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Abstract. – We probe, using a model system, elastic and kinetic energies for sheared granular
materials. For large enough P/Ey (pressure/Young’s modulus) and P/ρv2 (P/kinetic energy
density) elastic dominates kinetic energy, and energy fluctuations become primarily elastic in
nature. This regime has likely been reached in recent experiments. We consider a generalization
of the granular temperature, Tg, with both kinetic and elastic terms and that changes smoothly
from one regime to the other. This Tg is roughly consistent with a temperature adapted from
equilibrium statistical mechanics.

We explore the role of elasticity in the energy and energy fluctuations of sheared dense
granular systems. For dilated gas-like granular states, energy fluctuations are frequently
described in terms of a temperature, defined as the fluctuating part of the kinetic energy,
Tk ≡ m〈v2〉/2. Here, v is the local random component of the velocity. This definition is
predicated on assumptions such as molecular chaos, absence of correlations, and short-lived
collisions, that do not always apply. For dense systems of rigid particles, a very different
concept, Edwards entropy, has been proposed [1]. This quantity is the logarithm of the number
of jammed configurations consistent with all constraints on the system, and the Edwards
temperature is T−1

E = ∂SE/∂V , where V is the system volume.
Both of these pictures assume that minimal energy is stored in compressional modes of

the particles. This assumption may be valid when the pressure is small compared to Young’s
modulus, Ey. However, there are situations when this need not be the case. The main goal
of this letter is to analyze via discrete element simulations (DES) the storage of energy and
energy fluctuations for sheared dense granular material, taking account of elastic energy.

In order to better establish a context, we estimate the relative importance of kinetic and
elastic energy for a simplified system. We imagine that spherical particles with a typical
velocity, v, are subject to an applied force, L, at each contact. For simplicity, assume at
first just a pair of opposing contacts, so that there is an effective pressure, P = L/A, where
A = πR2, and R is the radius of a sphere. The elastic energy per contact (assuming a Hertz-
Mindlin contact law) is ε ∝ L5/3. The ratio of elastic to kinetic energy for a particle with
Young’s modulus Ey and density ρ is RE = ε/K = C(P/Ey)2/3(P/ρv2), where C is an O(1)
constant that depends on the Poisson ratio. On multiplying by the number of contacts per
c© EDP Sciences
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Fig. 1 – a) The geometry of the simulations (only centers of the particles are shown). b)-d) Elastic
energy Ee, kinetic temperature Tk, and generalized temperature Tg (defined in the text) scaled by v2,
as functions of the distance from the walls, y. The stationary wall is at y = −0.5, the shearing wall
is to the right, and the shearing is in the out-of-plane direction (v = 0.1).

particle, it is possible to generalize this to a more realistic situation. When RE is small, elastic
energy is irrelevant, and vice versa when it is large, it should be included in a description.

We now consider RE for two representative cases. For the experiments [2], Ey = 5MPa,
P ∼ 160Pa, and ρ = 1.2 g/cm3. Typical speeds range over 6× 10−4 m/s ≤ v ≤ 2× 10−2 m/s,
so that 0.3 ≤ RE ≤ 4 × 102. For glass spheres [3], Ey is larger by roughly a factor of 5000.
Assuming densities ρ ∼ 2 g/cm3, and pressures of P 
 2000Pa corresponding to the base of a
column 10 cm high in a gravitational field, RE 
 1 for velocities of a few mm/s.

Hence, for slowly sheared dense granular systems, there exist velocity regimes for which
elastic energy is the dominant mode of energy storage. In such a setting, neither Tk nor TE is
likely to provide a good measure of the random nature of the system.

In this context, we propose an extension of granular “temperature” that contains infor-
mation on fluctuations of the elastic energy, and then compare this extension to a relation
for temperature drawn from statistical mechanics. (A somewhat similar approach of applying
equilibrium statistical theory has been taken in recent works on foams [4] and granular sys-
tems [5].) To carry out this exploration, we use DES of 2D particles that are subject to plane
shear and (possibly) compression.

The generalization of “temperature” that we consider is based on the classical idea that
for a lattice of elastic particles, the average fluctuating energy/particle is 3kBT . Using this
as a heuristic guide, we define a generalized temperature that is Tg = m〈v2〉/2 + k〈x2〉/2,
where v corresponds to the fluctuating part of the velocity, and x to the fluctuating part of
the compression of a particle. Note that this definition provides a simple bridge between the
extremes of a gas-like state and a highly compressed slowly evolving state.

