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• We present mathematical models for analyzing force distributions in particulate systems.
• Persistent homology is used to compare the force networks in different granular systems.
• We consider the stability of the persistence diagrams with respect to experimental error.
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a b s t r a c t

We present mathematical models based on persistent homology for analyzing force distributions in par-
ticulate systems. We define three distinct chain complexes of these distributions: digital, position, and
interaction, motivated by different types of data that may be available from experiments and simulations,
e.g. digital images, location of the particles, and the forces between the particles, respectively. We de-
scribe how algebraic topology, in particular, homology allows one to obtain algebraic representations of
the geometry captured by these complexes. For each complexwe define an associated force network from
which persistent homology is computed. Using numerical data obtained from discrete element simula-
tions of a system of particles undergoing slow compression, we demonstrate how persistent homology
can be used to compare the force distributions in different systems, and discuss the differences between
the properties of digital, position, and interaction force networks. To conclude, we formulatewell-defined
measures quantifying differences between force networks corresponding to the different states of a sys-
tem, and therefore allow to analyze in precise terms dynamical properties of force networks.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Particulate systems consisting of a large number of particles
have attracted significant attention in the last decades. Despite sig-
nificant research on these systems, their properties are still not
well understood and some of them appear to be rather elusive. The
fact that the forces do not propagate uniformly in systems made
of interacting particles has been established in a number of dif-
ferent systems, including granularmatter, colloids, gels, emulsions
and foams, see, e.g., [1–4]. It is well accepted that the interparticle
forces play a key role in determining the mechanical properties of
static and dynamic systems; see e.g. [5] for an extensive review
of the role of interaction networks in the context of amorphous
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solids. However there are no universal methods for describing and
quantifying relevant aspects of the interparticle forces. For exam-
ple, even the commonly used notion of ‘force chain’ – which we
take to mean a connected set of particles interacting by a larger
than average force – is not generally defined. One important goal
of this paper is to present a method that can be used to describe
precisely the global properties of force networks in both static and
dynamic settings.

Forces between interacting particles have been considered ex-
tensively from statistical point of view, in particular in the con-
text of dense granular matter (DGM). For example, the works by
Radjai and collaborators, see, e.g. [6,7], discussed the differences in
the probability density functions of strong and weak forces (dis-
tinguished by the forces being larger or smaller than the average
one) arising in simulations; Behringer and collaborators explored
these forces in the experimental systems built from photoelastic
particles, see e.g. [4]. Possible universality of the force distributions
has been considered [8], as well as the connections between force
and contact networks [9]. These works have provided a significant
insight into the statistical properties of the force distributions but
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by design do not focus on the structural properties of force net-
works.

Only recently, attempts have beenmade tomove beyond purely
statistical description and consider in more detail the proper-
ties of these networks. Examples of recent studies include works
by Tordesillas and collaborators, see [10–12] and the references
therein. These studies include extensive discussion of local proper-
ties of networks of forces based on the forces that particles expe-
rience and on their connectivity, including appropriately defined
force chains and force cycles with a particular emphasis on cy-
cles of length 3 and 4. Furthermore, these studies introduce meso-
scopic network properties such as degree, clustering coefficient
and centrality which describe particle arrangements. Averaging
these properties over the entire network allows to discuss the con-
nectionbetween the changes observed in themacroscopic network
properties to the underlying structural rearrangements of the ma-
terial.

Alternative approaches use network-type of analysis to discuss
the properties of force networks [13–15]. These works provide a
significant new insight and confirm that the properties of force net-
works are relevant in the context of propagation of acoustic sig-
nals [13], fracture [14], and compression and shear [15]. Topology
based approach has been considered aswell, with focus on the con-
tact network topology in isotropically compressed [16] and tapped
granular media [17]. A similar approach is considered in our re-
cent work [18], where we discuss connectivity of force networks,
including the dependence of the number of connected components
and holes/loops (quantified by the Betti numbers), on the (nor-
mal) force between the particles.While that work uncovered some
intricate properties of force networks and allowed to connect the
results of topology based analysis to the ones obtained using stan-
dard percolation-based approach, it was still based essentially on
counting components and loops at fixed magnitudes of force. As
such, it thus does not provide an understanding of how these geo-
metric structures persist through differentmagnitudes of the force.

In [19] we introduced the use of persistent homology [20,21] to
DGM. More recently, these ideas have been employed in the con-
text of tapped systems [22]. Conceptually persistent homology is
preferable to the above mentioned Betti number analysis. By de-
sign persistent homologymeasures the same geometric structures
as the Betti number analysis, but simultaneously records how these
structures appear, disappear or persist through different magni-
tudes of the force. Thus, two networks of forces could produce
identical information on the level of Betti numbers, i.e., the number
of connected components and loops, but still have distinct global
structures in the sense that as one varies the magnitudes of the
forces the relationships between the connected components and
loops are different. Therefore, the results presented in [19] pro-
vide better quantification of the properties of considered force net-
works and shed new light on the differences between the systems
that differ by their frictional properties and particle size distribu-
tions.

It should be noted however, that persistent homology is an ab-
stract tool. Hence, there is considerable freedom as to how it can
be employed. In this paper we provide a firm mathematical back-
ground for using persistent homology in the context of DGM. In
addition, we discuss different concepts for constructing and com-
paring the persistence diagrams. This allows us to compare the
features of different force networks both locally and globally and
hence is complementary to the approaches, discussed above, that
consider local properties of force networks. Furthermore, the abil-
ity to compare different force networks is crucial for quantifying
the dynamical properties of DGM.

In the next section we give an overview of persistence homol-
ogy and the structure of the paper.
2. Overview

In this paperwe introduce the concept of a force network,which
is designed to model force interactions between the particles. The
definition varies depending on available form of the data, but every
force network is described by a scalar function f : D → R.
The domain D models the particles and the function f models
the forces. Persistent homology is used to reduce the function f
to a collection of points in the plane. This collection of points is
called a persistence diagram and denoted by PD(f ). Each point in
the persistence diagram encodes a well defined geometric feature
of f .

It is useful to view persistent homology as a mapping from
scalar functions to persistence diagrams, e.g. f → PD(f ). Stated
more formally, persistent homology can be viewed as a function
from a space of scalar functions to a space of persistence diagrams.
A fundamental result is that with appropriate metrics on the space
of functions and on the space of persistence diagrams, persistent
homology is a continuous function [21]. At least theoretically this
implies that bounded noise or small errors in the measurement of
the DGM will lead to a small change in the associated persistence
diagram.

This theoretical potential combined with the successful appli-
cations presented in [19] suggests the need for a careful analysis
of the practical details of applying persistent homology to DGM.
There are at least three specific issues that need to be addressed:

1. Given a particular form of the experimental or numerical data,
how can one perform the persistent homology computations?

2. Having chosen a method by which the persistent homology
computations are being performed, how robust is the resulting
persistence diagram as a function of experimental or numerical
noise or errors?

3. How can the information provided by the persistence diagrams
be used to analyze DGM?

Addressing these issues in the context of DGM is the main focus of
this paper.

The first step in the construction of the force network is to es-
tablish the domainD onwhich the function f representing the force
interactions is defined. A contact network seems to be a natural
candidate for the domain D. Indeed, if positions and shapes of the
particles are known, then one can construct a contact network. If
the data is in the form of a digital image, then building a contact
network is more complicated. In Section 3 we start by introduc-
ing digital and position networks that are closely related to contact
networks. We investigate their stability with respect to measure-
ment errors and show that their topology can considerably differ
from the topology of the physical system they represent. Therefore
we propose an alternative domain, the interaction network. This is
an abstract mathematical concept and its topology is not related
to the topology of the physical system it represents. However, it
provides a fixed domain for describing the force networks in DGM.

Section 4 introduces homology, which can be crudely inter-
preted as a tool for counting connected components, loops and
cavities. The advantages of homology are that it supports efficient
algorithms, can be used in higher dimensions, and allows one to
compare components, loops, and cavities over different spaces.
Section 5 introduces force networks, clarifying the connection be-
tween the type of available data and formulation of appropriate
network. Section 6 focuses on persistence homology, our princi-
pal tool for analyzing the force networks. The interaction network
can be used in the setting of numerical simulations or experi-
ments (see, e.g., [4]), where complete information about the forces
between adjacent particles is known. However, for many experi-
ments only the total force experienced by a particle may be avail-
able [23]. This necessitates the use of a digital or position network.
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In Section 7we discuss the space of persistence diagrams, in partic-
ular the appropriate metrics on the space, and we provide a theo-
rem that justifies the claim that the interaction force networks are
optimal.

In Section 8 we conclude with a review of the developed
concepts in the context of DGM data obtained by discrete ele-
ment based simulations (DES). We choose to work with numerical
simulations since all the data is available with high precision and
therefore we can process them through all three force network
constructions (digital, position, and interaction). This allows for
greater clarity in interpreting the geometric meaning of the persis-
tence diagrams, greater ease in comparing the results of the differ-
ent networks, and simplicity in testing for stability with respect to
perturbations. The reader who is familiar with the language of per-
sistent homology may wish to skip directly to this section, before
examining the details of the constructions. We note that the fo-
cus of this section is not on reaching general conclusions about the
force networks in DGM, but on describing how the tools of persis-
tence homology can be used to extract detailed information about
these networks. For this purpose, we provide a few selected exam-
ples of the simulation data and discuss the application of persis-
tence homology to these examples. More interpretation-oriented
discussion that focuses on the connection between persistence ho-
mology and physical properties of DGM is given in [19].

