are used freely henceforth (see
detailed definitions of ℎ, 𝑐 and 𝜏 in Appendices A.3 and A.4). We note
lso that since the nondimensional model operates in the domain of
unit cube, initial void volume and membrane porosity are equal in
4

alue. We refer to porosity only hereon.
A principal aim of this work is to compare the influence of two
ndependent sources of randomness, namely, the random network gen-
ration process (network variability henceforth), and the random initial
ondition for the pore radius that yields pore radius variations (noise
ariability henceforth), on statistics of membrane filter performance
etrics. In other words, network variability stems from variations in
ode and edge locations in membrane networks, while noise variability
s due to pore size variations. Here we describe the methodology of
ur study, before summarizing the approach as an algorithm with
numerated steps below.

First, we generate a large number, 𝑁net , of random membrane
etworks (per Section 2.1), each with the same initial pore radius 𝑟0.
e perturb the pore networks via Eq. (6) in the following two distinct
ays: To probe noise variability, we fix one particular ‘‘typical’’ (to
e made precise in what follows) network from the 𝑁net that were
enerated, perturb it independently 𝑁noise times (for 𝑁noise sufficiently
arge), solve the governing Eqs. (1), (2) and (4) (coupled over the entire
etwork using continuity as described) and collect statistics of perfor-
ance metrics from these 𝑁noise realizations of noise. To probe network

ariability, we perturb each of the 𝑁net networks independently just
nce, and collect performance statistics from the perturbed networks.

Perturbing the pore radii inevitably changes the porosity of the
etwork. This is important, since initial network porosity was shown
o influence strongly both of our membrane performance metrics in the
nperturbed case [20]. To investigate the importance of such induced
orosity changes, we devise the following strategy. First, note that the
nitial porosity of a network is given by

= 𝜋
2
∑

𝑖𝑗
𝑟2𝑖𝑗,0𝑙𝑖𝑗

Eq. (6)
= 𝜋

2
𝑟20

∑

𝑖𝑗

(

1 + 2𝜖𝑖𝑗 + 𝜖2𝑖𝑗
)

𝑙𝑖𝑗 , (7)

where the last expression implies that perturbed networks have larger
porosities on average, since 𝜖2𝑖𝑗 is nonnegative (the factor of 1/2 is
eeded because the double sum counts every pore twice). Note that this
ncrease of porosity for perturbed network is influenced by the choice
uniform) of pore size perturbation distribution; other distributions
not considered in this work) that have nonzero mean may influence
he porosity differently. For each perturbed network, we obtain its
orosity via Eq. (7). We then impose this porosity on the underlying
nperturbed network by determining a new initial pore radius such
hat the unperturbed and perturbed networks have the same porosity.
his new unperturbed network is referred to as a porosity-corrected

network, from which we also collect performance statistics. With these
preparations, we define a ‘score’ as the difference between the outputs
of the perturbed and porosity-corrected networks, normalized by the
outputs of the porosity-corrected ones.

Each of the 𝑁net membrane networks has a fixed maximum pore
ength 𝑙max = 0.3, minimum pore length 𝛿 = 0.06 and initial unperturbed
ore radius 𝑟0 = 0.01. We vary two parameters: (1) noise amplitude

𝛽; and (2) total number of junctions 𝑁total. The ensuing study first
fixes an average porosity by fixing 𝑁total, while varying 𝛽. All geometric
parameters used in the algorithm are listed in Table 2, with their values.

We summarize the above procedures in the following algorithm:

1. (Random network generation) Choose 𝑁total. Generate 𝑁net un-
perturbed networks. Compute the initial porosity 𝜙0 for each
network.

2. (Noise perturbation) Choose noise amplitude 𝛽.

(a) (noise variability) Fix a typical network and perturb it
𝑁noise times independently. Compute the outputs of the
perturbed networks, 𝑓noise, referred to as output under
noise realizations. The typical network is chosen such that
its porosity is the closest to the average porosity of the
ensemble, a posteriori.