In the simulation, particles are confined between two impenetrable straight parallel bound-
aries, as sketched in fig. 1a). The rough top boundary, which is 50 mean particle diameters
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(dm) long, moves at a steady speed, and induces shearing in the system. The boundary
conditions in the shearing direction are periodic. This system avoids the nonuniformity that
characterizes physical experiments, which typically exhibit shear bands [2]. Although we could
have used the simpler Lees-Edwards conditions, we have concentrated on the present model
so as to explore the influence of impenetrable boundaries, typical of physical experiments.

These simulations use a soft-disk/sphere model similar to what has been used in a num-
ber of granular simulations (see [6] and references therein). Here, we concentrate on two-
dimensional polydisperse disks in a zero-g environment. The walls are made of identical
particles that are rigidly attached. Forces between the particles have a normal compo-
nent given by FN = [kfx − γNm̄(vi,j · n̂)], where kf is a force constant, ri,j = |ri,j |,
ri,j = ri − rj , n̂ = ri,j/ri,j , d = (di + dj)/2, di,j are the diameters of the particles i and
j, x = d − ri,j is the compression, vi,j = vi − vj , m̄ is the reduced mass, and γn is the
damping constant related to the coefficient of restitution, en. The parameters represent pho-
toelastic disks [2]; in particular, γn corresponds to en = 0.5. The tangential force is given by
FS = sign(−vt

rel)min(γsm̄|vt
rel|, νk|F c

N |)ŝ, where vt
rel is the relative velocity in the tangential

direction ŝ, γs = γn/2 and µk is the coefficient of friction between the particles. The equa-
tions of motion are then integrated using a 4th-order predictor-corrector method. Additional
simulations (to be presented elsewhere) show that variation of the parameters or the force
model modify only details of the results.

The simulations are performed with approximately 2000 polydisperse particles, with a
radius variability of 10%. While polydispersity is important to avoid crystallization, the details
of the size distribution are not: the results are very similar for different ranges of particle sizes,
or a bidisperse distribution. Particles are initially placed on a lattice, given random velocities,
and the system is then very slowly compressed to a desired volume fraction, ν. The results
that follow use t, the time it takes the shearing wall to travel once across the domain of length
l = 50dm, as a time scale, and l/t as a velocity scale.

The quantities below are calculated using space-time averaging. Thus, the system is di-
vided into cells, and averaged quantities are calculated for each cell. In particular, the kinetic
temperature is defined by

Tk =
1
2

[〈
m(u′)2

〉
+

〈
m(v′)2

〉
+

β

4
〈
m(dpω′)2

〉]
,

where u, v are the components of particle velocity, dp is the diameter of a particle, m is its
mass (m ∼ d2

p), β = 1/4 for disks, and ω is the angular velocity. The primed averages are
defined with zero mean, e.g., 〈u′v′〉 = 〈uv〉 − 〈u〉〈v〉.

The elastic energy is obtained by averaging per collision, not per particle. The differ-
ence between the two is significant for dense granular systems considered here, since particles
typically experience multiple collisions (calculating elastic energy per particle greatly overes-
timates the elastic energy). If xj,c is the compression of particle j due to the collision c (two
particles are assumed to participate in a collision if the distance between their centers is less
than d), then our definition of the elastic energy in cell l is

Ee,l =
1

Ntnl

kf

2

Nt∑
k=1

nl∑
j=1

nc,j∑
c=1

[
xj,c

]2
, (1)

where nl is the number of particles in cell l at a given time, and n̄l is the average number
of particles during the period of k = 1 to k = Nt � 1 time steps (in practice, the averaging
time scale is sufficiently short so that to a high degree of accuracy nl = n̄l). Collisions may
last over relatively long times, but even the fastest collisions are well resolved due to short
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Fig. 2 – Elastic energy, kinetic and elastic temperatures for various ν’s, scaled by v2.

time step. Definition (1) ignores the energy used to overcome friction, and it clearly depends
on the form of the normal force, e.g., for a 3D systems, for which a Hertzian interaction law
(FN ∼ x3/2) is more appropriate, Ee,l is of different form as well.

Figure 1b-c shows the elastic energy and kinetic temperature (scaled by the square of the
shearing velocity v, and by the average mass of a particle) vs. the distance, y, from the shearing
wall. For these simulations, ν is continuously increased by (slow) compression. ν increases
from 65% (bottom) to 90% (top) (note that in 2D, random close packing and cubic close
packing correspond to about 85% and 2π/

√
3 ≈ 90%, respectively). Clearly, as ν is increased,

there is a transition region (about νc = 80%) where the energy stored in the internal degrees
of freedom (elastic energy) becomes more relevant than the kinetic energy (see also fig. 2).
The exact value of νc depends on the system parameters, in particular on the spring constant
in our force model; here the spring constant is rather small since we simulate relatively soft
particles. The y-dependence of the results is rather weak and becomes even weaker for higher
ν’s. Hence, hereafter, we ignore the space dependence and use system averages (over all cells)
of locally computed quantities.