There are several points that we encourage the reader to keep
in mind while reviewing Section 8. First, we provide examples of
two dimensional force networks in order to facilitate the reader’s
intuition about the described features, however our analysis is
based exclusively on the information contained in the persistence
diagrams. This is particularly important in the context of three di-
mensional systems, where visual inspection may be impossible.
Second, in our examples we mostly concentrate on the magnitude
of the normal force between the particles, but in principle any func-
tion that assigns a scalar value to every edge can be used. We il-
lustrate this point by briefly considering tangential forces. Finally,
although this paper is focused on DGM, the constructions are inde-
pendent of the details of particle–particle interaction and could as
well be applied to any other system consisting of interacting par-
ticles. The software used to build the various force networks [24]
and to compute persistence diagrams [25] is available in the public
domain.

3. Particle networks

In the Introduction the force network is described by a scalar
function f : D → R. The first step towards using algebraic topology
to characterize the geometric structures associated with DGM is
to represent the domain D as a finite complex, defined below.
We introduce three complexes motivated by the type of data
commonly obtained from experiments or simulations. Consider
Fig. 1(a) that shows a small portion of an image of a collection of
photoelastic disks. We interpret this information in three ways:

Digital. This figure arises from a digital image and thus the data
can be viewed as a collection of a large number of pixels.

Positions. Since this is a controlled experiment involving circular
disks, the configuration of the particles (locations of their
center points and their radii) can be determined.

Interactions. The particles are made of photoelastic material and
thus the light intensities within the particles can be used
to determine the normal forces between the particles.

We note that the information required increases considerably
as digital, position, interaction complexes are considered, respec-
tively. Our approach is to encode each of these data types into dif-
ferent force networks and one of the goals of this paper is to make
clear the difference of the geometric information that can be ex-
tracted. One not particularly surprising conclusion is that the in-
Fig. 1. Different representations of the particle networks derived from the
experimental data. For simplicitywe neglect the particles that intersect the edges of
the picture. (a) Small portion of a digital image of an experimental system (courtesy
of R.P. Behringer, unpublished results). (b) Detail of a digital image. (c) Digital
complex. The blue pixels represent two dimensional cubes present in the complex.
(d) Position complex. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

teraction data provides the best information and the digital data
the worst, but it is worth quantifying these differences. With this
in mind we begin with several formal definitions. Our focus is on
physical systems, thus for the most part we restrict our discussion
to two and three dimensional complexes (see [21,26] for a more
general discussion).

To interpret the pixel data we make use of cubical complexes.
Observe that once the pixel data is obtained the actual size used to
represent each pixel is no longer an issue. Thus, for the sake of sim-
plicity of discussion and without loss of generality we assume that
the pixel data is embedded inR2 with each pixel being represented
by a square defined by the integer lattice. More precisely, a 2-
dimensional cube (pixel) is a square of the form [n, n+1]×[k, k+1],
a 1-dimensional cube (edge) is a unit interval of the form [n, n] ×

[k, k+1] or [n, n+1]× [k, k], where n, k ∈ Z, and a 0-dimensional
cube (vertex) is a pointwith integer coordinates. A two dimensional
cubical complex CN is a collection of 0,1 and 2-dimensional cubes
that satisfy the following property: if σ ∈ CN and σ ′

⊂ σ , then
σ ′

∈ CN. This property guarantees that for every 2-dimensional
cube (edge) in CN its edges (vertices) belong to CN as well.

Definition 3.1. Given a digital image of particles {pi | i = 0, . . . , I}
the digital complexCND is the cubical complex consisting of squares
σj


where each square σj represents a single pixel associatedwith

some particle.

How pixels are associated with particles is intentionally left
vague in Definition 3.1. The actual association depends on the par-
ticular characteristics of the imaging device, filtering, thresholding,
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etc., used to obtain and process the data. Conceptually, the most
straightforward approach is to discretize the domain of the image
into squares, identify the squares with pixels, and declare the pixel
to represent a particle if the associated square intersects the parti-
cle. A cubical particle networkCND is shown in Fig. 1(c).Weprovide
more detail about the construction later.

Remark 3.2. In this paper we consider only two-dimensional ex-
amples. However, the same ideas can be applied to particles in R3

where the three dimensional images are represented as voxels. In
this case one builds a cubical complex by representing each voxel
as a unit cube of the integer lattice in R3 (see [26] for the general
theory).

In the case of particles with simple shape the contact network
of [15] or the unweighted (binary) network of [13] can be used to
represent the particles. We represent these networks in terms of
simplicial complexes which are defined as follows. We begin with
a finite set of verticesCN(0) := {vi | i = 0, . . . , I}. An n-dimensional
simplex in CN is a subset of CN(0) consisting of n + 1 vertices. The
set of n-dimensional simplices in CN is denoted by CN(n). Given the
set of vertices CN(0) := {vi | i = 0, . . . , I} it is customary to denote
the 0-dimensional simplices by ⟨vi⟩, the 1-dimensional simplices
by ⟨vi, vj⟩, and the 2-dimensional simplices by ⟨vi, vj, vk⟩. One and
two dimensional simplices are referred to as edges and triangles. A
simplicial complex CN is a collection of simplices that satisfies the
following property: if σ ∈ CN and σ ′

⊂ σ , then σ ′
∈ CN.

Definition 3.3. Given a collection of circular disks {pi | i = 0,
. . . , I}, location of their centers


xi ∈ R2

| i = 0, . . . , I

, and their

radii {ri | i = 0, . . . , I} the associated position complex CNP is the
simplicial complex consisting of vertices {vi | i = 0, . . . , I}, where
each vertex vi is identified with particle pi, and edges


vi, vj


if and

only if ∥xi − xj∥ ≤ ri + rj.

For the sake of clarity Definition 3.3 is presented in the context
of the examples considered in this paper. More generally, one can
consider spherical particles positioned inRd, d = 3 being themost
relevant for physical applications. As presented, the position com-
plex is an abstract simplicial complex; that is, there is no specific
geometric object associated with it. In the context of this work we
can always geometrize the complex by declaring the vertices to be
the points


xi ∈ R2

| i = 0, . . . , I

, and the edges to be the line seg-

ments connecting the points. From now on we rarely distinguish
between the abstract simplicial complex and its geometric realiza-
tion.

Having defined these complexes, a reasonable first question is
whether they correctly capture the topology of the particle con-
figuration. We begin with the following positive result under the
assumption that the particles cannot deform under the pressure
induced by contacts with other particles.

Proposition 3.4. Given a collection of circular hard disks {pi | i = 0,
. . . , I}, location of their centers


xi ∈ R2

| i = 0, . . . , I

, and their

radii {ri | i = 0, . . . , I} the associated position complex CNP is
homotopic to the union of the regions occupied by the particles,I

i=0 pi.

The proof follows from retracting the set of particles onto the
geometric realization of CNP (see for example Fig. 2). We do not
provide details of the proof because this result is of limited impor-
tance. In any experiment or numerical simulation the locations of
the particles can only be given up to some specified precision. If we
assume the particles to be hard, then two particles pi and pj are in
contact if and only if ∥xi − xj∥ = ri + rj. Clearly, arbitrarily small
errors in xi and xj can lead to an inequality which indicates that
the particles are not in contact. The same argument applies to ar-
bitrarily small errors in the measurements of the radii of the disks.
Assuming that the particles are soft makes this result slightlymore
Fig. 2. With complete information the position complex CNP has the same homo-
topy type as the configuration space of the particles ∪

I
i=0 pi . The proof involves col-

lapsing the particles onto graph.

robust, but this is tempered by the fact that this stability depends
on the existence of sufficiently large normal forces. We attempt to
quantify these comments in Section 8.2.

To measure the topological fidelity of the digital complex re-
quires the choice of a rule for determining if a pixel is included in
the complex or not. For the sake of clarity we continue with the
conceptually simple rule that the pixel belongs to the complex if
the associated square intersects some particle.

Fig. 3 shows the digital complexes associated with different
particle configurations. One can see that the failure of the digital
complex CND to correctly capture the topology of the particle con-
figuration can be quite dramatic. Even the simplest setting of two
particles with a high pixel resolutions does not guarantee a correct
topological description. Fig. 3(a) and (c) demonstrate that both the
number of connected components and loops can be counted incor-
rectly. Fig. 3(a) and (b) show that there is no particular direction to
the error in the loop count. The fact that the number of components
of the digital complex is never larger than that of the configuration
of particles arises from our assumption on how to identify pixels
with particles. In particular our approach leads to an artificial ex-
pansion of the area covered by each particle. Thus, two separate
particles can appear to be in contact, but two particles that are in
contact can never appear to be separated.

To keep things in perspective we remind the reader that even
though it is clear that the digital complex can fail to record the
correct topology in a variety of ways it is the easiest means of
collecting data and is applicable in situations where the forces
between the grains cannot be directly measured and without a
priori assumptions about the geometry and rigidity of the grains.

Consider the position network CNP for the particle conforma-
tion shown in Fig. 4(a), which we refer to as a crystalline structure
since the particles are packed as densely as possible. If we restrict
our definition of the position complexes to graphs (one dimen-
sional simplicial complexes), then CNP has nine loops all of which
involve three particles. This should be contrasted with Fig. 4(b) in
which there are only 4 loops, but three of them are associated with
particles that are not packed as densely as possible. Since in a per-
fect densely packed crystalline structure made up of disks of the
same size all loops would be made up of exactly 3 particles we re-
fer to a loop involving four or more particles as a defect. We use
this definition of a defect even for systems built from variable size
particles.

In this paper we have chosen to focus on defects, i.e. we want
to avoid counting loops that can be expressed in terms of three
particles. This can be done naturally using the flag complex, CNN

P ,
defined as follows. Set

CNN(0)
P := CN(0)P and CNN(1)

P := CN(1)P

and

⟨vi, vj, vk⟩ ∈ CNN(2)
P

if and only if
⟨vi, vj⟩, ⟨vi, vk⟩, ⟨vj, vk⟩


⊂ CN(1)P .