(b) (network variability) Perturb each unperturbed network
once independently via Eq. (6). Compute the associated
outputs 𝑓net , referred to as output under network realiza-

tions.
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Table 3
Key outputs. The quantities in parentheses are the
mean and standard deviation of the corresponding
output.
Output Symbol

Porosity-corrected 𝑓pc
Noise realizations 𝑓noise (𝑓noise, 𝜎𝑓noise )
Network realizations 𝑓net (𝑓net , 𝜎𝑓net )
Noise score 𝑓noise (𝑓noise, 𝜎𝑓noise )

Network score 𝑓net (𝑓net , 𝜎𝑓net )

3. (Porosity correction) For each perturbed network, consider its
underlying unperturbed equal-porosity network (created by pre-
scribing the appropriate uniform pore radius for its pores; see
Appendix A.5 for a short derivation). This new network is called
a porosity-corrected network, with output labeled 𝑓pc.

4. (Scores) We construct two scores that characterize the noise and
network variability when comparing networks of equal porosity.
The two scores are constructed independently from each other,
so there is no confusion between notations.

(a) (Noise score) We compute the following score,

𝑓noise =
𝑓noise − 𝑓pc

𝑓pc
, (8)

where 𝑓noise and 𝑓pc are computed via Steps 2a and 3,
respectively. All quantities in Eq. (8) are vectors of length
𝑁noise. The subtraction and division are element-wise.

(b) (Network score) Perform Step 2b to obtain the outputs
under network realizations 𝑓net . Compute the following
score,

𝑓net =
𝑓net − 𝑓pc

𝑓pc
, (9)

where 𝑓pc are computed via Step 3. All quantities in Eq. (9)
are vectors of length 𝑁net . The subtraction and division
are element-wise.

In all discussions below, we refer to the quantities defined
by Eq. (8) or Eq. (9) as porosity-corrected scores.

5. Obtain the means and standard deviations of model outputs,
𝑓noise and 𝑓net , and scores, 𝑓noise and 𝑓net . The means under
noise and network realizations are computed by averaging over
the number of noise (𝑁noise) and network (𝑁net) realizations,
respectively.

6. Go back to Step 2 with a different 𝛽.
7. Go back to Step 1 with a different 𝑁total (to vary initial porosity).

All outputs computed in this algorithm are summarized in Table 3.

4. Results and discussions

In Section 4.1, we study the performance metrics under a specific
choice of model parameters as an example. First, we compare the noise
and network variability of the raw metrics (throughput and concen-
tration) and geometric quantities (porosity and tortuosity). Then, we
compare the porosity-corrected scores under noise (per Eq. (8)) and
network (per Eq. (9)) realizations (steps 4a and 4b in the algorithm,
respectively). In Section 4.2, we reinforce the example by a thorough
sweep of the parameter space and present our main results.

4.1. Detailed example: Low porosity network in low noise regime

In this section, we present a set of results for membrane pore
networks in the regime of low noise amplitude perturbations to the
5

pore radii and low initial porosity. We choose this parameter regime
Fig. 3. Scatter plot of throughput versus porosity, under (a) noise realizations, (b)
network realizations (with each network perturbed once). The black rectangle in (b)
shows the horizontal and vertical range of (a). For both plots, 𝛽 = 0.06.

as a detailed example because the results at higher porosities are qual-
itatively similar but more time-consuming to compute. We generate
𝑁net networks with an initial number of points 𝑁total, which yield
n ensemble average initial porosity 𝜙 ≈ 0.25 (averaged over 𝑁net

unperturbed networks). The noise 𝜖𝑖𝑗 is realized 𝑁noise times for each
network, with fixed noise amplitude 𝛽 = 0.06 here. We give values of
𝑁net , 𝑁noise and 𝑁total in Table 2 and have found that these numbers are
sufficient to account for the random nature of the network and noise
generation protocol; larger numbers produce similar results.