As ν increases, the energy is mainly elastic, and Tk loses its relevance. In order to have
a quantity that might play the same role as Tk in a dense granular system, we propose a
generalized granular “temperature” by

Tg = Tk + Te , (2)

as a sum of Tk, and the “elastic” part Te. Te is defined as the variance of the elastic energy
fluctuations about the mean, in a manner similar to Tk, which is the variance of kinetic energy
fluctuations. This definition follows the classical statistical mechanics result where the mean
fluctuations in the combined elastic and kinetic energy of an oscillator are proportional to the
temperature. However, unlike this classical case, there is no reason to expect equipartition
between elastic and kinetic modes. Rather, the ratio Te/(Te + Tk) varies continuously from 0
in the dilute limit, to 1 in the dense limit.
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The definition of Te requires some care due to multiple collisions which a given particle may
experience. One simple and natural definition that is consistent with the classical statistical
definition of temperature for an oscillator is as follows. We first define the average elastic
energy per particle in cell l as

〈Ee,l〉 = kf

2
nc〈xl〉2 =

kf

2
nc

[
1

Ntn̄lnc

Nt∑
k=1

nl∑
j=1

nc,j∑
c=1

xj,c

]2

, (3)

where 〈xl〉 is the average compression per collision, and nc is the average number of collisions
per particle. Then,

Te,l =
kf

2
nc

〈
δx2

〉
=

kf

2
nc

〈
(xj,c − 〈xl〉)2

〉
= Ee,l − 〈Ee,l〉, (4)

where the last equality easily follows using eqs. (1) and (3). Figure 1d then shows the gener-
alized temperature, Tg, defined by eq. (2). We clearly observe transition between the regime
dominated by Tk for low ν, to that dominated by Te for high ν. We note that in these
simulations the y-dependence of Te is very similar to the one of the elastic energy in fig. 1b).

Figure 2 shows Tk, Te, and 〈Ee〉 vs. time, averaged over all cells, for four different ν’s.
Unlike fig. 1, these results are obtained after shearing for long times at fixed ν’s. For higher
ν’s, clearly Te � Tk. Interestingly, there are rather large fluctuations of the results with ν
just above νc ≈ 80%, corresponding to the regime where elastic energy becomes predominant.
Also, experiments have indicated a phase transition for comparable densities which may be
related [2] (see also [7]). Generally, one might expect both glassy and/or jamming phenomena
to dominate this regime, a point that we will explore elsewhere.

We further interpret Tg by comparing it to an alternative definition from equilibrium statis-
tical mechanics. We consider, among various possibilities, a standard fluctuation-dissipation
relation [8]:

dU

dT
=

δU2

T 2
, (5)

which relates the (constant volume) heat capacity cv = dU/dT to the energy fluctuations.
Here U is the total energy in the (usually conservative) system, T is the temperature, and
δU2 = 〈U2〉 − 〈U〉2. We use U = Ekin + 〈Ee〉, and ask whether T of eq. (5) and Tg are
effectively equivalent: T = Tg = Tk + Te. To check this idea, we now think of eq. (5) as a
defining equation for Tm =

√
δU2/(dU/dTg) (here Tm stands for “model temperature”). The

degree of agreement between Tm and Tg will provide some indication of the utility of the
definition for Tg. Note that we should not expect perfect or possibly even any agreement,
since we are considering a strongly dissipative system far from equilibrium.

Figure 3 shows typical data used to determine cv, which is needed for calculating Tm. The
range of U ’s shown in fig. 3 corresponds to 0.0001 < v < 40. For ν = 80%, U ∼ Tg over almost
10 decades. For ν = 86%, U ∼ T a

g , where a 
 2.0. However, in this case, there is a deviation
from the power law fit for slow shearing, and we are limited to a smaller range of U ’s, since
most of the energy is stored in the system as elastic energy. In order to obtain better data
for U(Tg) for slow shearing at higher densities, we determine both U and Tg as functions of
v, see fig. 3b). We then find to a good approximation that both U and Tg are proportional
to ln(v). This logarithmic dependence for slow shearing is, to the best of our knowledge, the
first computational confirmation of recent experimental results [9], and will be presented in
more detail elsewhere. For our purposes here, it is sufficient to extract U(Tg).
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The dependence of U(Tg) is interesting. We note that U ∼ Tg for ν = 80% is similar to
a recent simulation of sheared foams [4]. However, the result U ∼ T 2