The newly added triangles ⟨vi, vj, vk⟩ exactly fill in the loops
formed by three particles, see Fig. 4(c).
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Fig. 3. Failure of the digital complex to correctly capture the topology of the particle configuration. (a) The particle configuration consists of two components and contains
no loops. The associate digital complex has one component and one loop. (b) The particle configuration contains one loop while the digital complex contains none. (c) The
particle configuration contains one component and no loops. The associate digital complex has one component and one loop. Furthermore, doubling the resolution does not
remove the unwanted loop.
Fig. 4. Two configuration spaces with position complexes CNP . (a) Crystalline structure with many loops formed by three particles. (b) Noncrystalline structure with fewer
loops than (a). (c) Flag complex CNN

P derived from (b). Observe that the only loops which remain are associated with defects.
It is worth noting that attempting an analogous construction
of a flag complex in the setting of cubical complexes that arise
fromdigital complexeswill notwork. A square can bemissing from
CND because of the phenomena indicated in Fig. 3(a) or (c), but it
can also be missing because it represents the loop formed by four
distinct particles.

As is discussed at the beginning of this section, the complexes
CND and CNP are introduced in order to be able to apply algebraic
topological tools to the characterize the geometric structures of
DGM. Unfortunately, these complexes are not necessarily robust
with respect to perturbations since arbitrarily small changes in the
locations of the particles can lead to the loss of cubes or edges
in CND or CNP , respectively. With this in mind we introduce the
following complex.

Definition 3.5. Given a collection of particles {pi | i = 0, . . . , I}
the interaction complex CNI is the simplicial complex consisting of
vertices {vi | i = 0, . . . , I} where each vertex vi is identified with
particle pi, all edges ⟨vi, vj⟩, and all triangles ⟨vi, vj, vk⟩.

The interaction complex itself does not have any meaningful
geometric interpretation. However, if the forces between the
grains are available, then we can make use CNI as the domain
for the force complex (see Section 6). This in turn allows us to
prove continuity for the persistence diagrams (Corollary 7.3). The
implications of continuity, or lack thereof in the case of CND and
CNP , is made clear in Section 8.2.

4. Homology

We pause in our development of the networks to review a
few fundamental definitions from the classical theory of homol-
ogy with a focus on the simple setting of the digital, position and
interaction complexes introduced in Section 3. For a more general
discussion the reader is referred to a standard text in algebraic
topology or to [21,26] for descriptionsmore closely associatedwith
the data analysis.

Recall that position complexes CNP and interaction complexes
CNI are simplicial complexes. This leads to our use of simplicial
homology. Recall that CN(n) denotes the set of n-dimensional sim-
plices in the simplicial complex CN. The n-chains of CN are defined
to be the vector space

Cn(CN) :=

 
σ∈CN(n)

mσσ | mσ ∈ Z2


. (1)

Since we are working with planar arrangements of particles it is
sufficient to use Z2 coefficients, i.e. the set {0, 1} with the stan-
dard binary addition and multiplication operations. Observe that
Cn(CN) is the vector space over Z2 with basis elements consisting
of the n-dimensional simplices.

The associated boundary maps are linear maps (these are often
represented as matrices using the simplices as bases) ∂n: Cn(CN)
→ Cn−1(CN) (C−1(CN) := 0) defined on the simplices as follows

∂0⟨vi⟩ := 0
∂1⟨vi, vj⟩ := ⟨vi⟩ + ⟨vj⟩

∂2⟨vi, vj, vk⟩ := ⟨vi, vj⟩ + ⟨vi, vk⟩ + ⟨vj, vk⟩.

A direct calculation making use of the linearity and the use of Z2
coefficients show that ∂n−1 ◦ ∂n = 0, e.g.

∂1 ◦ ∂2⟨vi, vj, vk⟩ = ∂1(⟨vi, vj⟩ + ⟨vi, vk⟩ + ⟨vj, vk⟩)

= ∂1⟨vi, vj⟩ + ∂1⟨vi, vk⟩ + ∂1⟨vj, vk⟩

= ⟨vi⟩ + ⟨vj⟩ + ⟨vi⟩ + ⟨vk⟩ + ⟨vj⟩ + ⟨vk⟩

= 0.

The boundary maps can be used to identify components and
loops. To do this we focus on cycles, these are chains which are sent
to the 0 vector under ∂n. More formally,

Zn(CN) := ker ∂n.

Observe that ⟨vi⟩ ∈ Z0(CN) and ⟨vi, vj⟩ + ⟨vi, vk⟩ + ⟨vj, vk⟩ ∈

Z1(CN).
The power of homology is that we are able to move from geo-

metric data to an algebraic format fromwhich we can then extract
geometric information. For example, the algebraic statement that
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Fig. 5. Three different 1-dimensional chains. Each of these chains corresponds to a
loop and hence is a cycle. The red chain c1 and the green chain c2 correspond to the
same loop in the particle network. The brown loop c3 does not correspond to any
loop and can be contracted to a point. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

⟨vi⟩ ∈ Z0(CN) can be interpreted as a statement that ⟨vi⟩ identifies
a component of CN. Similarly, ⟨vi, vj⟩+⟨vi, vk⟩+⟨vj, vk⟩ ∈ Z1(CN)
can be identified with the path of edges ⟨vi, vj⟩, ⟨vi, vk⟩, ⟨vj, vk⟩
that makes up a loop. To emphasize the relationship between the
algebra and geometry consider the simplicial complex indicated in
Fig. 5. There are three chains that form loops and hence cycles in-
dicated in red, green and brown.

For obvious reasons it is important not to over count compo-
nents or loops. In particular, if an edge ⟨vi, vj⟩ belongs to CN, then
⟨vi⟩ and ⟨vj⟩ belong to the same component and therefore we
wish to identify them. This can be done algebraically by the re-
lation ∂1⟨vi, vj⟩ = ⟨vi⟩ + ⟨vj⟩. Similarly, if a 2-dimensional sim-
plex ⟨vi, vj, vk⟩ ∈ CN, then the loop ⟨vi, vj⟩, ⟨vi, vk⟩, ⟨vj, vk⟩ does
not enclose a loop and thus should not be counted. Again, this can
be detected algebraically by the relation ∂2⟨vi, vj, vk⟩ = ⟨vi, vj⟩ +

⟨vi, vk⟩ + ⟨vj, vk⟩. Observe that the relations in these examples are
obtained via images of the boundary operator. This leads to the def-
inition of the boundaries of CN,

Bn(CN) := ∂n+1 (Cn+1(CN)) .

Referring to the complex depicted in Fig. 5 observe that there exists
c̄ such that ∂2c̄ = c1 + c2 which implies that the cycles c1 and c2
represent the same loop in the complex. Thismotivates the follow-
ing definition. The n-th homology group of the simplicial complex
CN is defined by

Hn(CN) :=
Zn(CN)
Bn(CN)

,

the vector space of equivalence classes of cycles identified by
boundaries. To be more specific given a cycle z ∈ Zn(CN) the as-
sociated homology class [z] = [z]CN is the equivalence class of all
cycles of the form z + bwhere b ∈ Bn(CN).

The dimension ofHn(CN) is called the n-th Betti number βn(CN).
β0(CN) counts the number of components and β1(CN) counts the
number of loops which encircle a void. If we were working with
DGM in three dimensions then β2(CN)would indicate the number
of cavities.

A fundamental property of homology is that if two topological
spaces are homotopic, then they have the same homology groups.
A corollary of this is that under the hypothesis of Proposition 3.4
the Betti numbers of CNP agree with the Betti numbers of the
space defined by ∪

I
i=0 pi. Since the hypotheses of this proposition

are rather strong, e.g. exact knowledge of locations and radii, in
general, given numerical or experimental data we do not expect
that these Betti numbers agree.

Recall that the interaction complex does not have a meaningful
geometric interpretation. In fact, independent of the number and
arrangement of the particles, the homology of CNI is very simple,

βn(CNI) ∼=


1 if n = 0
0 if n > 0. (2)
Thus the Betti numbers tell us that CNI has a single connected
component and does not have any loops that encircle a void.

We do not present the details of computing homology with cu-
bical complexes. Conceptually the ideas are the same, though the
boundary operators are slightly different. The interested reader is
referred to [26] for a complete presentation. Even more generally,
simplicial and cubical complexes are examples of chain complexes
and the individual simplices or cubes are examples of cells.

The reader may be somewhat underwhelmed by the fact that
we have constructed a significant amount of algebra to essentially
count components and loops, especially since there are extremely
efficient graph theoretic algorithms for performing these opera-
tions. However, the algebra allows us to relate components and
loops in different complexes. Recall that components and loops
are measured by elements of H0(CN) and H1(CN). Thus, given two
distinct chain complexes CN and CN′ we need to be able to re-
late homology classes ofHk(CN)with homology classes ofHk(CN′).
This is done via the following algebraic construction. Linear maps
φn: Cn(CN) → Cn(CN′) are chain maps if
∂ ′

nφn = φn−1∂n

for all n where ∂n and ∂ ′
n are the boundary maps for Cn(CN) and

Cn(CN′). A fundamental result is that if φn is a chain map, then φn
induces a linear map on homology φn:Hn(CN) → Hn(CN′) defined
by
φn([z]CN) := [φn(z)]CN′ .

As is made clear in Section 6 for the purposes of this paper it is suf-
ficient to note that if CN ⊂ CN′, then the inclusion map induces,
for each dimension, a chain map and hence a map on homology.

5. Force networks

As is indicated in the Introduction it is well accepted that the
geometry of force chains plays an important role in determining
the macroscopic properties of dense granular material. In this
section we expand on the complexes constructed in Section 3 to
include the forces between the particles into this mathematical
framework. In the present work we mainly focus on the normal
force, that is, the component of the force projected on the line
connecting the centers of interacting particles. We will view the
magnitude of the normal force as a scalar field defined over the
complex, i.e., a function f :CN → R. There is one constraint on the
definition of f that arises from the use of persistent homology to
capture the geometry of the force chains.