When we study noise variability (per Step 2a in the algorithm), we
fix a typical network with initial porosity very close to the ensemble
average, 0.25. We first compare the statistics of performance metrics
(per Steps 4a and 4b in the algorithm) and then discuss the similarities
and differences in the network and noise scores calculated for the initial
porosity and tortuosity of the networks, similarly averaged over many
network and noise realizations. In particular, we focus on the two
relationships found in [20] as example results: throughput vs. porosity,
and concentration vs. tortuosity.

4.1.1. Throughput and porosity
Fig. 3 shows throughput versus porosity under (a) noise and (b)

network realizations, respectively. Both figures show that, as expected,
throughput is an increasing function of porosity because more porous
filters process more filtrate. However, we note the different scales in the
two figures: in Fig. 3(b) we also plot a black rectangle that represents
the total range of Fig. 3(a) showing that, before we correct for induced
porosity changes, network variations incur much more variation in total
throughput than pore size variations in this noise/porosity regime. In
other words, the variability induced by noise is significantly smaller
than that induced by network variability.

As noted in Section 3 (per Eqs. (6) and (7)), and as evident from
Fig. 3, each pore size perturbation leads to a porosity variation. Since
initial porosity is known to be a key parameter determining filter per-
formance [20], we proceed by considering the noise and network scores
that correct for induced porosity changes, formulated in Eqs. (8) and
(9) in Step 4 of the algorithm in Section 3. Fig. 4 presents histograms
of throughput scores under noise and network realizations. We see
that the two histograms are very similar. Comparing Figs. 3 and 4, we
deduce that the porosity change is the crucial factor (at least for the
present (𝜙, 𝛽) values) since Fig. 4, in marked contrast to Fig. 3, shows
that variations of network and noise as measured by the scores have a
very similar effect.

4.1.2. Concentration and tortuosity
We next investigate the influence of noise perturbation on the

accumulated concentration of particle impurities in the filtrate (concen-
tration) and the tortuosity of the pore network (see Appendix A.4 for a
detailed definition), quantities that are strongly related in unperturbed
pore networks [20].
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Fig. 4. Histogram of throughput score, under (a) noise realizations, (b) network
realizations (with each network perturbed once). Same parameters as in Fig. 3.

Fig. 5. Scatter plot of concentration versus tortuosity. Same description and parameters
as in Fig. 3.

Fig. 6. Histogram of tortuosity under (a) noise realizations (b) network realizations.
Same parameters as in Fig. 3; same data as Fig. 5.

Fig. 5 shows concentration versus tortuosity under (a) noise and
(b) network realizations. First, both figures show that concentration
is a decreasing function of tortuosity. This makes sense because the
longer foulant particles travel in the network, the more likely they
are to adsorb to the pore walls, leading to lower concentration at the
membrane outlet. Second, we point out that the black rectangle in
Fig. 5(b) covers the total range of Fig. 5(a), showing, once again, that
before induced porosity changes are accounted for, network variability
dominates over noise, for the present choice of parameters.

Figs. 6(a) and 6(b) plot the data of Fig. 5 as a histogram of tortuosity
under noise and network realizations (respectively). Note the different
horizontal ranges on the two plots (cf. Fig. 5). Also, in Fig. 6(b), we see
that the distribution of tortuosity shifts slightly to the right relative to
the unperturbed case, possibly due to some subtle geometric influence
from the random network generation, not yet understood.

Fig. 7 shows histograms for the porosity-corrected concentration
and tortuosity scores under noise (Figs. 7(a) and 7(c), generated using
Eq. (8)) and network (Figs. 7(b) and 7(d), generated using Eq. (9))
6

c

Fig. 7. Histogram of concentration and tortuosity scores, respectively under (a,c) noise
realizations and (b,d) network realizations. Same parameters as in Fig. 3.

realizations. The histograms of concentration scores in Figs. 7(a) and
(b) are very similar in shape and width, suggesting that, after we
orrect for porosity differences, perturbing one network many times is
quivalent to perturbing many networks once.