g for ν = 86% and for
not too slow shearing, see fig. 3b), is striking and deserves some comment. Although it may
appear that the role of elastic energy is crucial for this change of the exponent a, this does
not seem to be the whole story. As shown in fig. 4, even for this high ν, Ek is still dominant
for high enough shearing rates. Despite this, a is still different compared to the one for lower
ν’s. An interpretation is that large ν leads to decreased mobility, bringing the system closer
to jamming, and limits the growth of Tg with U . However, for non-rigid particles, complete
jamming is avoided. We note that in additional simulations (not shown) we observe that
the change of the exponent a from 1 to 2 occurs in a very narrow range of volume fractions,
centered at about 84% (the exact location depends on the shearing velocity). We do not
observe any meaningful change of a as the volume fraction is increased beyond 86%.

Figure 4 contains a summary of the various types of temperatures for two ν’s. As already
noted, for ν = 80%, most of the energy is still kinetic, while for ν = 86%, elastic energy
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of the plot.
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is essential. For ν = 80%, Tk is dominant (it is indistinguishable from Tg in fig. 4a), and
also it satisfies the model (5) since Tk ≈ Tm). However, for ν = 86% and for slow shearing,
Tk is smaller by 4 orders of magnitude than Tg and Tm! Thus, Tk cannot be used to even
approximately describe a dense slowly sheared granular system. This difference decreases for
higher shearing rates, but only at very high shearing is there good agreement. We note that
the results presented here apply to any confined, sheared, granular system.

We now discuss, in the context of fig. 4, the degree of agreement between Tg and Tm.
While the agreement is not perfect, these two quantities are qualitatively similar. Therefore,
these studies already demonstrate the clear need to incorporate elastic energy and elastic
fluctuations, and that Tg has utility as a generalized granular temperature. We note that
preliminary results (to be discussed elsewhere) show that a similar agreement can be found
using a Hertzian interaction law.

Clearly, there remain many open questions regarding the extent to which the various
temperatures serve similar functions to their molecular counterpart. Here we only note that
at least qualitatively one can show that these temperatures can be used in the context of
thermal conduction, i.e. that there is a flow of heat from hot to cold regions. We also note that
the distributions of both kinetic and elastic energy are strongly non-Gaussian for a significant
range of the parameters analyzed here. These energy distributions, as well as other features
related to the proposed temperature generalization, will be analyzed in future works. One of
these features which is of particular interest is to relate Tg to the time-dependent temperatures
that have been discussed in the context of glasses, colloids, and granular materials [10–12].

This work clearly demonstrates a regime of pressures and speeds for which elastic energy
and elastic energy fluctuations are an essential part of the dynamics for slow shearing. We
view this as a first step towards a generalized “thermal” description for the dense granular
systems where the kinetic contribution to the energy does not suffice. The ultimate test will be
to perform physical experiments where the validity of the proposed concepts can be verified.

∗ ∗ ∗

We acknowledge support by NASA NAG3-2367, NAG3-2372, NAG3-2372-05,
NNC04GA98G, and RPB acknowledges support by NSF grants DMR-0137119, DMS-0204677
and DMS-0244492.

REFERENCES

[1] Edwards S. F., in Granular Matter: An Interdisciplinary Approach, edited by Mehta A.

(Springer, New York) 1994, pp. 121-140.
[2] Howell D., Veje C. and Behringer R. P., Phys. Rev. Lett., 82 (1999) 5241.
[3] Losert W., Geminard J.-C., Nasuno S. and Gollub J. P., Phys. Rev. E, 61 (2000) 4060.
[4] Ono I. K. et al., Phys. Rev. Lett., 89 (2002) 095703.
[5] Makse H. A. and Kurchan J., Nature, 415 (2002) 614.
[6] Kondic L., Phys. Rev. E, 60 (1999) 751.
[7] Campbell C. S., J. Fluid Mech., 465 (2002) 261.
[8] McQuarrie D. A., Statistical Mechanics (University Science Books, Sausalito) 2000.
[9] Behringer R. P. and Hartley R. R., Nature, 421 (2003) 928.
[10] Berthier L., Barrat J.-L. and Kurchan J., Phys. Rev. E, 61 (2000) 5464.
[11] Berthier L. and Barrat J.-L., Phys. Rev. Lett., 89 (2002) 095702.
[12] O’Hern C. S., Liu A. J. and Nagel S. R., cond-mat 0401105 (2004).