To understand this constraint assume for the moment that we
are given a complex CN and a scalar field f :CN → R. Since for
particulate systems one often considers particles interacting by
strong/weak forces, we are interested in the geometry of a part of
the complex on which the forces exceed a specified level. Thus we
define a force network to be the super level set
FN(f , θ) := {σ ∈ CN | f (σ ) ≥ θ} (3)
which corresponds to the part of the particle network experiencing
force larger than θ . We use homology to quantify the geometry of
FN(f , θ). Hence FN(f , θ) has to be a complex for every value of θ .
This means that if σ ∈ FN(f , θ) and σ ′

⊂ σ , then σ ′
∈ FN(f , θ).

Thus, in our construction of f we need to insure that this condition
is satisfied. This leads to the following definition.

Definition 5.1. Given a complex CN, a function f :CN → R is
algebraically monotone if f (σ ′) ≥ f (σ ) for every σ ′, σ ∈ CN such
that σ ′

⊂ σ .

It is left to the reader to check that if f is algebraically monotone,
then FN(f , θ) is a complex for every value of θ .

Definition 5.2. Given a complex CN and an algebraically mono-
tone function f :CN → R, the associated force network filtration
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Fig. 6. A representation of a simple interaction network FNI . (a) Vertices represent the particles and the edges correspond to the non zero force between the particles. An
increasing value of the force is denoted by blue, cyan, green, and red. (b) Collection of simplices on which the function CNI : f → R is positive. Extension of the function f to
the vertices (c) and to the 2-dimensional simplices (d). (e)–(h) The complexes FN(f , θi) for positive θ equal to θ4 (red), θ3 (green), θ2 (cyan) and θ1 (blue), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
is the collection of all force network complexes

{FN(f , θ) | θ ∈ R} .

The construction of f :CN → R depends on the available infor-
mation. Theweaker assumption,whichwe associatewith digital or
position complexes, is that for each particle pi we can estimate the
magnitude of the force ψi on pi. The stronger assumption, which
leads to the use of an interaction complex, is that we can estimate
the magnitude of the force ψi,j between any two particles pi and
pj. The function f is defined in two steps. First we define f for cells
of a certain dimension depending on the type of complex. Then we
uniquely extend the definition to all the cells. The construction of
the extension guarantees that f is an algebraically monotone func-
tion.
Digital force networks. Recall that a 2-dimensional cube σ ∈ CN(2)D
if it intersects at least one particle pi. We define

f (σ ) = max {ψi | σ ∩ pi ≠ ∅}

for σ ∈ CN(2)D .

Position force networks. For each ⟨vi⟩ ∈ CN(0)P corresponding to the
particle pi we define

f (⟨vi⟩) := ψi.

Interaction force networks. For the interaction network CNI the
natural starting point for the definition of f is on the edges ⟨vi, vj⟩ ∈

CN(1)I ,

f (⟨vi, vj⟩) := ψi,j.

For a complex CN•, • ∈ {P, I} we extend the definition of the
function f from CN(i)

•
to the cells σ ∈ CN(j)

•
for j < i by

f (σ ) = max

f (σ ′) | σ ⊂ σ ′, σ ′

∈ CN(i)
•


.

Extension to cells σ ∈ CN(j)
•

for j > i and • ∈ {P, I} is defined by

f (σ ) = min

f (σ ′) | σ ′

⊂ σ , σ ′
∈ CN(i)

•


.

We use the following proposition to summarize the above
discussion and constructions.
Proposition 5.3. Given a complex CN•, • ∈ {D, P, I} and f defined
as above, the associated super level set FN•(f , θ) is a complex for all
values of θ ∈ R.

Since we are assuming that there is only a finite number of
particles in our system, any force network filtration {FN•(f , θ) |

θ ∈ R} contains only finitely many distinct complexes. We can use
homology, in particular the Betti numbers, to characterize the ge-
ometry of each of the distinct force networks in the force network
filtration.

To gain intuition into the force networks consider the interac-
tion force network indicated in Fig. 6. Fig. 6(a) represents a collec-
tion of particles. The particles are represented by the vertices and
the shown edges correspond to the non-zero forces between the
particles. Fig. 6(b) shows only the simplices of CNI for which the
value of the function f : CNI → R is positive. The value of f on the
edges is determined by the forces between the particles. In Fig. 6(a)
the non-zero forces are color coded. In order of increasing value,
the force is denoted by θ1 (blue), θ2 (cyan), θ3 (green) and θ4 (red).
The value of the function f is extended to the vertices in Fig. 6(c)
and to the 2-dimensional simplices in Fig. 6(d). Fig. 6(e)–(h) indi-
cate the associated force network for non negative values of θ . For
θ ≤ 0 the complex FNI(f , θ) = CNI , and as explained in Section 4,
it consists of a single connected component that does not encircle
any loops.

For example, referring to the force network filtration of Fig. 6
we can extract the following data:

(β0(FNI(f , θ4)), β1(FNI(f , θ4))) = (4, 0)
(β0(FNI(f , θ3)), β1(FNI(f , θ3))) = (4, 1)
(β0(FNI(f , θ2)), β1(FNI(f , θ2))) = (1, 3)
(β0(FNI(f , θ1)), β1(FNI(f , θ1))) = (1, 4).

It is worth noting that the H0 homology information for FNI(f , θ4)
and FNI(f , θ3) agree and yet the structure of the components
has changed dramatically. Two distinct connected components
becomeone and a new connected component is formed. To capture
this information we make use of the fact that these complexes
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Fig. 7. (a) A linear chain of particles is shown on the horizontal axis. Magnitude of the normal force between the adjacent particles is given by the value of the step function
above the edge connecting the particles’ centers. (b) Structure of FNI (f , θ) for different values of θ . For example, FNI (f , θ5) consist of a single connected component formed
by one edge and two vertices. The set FNI (f , θ3) contains three distinct connected components corresponding to the different geometric features indicated by the double
arrows. (c) β0 persistence diagram for the interaction force network of the system shown in (a). The color of the points matches the color of the features they represent. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
are nested by inclusion. This leads to the concept of persistent
homology.

6. Persistent homology

Given a force network filtration

FN(f , θ) := {σ ∈ CN | f (σ ) ≥ θ}

generated by a finite number of particles, there is a finite number
of values

0 = θ0 < θ1 < · · · < θK = max
σ∈CN

f (σ )

such that θk = f (σ ) for some σ ∈ CN. Though the Betti numbers
characterize the topology of a given force network FN(f , θk), the
vector space structure of homology plays an essential role in that
it allows us to compare the topology of FN(f , θk) with any other
force network FN(f , θj). Given θi < θj, FN(f , θj) ⊂ FN(f , θi) and
hence there is an inclusion map

ιθi,θj : FN(f , θj) → FN(f , θi).

As is indicated at the end of Section 4, this defines maps

ιθi,θj ∗:H∗(FN(f , θj)) → H∗(FN(f , θi))

on each homology groupH∗. It is important to note that ιθ1,θ2 ∗ need
not be an inclusion map on the level of the homology groups.

Persistent homology makes use of the above mentioned maps
to compare topological features within different force networks.
The first observation, while trivial, is essential for our discussion
and follows directly from the fact that FN(f , θ) = ∅ for all θ > θK .

Lemma 6.1. If θ > θK , then H∗(FN(f , θ)) = 0.

Now consider a value θk such that v ∈ Hn(FN(f , θk)) and let
v ≠ 0. If n = 0 or 1, then v provides information about the
existence of components or loops, respectively, in FN(f , θk). In light
of Lemma 6.1, there exists a unique largest threshold θb(v) ≥ θk
with the property that there exists vb ∈ Hn(FN(f , θb)) such that
ιθk,θb ∗(vb) = v. The geometric feature associated with v is said to
have been born at level θb(v).

It is also possible that for some θ < θk, ιθ,θk ∗(v) = 0. In this
case we define

θd(v) := max

θj | ιθj,θk ∗(v) = 0


andwe say that the geometric feature associatedwith v dies at level
θd(v). Given our construction, not every geometric feature needs to
die. In particular, for n = 0, 1,

Hn(FN(f , 0)) ∼= Hn(CN)

which, as the examples in this paper indicate, need not be trivial
for digital and position complexes. We make use of the following
convention

if ι0,θk ∗(v) ≠ 0, then θd(v) = −1.
A remarkable fact [20,21] is that given a finite filtration it is
possible to choose a consistent set of bases for Hn(FN(f , θk)), k =

−1, . . . , K such that each basis element has a well defined birth
and death levels (θb, θd). By Eq. (2), if v ∈ H1(FNI(f , θk)), then
θd(v) ≥ 0 and there exists a unique element v̄ ∈ H0(FNI(f , θk))
such that (θb(v), θd(v̄)) = (θK ,−1).

The collection of all pairs (θb, θd) associated with the n-th ho-
mology group for the force networks are used to construct the βn
persistence diagram for the scalar field f :CN → [0,∞). To pro-
vide some intuition concerning the process of going from an in-
teraction network CNI to a persistence diagram, consider a single
chain of particles shown along the horizontal axis in Fig. 7(a). If two
particles are not in contact, then the force acting between them is
zero. Stated more formally, for any edge ⟨vi, vj⟩ ∈ CNI if the parti-
cles corresponding to the vertices vi and vj are not in contact, then
f (⟨vi, vj⟩) = 0. Otherwise f (⟨vi, vj⟩) is defined by a step function
such as that shown in Fig. 7(a). The extension of f to the vertex ⟨vi⟩
is obtained via the definition in Section 5 and given by the black
dot above the center of the particle corresponding to ⟨vi⟩. Note
that f (⟨vi, vj, vk⟩) is always zero. Fig. 7(b) shows the sets FNI(f , θ)
for different values of θ . The set FNI(f , θ) = ∅ for θ > θ5 and
FNI(f , θ5) consist of a single connected component formed by one
edge and two vertices. Finally for θ ≤ 0 the set FNI(f , θ) = CNI
has a single connected component. The β0 persistence diagram for
the interaction force network is shown in Fig. 7(c).