.2. Results for varied noise amplitude and porosity

We now explore the influence of noise amplitude, 𝛽, and of initial
etwork porosity, 𝜙. For brevity, we condense results for different
nitial porosity regimes in terms of the average outputs (see Step 5 of

the algorithm) and their standard deviations (shown via error bars; see
Table 3 for their notations) plotted as functions of 𝛽.

Figs. 8(a) and 8(b) plot the raw mean throughputs ℎnoise and ℎnet
against noise amplitude 𝛽 for low and high network porosity regimes
respectively. These raw mean throughputs are increasing functions of
𝛽, an observation that we attribute largely to the fact that an increase of
𝛽 on average increases initial porosity, which then allows more filtrate
to be processed. Figs. 8(c) and 8(d) plot the mean throughput scores
hat correct for porosity changes, for filters of low and high porosity,
espectively. We find that the mean throughput scores are also increas-
ng functions of 𝛽; however, this increase (which is still significant,
round 60% for 𝛽 = 0.75 for both low and high porosity networks
er Figs. 8(c) and 8(d)) is due purely to the pore size variations. This
mplies that, for equal porosity networks, when the magnitude of the
oise perturbation 𝛽 is large enough, pore radius variations do lead
o an appreciable change in total throughput. This further suggests
hat pore radius variations promote filtrate production, at least for the
onsidered uniform pore size distribution.

We now study the variability of throughput and throughput scores
nduced by pore radius variations, represented by the error bars (stan-
ard deviation of each statistic) for all cases shown in Fig. 8. To
acilitate this comparison, we plot in Fig. 9 the ratio of the standard
eviations of the mean quantities under noise and network realizations
referred to simply as the s.d. ratio below) from Fig. 8, for raw through-
uts and their scores. A value of the s.d. ratio near 1 implies that the
ompared quantities have similar standard deviations, whereas a value
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Fig. 8. Mean throughput ℎnoise , ℎnet (a,b) and mean throughput scores ℎ̂noise , ℎ̂net (c,d)
versus noise amplitude 𝛽 under noise and network realizations. Low porosity 𝜙 ≈ 0.25
(a,c) and high porosity 𝜙 ≈ 0.6 (b,d) cases are shown. Vertical error bars are standard
deviations for each mean value. Note that the scores (c,d) show relative change, so
that, e.g., an increase from 0 to 0.6 on the vertical axes means a 60% increase.

Fig. 9. Ratio of standard deviations of raw throughput (black squares) and throughput
scores (black diamonds) for (a) low porosity (corresp. Figs. 8(a) and 8(c)) and (b) high
porosity (corresp. Figs. 8(b) and 8(d)).

ear 0 says that variation induced by network realizations dominates
hat from noise. In both low and high porosity regimes (Figs. 9(a)
nd 9(b) respectively), we observe that the s.d. ratios for the raw
hroughput (black squares) are all below 0.5 for any value of noise
mplitude 𝛽, thus the throughput variability from network realizations
ominates that from noise. However, the s.d. ratios of the throughput
cores (black diamonds) are close to 1 in both porosity regimes, for
ll 𝛽 values considered. This finding shows that, when considering the
otal throughput metric, network porosity accounts for the differences
etween network and noise variability.

Figs. 10(a) and 10(b) show mean concentrations 𝑐noise and 𝑐net of
articles in the filtrate as a function of noise amplitude 𝛽 for low and
igh porosity regimes. We observe that the mean raw concentrations
n both cases are increasing functions of 𝛽. We attribute this increase

largely to the increase of porosity with 𝛽, as evident in Eq. (7), allowing
more particles to pass through unfiltered and thus worsening foulant
control. In contrast, Figs. 10(c) and 10(d) plot the mean concentration
cores 𝑐 and 𝑐 (see Eqs. (8) and (9)), which correct for porosity
7

noise net p
Fig. 10. Mean concentration and concentration score. Same setup as in Fig. 8.