We now explain what can be inferred about the interaction
force network from the β0 persistence diagram shown in Fig. 7(c).
The fact that there are no points with birth coordinate larger than
θ5 indicates the absence of components experiencing force larger
than θ5. The set FNI(f , θ5) consists of a single connected com-
ponent. Another connected component appears at θ4. These two
componentsmerge together at θ1. In the language of persistent ho-
mology the connected component is born at θ4 and dies at θ1 as
indicated by the point (θ4, θ1) in the persistence diagram. The con-
nected component that appears at θ5 persists for all values θ ≤ θ5.
In the persistence diagram it is represented by the point (θ5,−1).
There is one more geometric feature of the function f described
by the point (θ3, θ2). This geometric feature corresponds to a pair
consisting of a local maximawith value θ3 and a local minimawith
value θ2. This pair is visualized by the shortest double arrow in
Fig. 7. Also the point (θ4, θ1) corresponds to a pair consisting of a
local maxima and minima. The special point (θ5,−1) encodes the
value of the global maxima.

We now return to the example of the interaction force network
associated with Fig. 6 of Section 5. This network is more complex
than the one analyzed above. Not surprisingly the persistence di-
agrams for this network, shown in Fig. 8, contain more points. For
the same reason as before, theβ0 persistence diagram, see Fig. 8(a),
does not contain any points with the birth coordinate larger than
θ4. Four points with the birth coordinate θ4 correspond to the four
connected components that appear in FNI(f , θ4) (Fig. 6(e)). The
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Fig. 8. (a) β0 and (b) β1 persistence diagrams for the force network shown in Fig. 6(c).
death coordinates of the points differ. This indicates that the com-
ponents merge for different values of θ . The first merging appears
for θ3 (Fig. 6(f)) and is represented by the dot (θ4, θ3). Moreover a
new component appeared at the level θ3 and consequentlymerged
with a preexisting component at θ2 (Fig. 6(g)) as indicated by the
dot (θ3, θ2). Also another two components that appear at θ4 disap-
pear at θ3 hence there are two copies of the point (θ4, θ2). Finally
there is only one connected component for all θ < θ2. This compo-
nent appears for θ = θ4 and does not disappear. In the persistence
diagram it is represented by (θ4,−1).

The fact that the interaction force network contains loops can
be inferred from the β1 persistence diagram. The first loop appears
at θ3 (Fig. 6(f)) and is filled by triangular cells at θ2 (Fig. 6(g)) as
shown by the point (θ3, θ2) in Fig. 8(b). Another three loops appear
at θ2 and persist for all positive thresholds. Due to the definition of
FNI(f , θ) all the loops are filled in for θ = 0. So these three loops
are represented by three copies of the point (θ2, 0). The last loop
appears at θ1 (Fig. 6(h)) and also persists for all positive thresholds
hence the point (θ1, 0) belongs to the β1 persistence diagram.

In general for the β0 diagram a birth level θb(v) corresponds
to the value of a local maximum that is associated with the
birth of a connected component measured by an element v ∈

H0(FNI(f , θb)). As θ decreases this component grows until itmeets,
at a point associatedwith a localminimumor saddle, another com-
ponent. Assume this other component is measured by the homol-
ogy class v′ and that the value of the local minimum (or saddle)
is θ . If θb(v) < θb(v

′), then θd(v) = θ . In this case, θb(v) − θd(v)
measures the difference in height between the localmaximumand
local minimum and hence this difference can be used as a measure
of how robust a feature is.

For the β1 diagram a birth level θb(v) of the loop corresponding
to an element v ∈0(FNI(f , θb)) is the smallest value of f along this
loop. If the loop is filled in by particles forming a crystalline zone,
then θd(v) is the smallest value of f inside the region encompassed
by the loop. If the interior of the loop is not completely filled in by a
crystalline structure, then there must be a defect encircled by this
loop. So the loop cannot be filled in with the triangles. Therefore,
if we use a digital or position force network, then the loop never
dies and θd(v) = −1. For the interaction network all the loops are
filled in at θ = 0 and θd(v) = 0.

We close this sectionwith a formal definition of the persistence
diagrams.

Definition 6.2. LetΘ = {θk | k = −1, . . . , K} and

{FN(f , θk) | θk ∈ Θ}

be a force network filtration over a complex CN. The associated
n-th persistence diagram PDn(f ,CN,Θ) is the multiset consisting
of the following points:
1. one point for each n-th persistence point (θb, θd);
2. infinitely many copies of points (θ, θ) on the diagonal.

Condition (1) of Definition 6.2 arises because distinct geometric
features can appear and disappear at the same thresholds and thus
there may be multiple copies of the same persistence pair. The
necessity of condition (2) is made clear in Section 7.

We conclude this section with an observation. Let PDn denote
the set of all n-th persistence diagrams and PD the set of all per-
sistence diagrams. Given a chain complex CN, let M(CN, [0,∞))
denote the set of monotone maps on CN. We can view persistence
diagrams as a function
PD:M(CN,R) → PD (4)
or equivalently a collection of functions PDn:M(CN,R) → PDn
defined by
PDn(f ) = PDn(f ,CN,Θ)
whereΘ = {θk | k = −1, . . . , K} consists of the finite set of values
obtained by f alongwith the convention that θ−1 = −1 and θ0 = 0.

7. The space of persistence diagrams

The results concerning topological fidelity of the complexesCN•

have, up to this point, been mostly negative. The introduction of
persistence allows us to present positive results. In and of itself
this suggests that the force network filtrations and their associ-
ated persistent homology provide more appropriate metrics for
understanding force networks than the measurements performed
at single thresholds. To obtain continuity results that guarantee
that small changes in the measurement of the forces in the DGM
lead to small changes in the persistence diagrams requires us to be
able to measure the distance between persistence diagrams.

Definition 7.1. Let PD = {PDi}
n
i=0 and PD′

= {PD′

i}
n
i=0 be two col-

lections of persistence diagrams. The bottleneck distance between
PD and PD′ is defined to be

dB(PD, PD′) = max
0≤i≤n

inf
γ :PDi→PD′

i

sup
p∈PDi

∥p − γ (p)∥∞,

where ∥(a0, b0) − (a1, b1)∥∞ := max {|a0 − a1|, |b0 − b1|} and γ
ranges over all bijections. Similarly, the degree-q Wasserstein dis-
tance is defined as

dWq(PD, PD′) =


n

i=0

inf
γ :PDn→PD′

n


p∈PDn

∥p − γ (p)∥q
∞

1/q

.

As is indicated in [21], equipped with either the bottleneck or
degree-qWasserstein distancePD is ametric space. From now on
we always assume PD is one of these metric spaces.
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Fig. 9. (a) Two functions. Dashed (blue) represents a noisy perturbation of solid (red). (b) Associated persistence diagrams along with matching of persistence points
satisfying the definition of bottleneck distance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. An arbitrarily small change in positions can lead to an order one change in the bottleneck distance. Six particles with the magnitude of the force field indicated.
Thick edges have force value 2, thin edges have force value 1. (a) Because of configuration of particles we see two loops. One loop appears at θ = 2, the second loop appears
at θ = 1. (b) A perturbation of the configuration in (a) but the forces on the particles do not change. Only one loop appears at θ = 1. (c) β1 persistence diagrams. The stars
at (1,−1) and (2,−1) correspond to the persistence points for (a) and the dot at (1,−1) is the single persistence point for (b).
Fig. 9 shows two functions and their persistence diagrams. The
function g is a small perturbation of f . The ability to match points
in persistence diagrams with points on the diagonal, as shown in
Fig. 9(b), suggests that small perturbations lead to small distances
betweenpersistence diagrams. In fact, it is proven in [21] that given
a complex CN and two monotone functions f , g:CN → R the
bottleneck distance satisfies

dB(PD(f ), PD(g)) ≤ sup
x∈X

|f (x)− g(x)|. (5)

A similar result holds for the degree-q Wasserstein distance
[21, Section VIII.3]. A more formal statement is as follows.

Theorem 7.2. Given a complex CN let M(CN,R) denote the set of
monotone functions on CN equipped with the sup norm ∥ · ∥∞. Then

PD:M(CN, [0,∞)) → PD

defined by (4) is a Lipschitz continuous map.

Corollary 7.3. The map PD:M(CNI , [0,∞)) → PD is Lipschitz
continuous.

Corollary 7.3 implies that a small change in the forces, either
through perturbation of the system or experimental error, results
in a small change in the associated persistence diagrams. This is the
long promised stability result. The failure of CNN

P and CND to be sta-
ble with respect to perturbations follows from the fact that small
changes of particle positions can result in changes of the underly-
ing complex and thus Theorem7.2 is not applicable. Fig. 10 demon-
strates that it is possible, using CNN

P , for an arbitrarily small change
in the position of the particles to lead to an order one change in the
bottleneck distance.
8. Application of persistent homology to the results of discrete
element simulations

Thediscussions of the previous sections provide amathematical
framework for studying force networks associated with DGM.
In this section we apply these concepts to simulated data. We
begin with a brief review of the numerical simulations and the
computational tools employed in Section 8.1. We then analyze
persistent homology on a variety of levels. First, in Section 8.2,
we consider the stability of the persistence diagrams obtained
from the digital, position, or interaction networks with respect
to the numerical error. Then, in Section 8.3 we discuss how the
results depend on the choice of complex used, and therefore on
the quality of input data. Section 8.4 presents few examples that
outline how the information contained in individual persistence
diagrams can be related to physically observable properties of the
DGM network considered. We note that while the focus of our
discussion is on the networks defined using normal force between
the particles, we also briefly discuss persistence diagrams obtained
using tangential forces (in frictional systems). Finally, in Section 8.5
we briefly illustrate the application of the concept of distance
between persistence diagrams to DGM networks.

8.1. Simulations used

We perform a series of discrete element simulations (DES) sim-
ilar to our previous works [18,19]. For the present paper, we con-
sider a set of about 2000 circular particles contained in a square
domain with rough walls composed of monodisperse particles.
The system is slowly compressed allowing for a change of pack-
ing fraction, ρ, between 0.6 and 0.9. Initially the particles are given
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random velocities and are placed on a square lattice. The equations
of motion are integrated using a fourth order predictor–corrector
scheme.We implement the Cundall–Strackmodel for static friction
which includes normal and tangential forces at the contact [27]. For
frictionless system, the contact force reduces to anormal forcewith
a spring and viscous damping term. In general, we use polydisperse
particles where the particle sizes are chosen from a uniform distri-
bution with width rp = (rmax − rmin)/rave, where rave is the mean
particle radius. The coefficient of restitutionmeasuring energy loss
is given the value of en = 0.5, and the coefficient of static friction is
either µ = 0.5 for the frictional case, or µ = 0 for the frictionless
one. See [18,19] for more details.

We focus on a system of particles with ρ ≈ 0.86, except if spec-
ified differently. This ρ is beyond ρc , at which jamming transition
occurs. (Note that the rp = 0, µ = 0 system has the highest ρc ,
which is under the implemented protocol, and for the considered
realization at ρ ≈ 0.85. More extensive discussion of transition
through jamming, as well as averaged (over initial conditions) val-
ues for ρc , are given in [19].) Therefore, the particles are packed
close enough so that most of the particles belong to the same con-
nected component of the position network CNP .

For the ρ’s of interest, we extract the magnitude ψi,j of the
normal force between any two particles pi and pj. The values ψi,j
completely determine the interaction network FNI . To construct
FNP and FND the positions of the particles need to be extracted
as well. The value ψi assigned to the particle pi is the total force
experienced by this particle, i.e.,

ψi :=



j|⟨i,j⟩∈CN(1)P

ψi,j =


j

ψi,j.

For consistency with our previous works [18,19], we normalize
the function f :CN → R, defined in Section 5, by dividing it by
the average force f̂ defined as follows: for the interaction force
network

f̂I =
1
M

N
i,j=1

ψi,j, (6)

and for the position and digital force networks

f̂P =
1
N

N
i=1

ψi =
1
N

N
i,j=1

ψi,j, (7)

whereM is the number of non zero force interactions,ψi,j, andN is
the number of particles. Note that the average number of contacts
is Z = M/N and hence

f̂P = Z f̂I . (8)

We have produced open source software [24] that is used to
encode this procedure and produce a force networks filtration
{FN(f , θk) | θk ∈ Θ}. The persistent homology of each filtration is
computed using the open source software Perseus [28,25].Wenote
that the size of the digital complex,CND, is considerably larger than
the size of the position or interaction complexes, implying that the
computational cost of analyzing CND ismuch larger aswell. To give
a sense of the time needed to perform the types of computations
we remark that using a 2.53 GHz processor to compute the per-
sistence diagrams for the position, digital, and interaction force
network required 25, 97, and 43 s, respectively. The worse case
complexity of computing the bottleneck distance between the per-
sistence diagrams PD1 and PD2 is O((n1 + n2)

2) where ni is the
number of generators in PDi. For theWasserstein distance the com-
plexity is even higherO((n1+n2)

3). Therefore the time required for
computing the distances strongly depends on the number of gener-
ators in the persistence diagrams. In practice the number of gener-
ators is rather small for CNI and CNP . In our case there are typically
a few hundred persistence generators. Thus both distances can be
computed in a couple of seconds. However the digital networks
contain a large amount of artificial loops shown in Fig. 3(a) and (c)
(this number typically increases with the resolution) and the run-
times are much longer. For the resolution 1000 × 1000 runtime
required to compute the bottleneck distance is 10 min and for the
resolution 2000×2000 it is 30min. Finally we needed threeweeks
to compute the Wasserstein distance between two persistence di-
agrams for digital networks with the resolution 1000 × 1000. We
stopped computation of this distance for the digital network with
higher resolution after it had not terminate within three weeks.

8.2. Stability of persistence diagrams

Fig. 11 shows the three networks for rp = 0, µ = 0 system. The
associated persistence diagrams are depicted in Fig. 12. We will
discuss some features of these networks and diagrams in what fol-
lows; to startwith,we ask the following question: how stable is the
information contained in the persistence diagrams with respect to
an error in the input data?

The numerical simulations and the extraction of particle posi-
tions and normal forces are done using double precision floating
point numerics. We then compute dB and dW1 distances between
the original and perturbed persistence diagrams. The results are
given in Table 1. The relatively small values associated with the in-
teraction network are predicted by Corollary 7.3. The fact that the
values for dW1 are significantly larger than dB for each type of net-
work is not surprising since dB distancemeasures the single largest
change in the network while dW1 is sensitive to all local perturba-
tions that may be occurring.

Behavior of the position network with respect to small per-
turbations lacks the stability of the interaction network. A mea-
surement error at the third decimal place radically changes the
network, with the dB distance three orders of magnitude larger
than the error introduced. This large difference is caused by the
phenomena shown in Fig. 10. To show this, note that dW1 is sev-
eral orders of magnitude larger than dB, implying that there must
be many locations in the network at which the local maxima and
minima of the forces change due to introduced error.

We have no theoretical results that explain the relative differ-
ences in perturbations of distances between the persistence dia-
grams associated with the position and the digital force networks.
The digital force network was constructed using resolutions of
1000 × 1000 and 2000 × 2000 pixels. Given the size of the do-
main, each pixel in 1000×1000 case represents a measurement to
approximately three significant figures. We hypothesize that this
explains the relatively small (as compared with the position net-
work) dB distance. The dW1 distance for truncated data is larger for
the digital (1000) force network than for the position network. This
seems to be connected to a significant drop in the number of β1
generators corresponding to the artificial loops (see Fig. 3) in the
perturbed digital (1000) force network. The original network con-
tains 6344β1 generatorswhile the network obtained by truncation
to three significant digits only 4487. In contrast, the difference be-
tween the number of generators for the position networks is 340.
Thus the difference is much smaller and so is the dW1 distance.

The sensitivity of digital complexes to small perturbations
demonstrated in Fig. 3 suggests that the larger distance value for
the 2000 × 2000 digital complex with truncation at three signif-
icant digits should not come as a surprise. The different distance
values for different digital complexes raises another issue; how
sensitive is the persistence diagram to the resolution of the dig-
ital network? We consider this issue using the system shown in
Fig. 11. Computing with the original numerical data at a resolution
of 2000 × 2000 pixels, we find that the β0 persistence diagrams
for the digital networks are almost identical. Comparison of the β1
persistence diagrams reveals that the number of loops is around
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Fig. 11. Different force networks formonodisperse, rp = 0, frictionless,µ = 0, system at the packing fraction, ρ = 0.86. (a) Digital force network, (b) position force network
and (c) non zero simplices of the interaction force network.
Table 1
The distance between the persistence diagram of original networks shown in Fig. 12, and the persistence diagram after truncation of numerical data to 2 or 3 significant
digits. The bottleneck distance dB measures the single largest difference between the persistence diagrams while the Wasserstein dW1 distance is a sum of all differences
between the diagrams (see Definition 7.1). Computation of dW1 for the digital (2000) network did not terminate within three weeks using 2.53 GHz processor.

Metric Truncation Network type
Interaction Position Digital (1000) Digital (2000)

dB 3 0.0004 2.6151 1.2946 2.3339
2 0.0035 2.6387 3.4672 3.4672

dW1 3 0.1806 439.01 659.4 –
2 1.8447 689.79 2226.1 –
30% larger for the higher resolution. We have verified that this in-
crease is caused by the formation of extra loops at the placeswhere
the particles are close to each other; essentially the phenomenon
indicated in Fig. 3(a).

8.3. Force networks as a function of complex type

Figs. 11 and 12 demonstrate that the digital, position and inter-
action force networks of a single system of particles can be quite
different. The idea behind the construction of the digital and po-
sition force networks is the same, the difference arises from the
fact that they are based on different complexes that provide dif-
ferent approximations of the geometry of the system of particles.
Thus, to focus on the essential differences we mostly restrict our
discussion to a comparison of the position and interaction force
networks. Fig. 13 provides an enlarged view for three different sub-
regions of the position and interaction force networks of Fig. 11(b)
and (c). The position force network is defined in terms of the ver-
tices and thus the corresponding figures include the magnitude of
the force there. The vertices are not highlighted in the interaction
force network since the value of the force on the edges is used to
define the values on the vertices.

Fig. 13(a) and (b) are typical of a region in which we see crys-
talline structure or equivalently a region over which there are no
defects. Observe that in this crystalline region the normal forces
for the position force network are significantly larger than those
of the interaction force network. This has to do with large number
of contacts (6), so the sum of the forces on each particle is high.
Note that the forces are rather uniform in the crystalline zone and
ψi ≈ 6maxj


ψi,j


. Let fI and fP denote the forces in the interaction

and particle force networks, respectively. Then

fI(i) =

max
j


ψi,j


f̂I

=

Z max
j


ψi,j


f̂P

≈
Zψi

6f̂P
=

Z
6
fP(i).

Except for the perfect crystal the value of Z is less than 6. For the
network shown in Fig. 11 we computed that Z ≈ 3. Therefore
fI(i) ≈

1
2 fP(i).