Fig. 11. Same setup as Fig. 9 for raw concentration and concentration scores. (a) low
porosity (corresp. Figs. 10(a) and 10(c)) and (b) high porosity (corresp. Figs. 10(b) and
0(d)).

hanges: the increase with 𝛽 seen here is a direct consequence of the
ore size variations. For example, for 𝛽 = 0.75, the perturbed net-
orks show more than 150% increase in concentration when compared
ith porosity-corrected unperturbed counterparts. This implies that
ore radius variations influence foulant concentration in the filtrate
ignificantly for sufficiently large noise amplitude 𝛽, and in fact are
etrimental for foulant control.

Now, we discuss the observed variability of the raw mean con-
entration and concentration scores induced by pore size variations.
imilar to the study of throughput variability, Fig. 11 plots the ratios of
tandard deviations of the mean concentrations (raw values and scores)
nder noise and network realizations, found in Fig. 10. The observed
rends are similar to Figs. 9(a) and 9(b): before correcting for induced
orosity changes, network variability dominates noise variability for all
orosities and noise amplitudes tested, exemplified by the s.d. ratios
or the raw concentrations (black squares). However, this dominance
s weaker for particle concentration than for throughput: in Fig. 11
he s.d. ratios for the raw concentrations are larger than those for
he raw throughputs in Fig. 9. This means that concentration, as a
erformance metric, experiences larger variations when pore radii are
erturbed than does throughput. We further note that the s.d. ratio
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Fig. 12. Mean tortuosity and tortuosity score. Same setup as in Fig. 8.

f concentration scores (black diamonds) is close to 1 for small 𝛽
(underscoring the importance of porosity), but decreases as 𝛽 increases.
In other words, porosity changes due to network variations are solely
responsible for concentration variability at small noise amplitudes, but
not at high amplitudes.

As noted earlier, tortuosity (the average dimensionless path length
of a fluid element as it passes through the pore network; see definition
in Appendix A.4) is an important quantity determining membrane
filter performance [20]. Fig. 12 shows mean tortuosities 𝜏noise and 𝜏net ,
and mean tortuosity scores 𝜏noise and 𝜏net as noise amplitude varies.
We find that in both porosity regimes, network variability (red error
bars) still dominates noise variability (blue error bars) if we do not
correct for induced porosity variations. The dominance is less strong
for higher noise amplitudes, however, where the error bar sizes become
similar, indicating that sufficiently high noise amplitude induces similar
variability in network tortuosity to that due to the network generation
protocol. Figs. 12(c) and 12(d) show the means of the tortuosity scores
𝜏noise and 𝜏net ; we observe that after correcting for porosity changes,
noise and network variability are now very similar for all noise am-
plitudes considered, in both porosity regimes. This implies that, when
porosity variations are accounted for, the effects of noise and network
variability on tortuosity are comparable.

Furthermore, we observe that the mean tortuosity and tortuosity
scores in Fig. 12 are increasing functions of noise amplitude 𝛽 in all
cases, but the changes are modest compared to those in throughput
seen in Fig. 8 (see a further discussion in Appendix A.4 on how 𝛽 affects
𝜏). Overall, tortuosity variations do not exceed 4% for all parameters
considered (note the vertical scales of Figs. 12(c) and 12(d)). Based
on this observation, we infer the relative influence of throughput and
tortuosity scores on concentration scores. On the one hand, filters
with larger throughput scores tend to allow more foulants to pass
through and thus produce higher foulant concentrations in the filtrate.
On the other hand, filters with larger tortuosity lead to lower concentra-
tions [20]. Hence, as 𝛽 increases, the increased mean throughput and
tortuosity scores have opposite effects on mean concentration scores.
The fact that we observe still an increased concentration score as 𝛽
increases (per Figs. 10(c) and 10(d)) implies that the effect of increasing
8

1

hroughput dominates that from increasing tortuosity. In other words,
lthough pore size variations do increase pore network tortuosity (fa-
orable for foulant control), this effect is apparently insufficient to lead
o improved foulant removal when balanced against the tendency of
he increased throughput to transport a greater proportion of foulant
articles through the filter.