We now consider a part of the domain where we find sets of
particles interacting by large forces, resembling a ‘force chain’.
In this case, as can be seen along the orange chain in Fig. 13(d),
the position force network tends to report a lower magnitude of
force than the interaction force network, compare with the red
chain in Fig. 13(c). Observe that along the red chain of particles in
Fig. 13(c) each particle typically has contact with 2 or 3 other par-
ticles. Therefore ψi ≤ Z maxj


ψi,j


. By Eq. (8) and the inequalities

stated in this paragraph we obtain

fI(i) =

max
j


ψi,j


f̂I

=

Z max
j


ψi,j


f̂P

≥
ψi

f̂P
= fP(i).

An added effect is that a single continuous chain of strong force
interactions in the interaction force network is reported to be
a collection of shorter chains in the position force network (see
Fig. 13(e) and (f)). An immediate consequence is that we expect to
see more points with relatively large birth values in the β0 persis-
tence diagram of the position force network than in the β0 persis-
tence diagram of the interaction force network. This is confirmed
by counting the number of points in the β0 persistence diagrams
of Fig. 12(b) and (c) with birth value greater than a given value.

Fig. 13(e) and (f) demonstrate another important difference
between the position and interaction force networks. In Fig. 13(f)
there is a strong branching chain that forms a (red) loop. The values
at the edges forming the loop are stronger in the position force
network. For the interaction force network, value at the edge next
to the crystalline region is small. A larger value in the position force
network is caused by the presence of particles in the crystalline
region. This difference implies that loops are formed at lower
force levels in the interaction force networks as compared to the
position force networkswhich, in turn, implies that there should be
fewer points with relatively large birth values in the β1 persistence
diagram of the interaction force network as compared to the
position force network. This is corroborated by Fig. 12(b) and (c).

In the rest of this paper we use the following convention. If the
feature persists until the zero threshold then we set the death co-
ordinate to minus one. This only impacts the persistence diagram
for the interaction force network, allowing for simple visual iden-
tification of the defects. This convention is solely for visualization
proposes and is not used for distance computations.
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Fig. 12. Persistence diagrams for rp = 0, µ = 0 system at ρ = 0.86 shown in Fig. 11. Persistence diagrams for (a) digital force network based on 1000 × 1000 pixels, (b)
position force network, and (c) non zero simplices of the interaction force network.
Another striking difference between the position and the inter-
action force networks is that in the β1 persistence diagram of the
position force network the death value for all points is−1, i.e., once
a loop is formed it never dies. This is not the case for the β1 persis-
tence diagram of the interaction network. There is no reason that
loops in the position force network cannot die, but a possible ex-
planation is as follows. The death of loops is associatedwith the ap-
pearance of 2-simplices (triangles) that is indicative of crystalline
structure. Consider a single 2-simplex ⟨vi, vj, vk⟩ and assume that

f (⟨vi⟩) > f (⟨vj⟩) > f (⟨vk⟩).
Given the definition of the position force network, the vertex ⟨vi⟩
appears first, followed by the vertex ⟨vj⟩ and the edge ⟨vi, vj⟩.
Finally, the vertex ⟨vk⟩, the edges ⟨vi, vk⟩ and ⟨vj, vk⟩ and the
2-simplex ⟨vi, vj, vk⟩ are all included at the same step. Thus there is
no opportunity for a loop consisting of three edges to be generated.
A similar argument can be made for the interaction network and
hence loops that appear in the persistence diagrams must involve
multiple edges. If we think of this sequence of edges as a ‘force
chain’, then the previous argument suggests that for the position
force network this chain is more likely to contain edges of lower
magnitude than in the interaction force network. At the same time,
we have observed that in crystalline regions the force magnitudes
at the particles are larger in the position than in the interaction
force network. These two observations suggest that in the position
force network it is difficult to construct a loop in a crystalline re-
gion that surrounds vertices with lower forces.
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Fig. 13. Enlarged views, using the same color scheme, of three different subregions of the interaction (a), (c), (e) and position (b), (d), (f) force networks of Fig. 11(b) and (c).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Let us now consider briefly the digital force networks. Though
not obvious from Fig. 12 the β0 persistence diagrams indicate that
the digital force network have less points than those for the po-
sition or interaction network. This is due to the fact that, as is
discussed in Section 3, our construction of the digital network ar-
tificially inflates area associated with each particle and hence it is
possible for distinct components in the position or interaction force
network to form a single component in the digital force network.
This effect is particularly relevant in the context of rattlers, the par-
ticles that do not experience any force. In contrast, the number of
persistence generators inβ1 persistence diagrams is larger for digi-
tal force networks due to the formation of the artificial loops, again
as described in Section 3.

In this sectionwe have shown that the information that is avail-
able about a granular system influences the detected properties of
the force networks. The interaction force networks, that are based
on the information about the forces between the interacting par-
ticles, provide most precise and reliable information and we con-
centrate on these networks from now on.

8.4. Comparison of different systems via persistence diagrams

The most direct means of applying persistence diagrams is to
use them to distinguish and/or interpret the global force structures
of DGM composed of particles characterized by different physical
properties. This approach was followed in our recent work [19],
where we considered the number of generators in different parts
of the persistence diagrams as the systems that differed by their
physical properties were compressed. Here we describe how
persistence diagrams can be used to extract a significant amount
of information about interaction force networks by considering
only two snapshots, at ρ = 0.86, of the following two systems:
a monodisperse frictionless (rp = 0, µ = 0) and a polydisperse
frictional (rp = 0.4, µ = 0.5) system. We already know that
these two systems behave differently under compression [19], and
we use persistence diagrams to illustrate these differences. The
reader should note that the focus here is on the illustration of the
technique and on the interpretation of a limited set of results:more
general (although less detailed) discussion that concentrates on
the physical interpretation can be found in [19]. In particular, note
that the jamming points for these two systems differ, so that by
considering the same ρ, we consider two systems which are at
different distances from the jamming transition.

We begin by assigning physical meaning to the location of
persistence points in the persistence diagrams. Fig. 14 shows a
persistence diagram divided into five regions. With the exception
of the region labeled defects, the location of the division lines is
intended to be either system specific or conceptual.

Roughness. The geometric features corresponding to the points
in the region labeled roughness persist only over a small range of
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Fig. 14. Persistence diagram divided into regions. Explanation of the regions is
provided in the text.

force values. For instance the point (θ3, θ2) in the β0 persistence
diagram shown in Fig. 7 corresponds to a feature that persists over
a relatively short range compared with the other features in the
same figure. There are at least two different interpretations of the
points in the β0 persistence diagram that lie in this region. The first
is to treat these points as noise, i.e. a byproduct of the imperfect
measurements of the normal forces between the particles. While
this may be appropriate for many experimental settings, the data
represented in Figs. 11, 12 and 15 come from simulations, and
the errors are small. This fact leads to the second interpretation,
which we adopt, that this region of the persistence diagram
provides information about small fluctuations of the forces. These
fluctuations can be interpreted as a measurement of how rough
or bumpy the normal force landscape is, e.g. should we view the
surface of the landscape as being made of glass or sandpaper?
Therefore by comparing Figs. 12(c) and 15 we conclude that for
the considered ρ, rp = 0.4, µ = 0.5 system is rougher than the
rp = 0, µ = 0.

Strong. To understand the region labeled as strong, observe that
the image in Fig. 15(a) of the forces for the rp = 0.4, µ = 0.5
system does not contain any red simplices, implying that there
are no strong force interactions. In contrast, such red simplices
are present in the rp = 0, µ = 0 system displayed in Fig. 11(c).
This difference can be inferred from the β0 persistence diagrams
shown in Figs. 12 and 15. For the rp = 0.4, µ = 0.5 system there
are no persistence points with the birth value larger than 3 (in
terms of average interaction force) and only a few pointswith birth
value larger than 2.5. Thus, depending on the exact cut-off there
are no or at most few points in the region marked strong for the
rp = 0.4, µ = 0.5 system, in clear contrast to the rp = 0, µ = 0
system, for the considered value of ρ.

Medium. If we take the left division marker for the medium
regime in Fig. 14 to be 1, then the persistence points in themedium
and strong regions provide information about the geometry of
strong contacts. For the rp = 0.4, µ = 0.5 system, we see a
Fig. 15. (a) Non-zero simplices of the interaction force network based on normal force. (b) β0 (c) β1 persistence diagrams for the rp = 0.4, µ = 0.5 system at ρ = 0.86.



52 M. Kramár et al. / Physica D 283 (2014) 37–55
large number of β0 persistence points that are born between 1
and 2.5 and die before 0.8. This suggests a landscape consisting of
moderately high peaks separated by moderately high valleys. To
continue the geographic metaphor, the rp = 0.4, µ = 0.5 force
chain network takes place on a high plateau. In contrast, the rp =

0, µ = 0 system has fewer moderately high peaks, but they are
separated bymuch deeper valleys since there are pointswith death
values below 0.6. Therefore, we conjecture that, for the considered
ρ, landscape for the rp = 0, µ = 0 system has fewer peaks (but
some of them are strong) than that of the rp = 0.4, µ = 0.5
landscape, and these peaks are in general much more isolated and
more likely to be separated by valleys of much weaker forces.

Let us summarize the previous paragraphs in terms of ‘force
chains’. There are no force chains with force value exceeding three
times the average value for the considered rp = 0.4, µ = 0.5
system. These kind of force chains are present only in the rp =

0, µ = 0 system. On the other hand the number of ‘force chains’
with strongest link exceeding the average force is much larger for
rp = 0.4, µ = 0.5 system. Fact that θd > 0.8 for most of the points
in the β0 diagram implies that in the rp = 0.4, µ = 0.5 system
there are links connecting the ‘force chains’ with forces larger than
0.8 times the average force. The connections between the ‘force
chains’ in the rp = 0, µ = 0 system tend to be much weaker.

Defects. In a β0 persistence diagram, each point in this region
corresponds to a distinct connected component of contact net-
work. In the context of the rp = 0.4, µ = 0.5 system, these
points mostly correspond to the rattlers. This conclusion is ob-
tained by observing that aside from the single persistence point
corresponding to a large birth force, that corresponds to the com-
ponent containing most of the particles, the persistence points in
the defects region have a birth value of 0, indicating that they are
not experiencing any normal force. This is quite different from the
rp = 0, µ = 0 system. In this case we have persistence points in
the defects regionwith non-zero birth forces. This implies the exis-
tence of small clusters of particles (a single separated particle does
not experience a force) that are not interacting with the dominant
particle cluster. Close inspection of the interaction force network
in Fig. 11(c) reveals these small components.

Weak. Finally, the points in the region labeled weak represent
small clusters of particles, interacting weakly with the dominant
particle cluster. Inspection of the β0 persistence diagram reveals
existence of these clusters for the rp = 0, µ = 0 system while
they are virtually absent for the rp = 0.4, µ = 0.5 system, for the
considered ρ.

The defects region of the β1 persistence diagrams provides
additional information. As indicated in Section 8.3, β1 persistence
points lie in the defects region if and only if they correspond to the
loops that enclose non-crystalline regions. There are about twice as
many persistence points in the defects region in the rp = 0.4, µ =

0.5 system as compared to the rp = 0, µ = 0 one. This suggests
that the rp = 0.4, µ = 0.5 system is more likely to support
defects, for the considered value of ρ. At the same time there are
50% more points in β1 persistence diagram that are not in the
defects region for the rp = 0.4, µ = 0.5 system. These persistence
points correspond to the loops that are filled in by 2-dimensional
simplices and thus must be contained within crystallized regions.
Thus this difference in the number of persistence points suggests
that the rp = 0.4, µ = 0.5 system contains a multitude of small
crystalline regions as opposed to the rp = 0, µ = 0 system. This
is corroborated by a careful examination of the force networks in
Figs. 11(c) and 15.

The finding above may appear surprising since it is known that
frictionless monodisperse systems may crystallize, as it was also
shown in our earlier work [18]. The resolution of this apparent
contradiction is that polydisperse systems considered appear to
form large number of small (involving only a few particles)
crystalline regions, in contrast to monodisperse frictionless ones
that are expected to form large crystalline zones involving many
particles [18].

Tangential forces. Analogous analysis can be done for the force
network based on tangential forces. Fig. 16 shows the tangential
force network togetherwith the persistence diagrams for the same
particle configuration as in Fig. 15; note that the tangential forces
are normalized by the average tangential force. While one could
argue that a visual comparison of Figs. 15(a) and 16(a) is not
particularly insightful, examining the persistence diagrams gives
much more information. The significant and crucial difference is
that the tangential forces go tomuch larger values than the normal
ones and consequently the generators for connected components
as well as loops covermuch larger range. This is particularly visible
when considering β0 generators shown in Fig. 16(b). Therefore,
the analysis based on the persistence diagrams suggests that
the landscape defined by tangential forces is significantly more
‘mountainous’ with much higher mountain tops. Here, we give
only an example of tangential force results; future work should
analyze how tangential forces evolve as system is exposed to shear
or compression, as done for normal forces in [19].

8.5. Comparison of different systems via distances

Up to this point we have focused on the interpretation of in-
dividual persistence diagrams. However, we believe that the most
significant value of this techniquewill come through the analysis of
large sets of persistence diagrams.We present a simple example of
this idea here, leavingmore detailed investigations for futurework.

A metric in the space of persistence diagrams measures the
level of similarity between different states of DGM. If the states
are similar the distance is small. By using different metrics we can
access different notions of similarity. Bottleneck distance informs
us about a single dominant change. Notion of similarity induced by
this distance has a local character since itmeasures only the largest
difference and ignores all the other changes. Overall similarity of
two states is measured by Wasserstein dW1 distance which sums
up all the differences between the states. Since large number of
small differences can result in large dW1 , this metric is sensitive to
noise. This sensitivity can be mitigated by using dWq for q > 1.

We use these metrics to analyze and compare the time evolu-
tion of the two considered DGM systems; to facilitate the compar-
ison, we chose two different ρ’s, that are at the similar distance (in
packing fraction) from the jammingpoints. In the presentwork, the
jamming point is loosely defined as a packing fraction, ρJ , at which
Z ≈ 3. We use ρ = 0.87 for rp = 0, µ = 0 with ρJ = 0.853 and
ρ = 0.786 for rp = 0.4, µ = 0.5 with ρJ = 0.786. The difference
between ρ’s of the consecutive states is fixed to1ρ = 8× 10−5 in
both cases.

Figs. 17 and 18 show the distances between all these states (100
of them). Let us focus first on the parts (a) of these two figures,
showing the results for rp = 0, µ = 0 system. Figs. 17(a) and
18(a) are the color coded distance matrices D for the dB and dW1

distances. The entry D(i, j) is the distance between the state i and
j. Thus this is a symmetric matrix, D(i, j) = D(j, i) and D(i, i) = 0
(black) for all i, j.

Figs. 17(a) and 18(a), upper left corners, show that for the first
(17) states considered, the states are similar suggesting that the
system is evolving slowly. Though less pronounced this is also the
case for the last 20 or so states (bottom right corner). The fact that
the upper right corner is yellow indicates that the structure of the
forces has evolved over the range of ρ’s (10−3 in the considered
case). Therefore, the persistent homology can be used to capture
the evolution of the force networks.

These comments are applicable to both the dB and dW1 distance
matrices. However, the metrics carry different information. The
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Fig. 16. (a) Non-zero simplices of the interaction force network based on tangential force. (b) β0 (c) β1 persistence diagrams for the rp = 0.4, µ = 0.5 system at ρ = 0.86
(the same particle configuration as in Fig. 15). Note different range in (b) compared to Fig. 15(b).
Fig. 17. Distance matrices for the bottleneck distance. The value D(i, j) is the dB distance between the state i and j for the (a) rp = 0, µ = 0 system (b) (a) rp = 0.4, µ = 0.5
system. (Note that by construction D is a symmetric matrix.) (c) Comparison of the rp = 0, µ = 0 system with the rp = 0.4, µ = 0.5 system. The states of the
rp = 0.4, µ = 0.5 system change along the horizontal axis and the states of the rp = 0, µ = 0.5 along the vertical axis. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
dB matrix implies that for the first 17 or last 20 steps there is no
single location atwhich a large change in the force structure occurs.
The corresponding dW1 matrix entries, which are approximately
50 times larger, suggests that (i) many small changes in the force
structure are taking place from step to step, and (ii) that from step
to step roughly the samenumber of small changes are occurring. To
provide an analogy; there are ripples on the pond, but the number
of ripples are not changing with time.
The abrupt color change (increase in distance) at D(17, 18) in-
dicates that there has been a significant structural change of the
forces of the DGM from state 17 to 18. Another significant transi-
tion can be seen between 70 and 71. The evolution in the region be-
tween the states 20 and 70 has a similar character. Parts with slow
evolution are separated by sudden transitions. The fact that we see
these transitions more clearly in the dB matrix as opposed to the
dW1 matrix indicates that when significant changes occur, they are
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Fig. 18. Distance matrices for the degree-1 Wasserstein distance, considering the same systems as in Fig. 17. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
localized in space. Conversely, since the two dominant transitions
at 17 and 70 are clearly seen in the dW1 matrix suggests that they
are more global in nature.

The distance matrices for rp = 0.4, µ = 0.5 system are shown
in Figs. 17(b) and 18(b). The fact that the distances between all the
states are small and the relatively broad band of dark blue along the
diagonal implies that the evolution of this system is much slower
and without any abrupt changes. This is profoundly different from
the behavior of the rp = 0, µ = 0 system, for the considered range
of ρ’s.

We give a brief physical interpretation of the results shown in
Figs. 17 and 18; more complete and detailed discussing will be
given elsewhere. The results shown in these figures suggest that
at least for the considered narrow range of ρ’s, the evolution of
rp = 0, µ = 0 system is abrupt, evolving through large scale re-
arrangements, while the evolution of rp = 0.4, µ = 0.5 is com-
parably smooth. This is consistent with our earlier results [18,19],
we show that the rp = 0, µ = 0 system tends to form polycrys-
talline zones, while the rp = 0.4, µ = 0.5 system is much more
disordered. The large distances between the states (17, 18) and
(70, 71) shown in Figs. 17 and 18 are related to the breaking up
of these polycrystalline zones.

We end this section by directly comparing the two systems. The
entry D(i, j) of the distance matrices shown in Figs. 17(c) and 18(c)
is the dB and dW1 distance, respectively, between the state i of the
system rp = 0, µ = 0 and state j of the system rp = 0.4, µ = 0.5.
Since the differences between the systems aremuch larger than the
differences within a single system, the two systems can be clearly
distinguished.

9. Conclusion

Based on different methods for collecting data we have defined
three different chain complexes and used them to construct force
networks for particulate systems. Using the force networks we
compute persistence diagrams and discuss howone can use persis-
tent homology to extract information about the geometric struc-
ture of the force distributions between the particles. We provide
both theoretical and numerical arguments to show that the persis-
tence diagrams obtained from interaction force networks are the
most robust with respect to the numerical errors in the input data.
Using numerical data obtained from discrete element simulations
of a system of slowly compressed particles, we show that the per-
sistence diagrams associated to the different force networks can
differ significantly. This in turn implies that the geometry of the
force distributions observed depends upon the methods by which
the system is sampled.We provide some intuition concerning how
in general the sampling method affects the geometry. We also
demonstrate that using persistent homology of any of the three
force networks allows one to draw meaningful distinctions be-
tween the properties of the force distributions of different systems.
These results nowprovide a solidmathematical background for the
analysis of the force network in more complex configurations, in-
cluding systems going through jamming transitions, systems con-
sisting of particles of different shapes, and particulate systems in
3D. Our research in these directions is currently in progress.
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