Before closing, we note in passing some perhaps unexpected features
f the results. First, comparing Figs. 12(c) and 12(d), we observe that
ilters with higher porosity show a smaller increase in tortuosity with 𝛽.
econd, we note that, according to Figs. 12(c) and 12(d) for the smallest
alue of 𝛽 used, some networks may have smaller tortuosity than their
nperturbed counterparts, as shown by the first error bar crossing the
ero line.

. Conclusions

In this work, we have devised and implemented a network model for
dsorptive fouling of a membrane filter whose pore structure is formed
y randomly generating junctions and pores. Within this network rep-
esentation, we have modeled pore size variations as random initial
onditions (uniform multiplicative noise for the pore radii). We have
tudied these two sources of randomness – the random network gener-
tion protocol and pore radius variations – by comparing their effects
n two key membrane filter performance metrics: total throughput and
ccumulated concentration of adsorptive foulants in the filtrate.

We report three principal findings. First, we find that the initial
orosity of the pore network is a critical feature of the filter, and
strong determinant of performance. Secondly, we observe that the

nfluence of pore radius variations on membrane performance becomes
rominent when the noise amplitude is large. Lastly, we conclude
hat pore size (radius) variations are favorable for maximizing filtrate
roduction, but unfavorable for foulant control.

To arrive at these conclusions, we first compare membrane net-
ork performances directly by varying noise amplitude. Then, to rule
ut the effect from variations in porosity, we formulate the corre-
ponding porosity-corrected networks and study the relative change in
erformance metrics via a well-defined score.

We note that the reported findings were obtained by assuming a
niform distribution of pore radius variations, and furthermore we have
ot considered large-particle sieving. Considering sieving in addition
o adsorptive fouling and exploring the influence of other pore size
istributions will be a focus of future work.
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Appendix

A.1. Network generation

We generate a membrane pore network via a variant of the Random
Geometric network. To generate the set of pore junctions  , we place
𝑁total randomly distributed points (following a uniform distribution) in
a rectangular box of height 2𝑊 , with square cross-section of length 𝑊 .
We connect points that lie within a distance of 𝑙max𝑊 , but also at least
𝛿𝑊 apart, where 𝛿 is a control parameter (fixed throughout this work)
such that when chosen large enough, it ensures validity of the Hagen–
Poiseuille framework used to model fluid flow. These connections form
a set of pores  and together with the junction set  we obtain an initial
network 𝐺 = 𝐺 ( , ). We say

(

𝑣𝑖, 𝑣𝑗
)

∈  when two junctions 𝑣𝑖, 𝑣𝑗 ∈ 
form a pore.

We then cut through the rectangular box with two horizontal planes
at heights 0.5𝑊 and 1.5𝑊 , respectively. The intersections of these two
planes and the set of pores  form the set of inlets in and outlets
out respectively. Altogether, the above procedure forms the domain
for fluid flow and fouling, described in Section 2.

A.2. The graph Laplacian

We associate each network 𝐺 with a (weighted) graph Laplacian,
a generalization of the finite difference discretization of the classic
Laplace operator ∇ ⋅ ∇. It is a square matrix whose off-diagonal terms
indicate connection weights, and whose diagonal terms record the total
weights of neighbors of each discretization point (junction). In our
work, the most relevant weight is the conductance 𝐾𝑖𝑗 of each pore,
given by

𝐾𝑖𝑗 =
𝜋𝑅4

𝑖𝑗

8𝜇𝐿𝑖𝑗
.

hen the 𝐾-weighted graph Laplacian is defined as

𝐾 ∶= 𝐷 −𝐾, (10)

here

𝑖𝑗 =

{

∑

||
𝑙=1 𝐾𝑖𝑙 , 𝑗 = 𝑖,

0, otherwise,
(11)

here || is the number of junctions.
While the above setup characterizes the flux inside an individ-

al pore, we employ conservation of flux at each interior vertex 𝑣𝑖
hroughout the network,

=
∑

𝑣𝑗∶
(

𝑣𝑖 ,𝑣𝑗
)

∈𝐸

𝑄𝑖𝑗 . (12)

ombining Eqs. (1) and (12), we form a graph Laplace equation for the
ressures 𝑃 at each vertex, to which we add the specified pressure drop
oundary conditions,

𝐾𝑃
(

𝑣𝑖
)

= 0, 𝑣𝑖 ∈ int , (13)

𝑃 (𝑣) = 𝑃0, 𝑣 ∈ in, (14)

𝑃 (𝑣) = 0, 𝑣 ∈ out . (15)

nce the pressures 𝑃
(

𝑣𝑖
)

are found for all interior junctions 𝑣𝑖 ∈ int ,
e use Eq. (1) to find flux 𝑄𝑖𝑗 in each pore to form a flux matrix 𝐐
ith 𝑖 and 𝑗 as row and column indices respectively.

Using conservation of particle flux at each junction, we arrive at the
ollowing advection Laplace equation for foulant concentration 𝐶𝑖 (𝑇 )
t each vertex 𝑣𝑖 ∈ int ,

in
𝐐𝐶 = (𝐐◦𝐵)T 𝐶0, 𝐵𝑖𝑗 = exp

(−𝛬𝑅𝑖𝑗𝐿𝑖𝑗

𝑄𝑖𝑗

)

, (16)

𝐶 =
(

𝐶 ,… , 𝐶 , 0,… , 0
)T , (17)
9

0 top top
here in
𝐐 = 𝐷𝐐T − (𝐐◦𝐵)T is the advection Laplacian with a sink 𝐵,

whose form arises from an analytical solution to Eq. (2). T and ◦ de-
ote matrix transpose and the element-wise multiplication respectively.
ee [20] for a detailed derivation of this linear system.

.3. Performance metrics

Volumetric throughput of a membrane filter over its operational
ifetime is a commonly-used measure of overall efficiency. The volu-
etric throughput 𝐻(𝑇 ) through the filter is defined by

(𝑇 ) = ∫

𝑇

0
𝑄out

(

𝑇 ′) 𝑑𝑇 ′, (18)

out (𝑇 ) =
∑

𝑣𝑗∈out

∑

𝑣𝑖∶
(

𝑣𝑖 ,𝑣𝑗
)

∈𝐸

𝑄𝑖𝑗 (𝑇 ) , (19)

here 𝑄out (𝑇 ) is the total flux exiting the filter. With the scales chosen
n Eq. (5), throughput 𝐻 has scale

= 𝑊 3

𝛼𝐶0
ℎ. (20)

In particular, we compute ℎf inal ∶= ℎ
(

𝑡f inal
)

, the total volume of filtrate
processed by the filter over its lifetime.

To connect with experiments and applications, we briefly discuss
the order of magnitude of the dimensional throughput 𝐻 in Eq. (20).
The parameter 𝛼 is of the order of foulant (contaminant) particle
volume while 𝐶0 is the number of particles per fluid (solvent) vol-
ume. The product 𝛼𝐶0 then yields an estimate of the volume ratio
of the (contaminant) solute and the (fluid) solvent. For example, the
permissible exposure limit by OSHA (Occupational Safety and Health
Administration) for 1-dioxane in contaminated water is at a concentra-
tion of about 100 mg/L [35]. The density of 1-dioxane is close to that
of water, and thus this level of concentration translates to a volume
ratio (𝛼𝐶0) of 10−4. With this estimate and the order of magnitude for
dimensionless throughput 𝐻 seen in Fig. 3(a) (about 10−2), 𝐻 then is
of the order of 102𝑊 3 where 𝑊 3 represents the volume of a cubic unit
of a membrane filter of side length 𝑊 . This estimate suggests that this
cubic unit will process filtrate volume of order 100 times its membrane
material volume, given the parameters used in this work.

Another performance measure is the accumulated foulant concen-
tration in the filtrate, which captures the aggregate particle capture ef-
ficiency of the filter. The accumulated foulant concentration is defined
by

𝐶acm (𝑇 ) =
∫ 𝑇
0 𝐶out

(

𝑇 ′)𝑄out
(

𝑇 ′) 𝑑𝑇 ′

∫ 𝑇
0 𝑄out (𝑇 ′) 𝑑𝑇 ′

,

where

𝐶out (𝑇 ) =

∑

𝑣𝑗∈out

∑

𝑣𝑖∶
(

𝑣𝑖 ,𝑣𝑗
)

∈𝐸

𝐶𝑗 (𝑇 )𝑄𝑖𝑗 (𝑇 )

𝑄out (𝑇 )
.

𝐶acm has scale 𝐶acm = 𝐶top𝑐acm. Of particular interest is 𝑐f inal ∶=
𝑐acm

(

𝑡f inal
)

, which provides a measure of the aggregate particle capture
efficiency of the filter over its lifetime.

We further simplify the notations ℎf inal and 𝑐f inal to ℎ and 𝑐 in the
main text as we consider only the end states of these performance
measures in our analysis.

A.4. Tortuosity

Tortuosity 𝜏 of a membrane network is defined by the average
distance traveled by a fluid particle from membrane top surface to
bottom, relative to membrane thickness 𝑊 . We here provide a formula
via a probabilistic approach,

𝜏 =
𝜋T
0

( 𝑚
∑

𝐏𝑛−1

)

diag
(

𝐏𝐖𝐸
)

, (21)

𝑊 𝑛=1
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a

R

where T means vector transpose and diag means the diagonal com-
ponent of a matrix. Here we provide some intuition for each term.
The initial distribution 𝜋0 describes the probability of the fluid particle
choosing an inlet on the membrane top surface. To calculate 𝜋0, we
compute the proportion of flux entering each inlet on the upstream
surface relative to total flux. 𝐏 within the sum describes the law of how
a fluid particle traverses the network from one junction to its adjacent
neighbors (known as a step); the upper limit 𝑚 is the largest number of
steps a particle takes to exit the membrane bottom surface, which can
be found for each network. Lastly, diag

(

𝐏𝐖𝐸
)

describes the average
distance traveled by the fluid particle in one step starting from each
junction. We refer the reader to [20] for details of the derivation.

In our study, since we perturb each pore radius via Eq. (6), tortu-
osity 𝜏 implicitly depends on the noise amplitude 𝛽 through 𝜋0 and 𝐏
because they both involve the fluxes (affected by the pores’ perturbed
conductances).

A.5. Porosity correction

In Step 3 (porosity correction) of the algorithm, we derive the ex-
pression of 𝑟pc such that 𝜙noise = 𝜙pc. It relies on writing 𝜙pc in terms
of 𝜙0 (see List 1 and consider Eq. (7) with 𝛽 = 0), the porosity of the
unperturbed network with initial radius 𝑟0:

𝜙noise = 𝜙pc =
𝜋
2
𝑟2pc

∑

edge
(edge length)

=

(

𝜋
2
𝑟20

∑

edge
(edge length)

)

( 𝑟pc
𝑟0

)2

= 𝜙0

( 𝑟pc
𝑟0

)2

nd thus 𝑟pc = 𝑟0

√

𝜙noise
𝜙0

.
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