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Abstract Direct numerical simulations of liquefied metal nanostructures dewetting a substrate are carried out.
Full three-dimensional Navier–Stokes equations are solved and a volume-of-fluid method is used for tracking and
locating the interface. Substrate wettability is varied to study the influence of the solid–liquid interaction. The effects
of initial geometry on the retraction dynamics is numerically investigated. It is shown that the dewetting velocity
increases with increases in the contact angle and that the retraction dynamics is governed by an elaborate interplay
of initial geometry, inertial and capillary forces, and the dewetting phenomena. Numerical results are presented for
the dewetting of nanoscale Cu and Au liquefied structures on a substrate.

Keywords Dewetting · Liquefied metal nanostructures · Navier–Stokes · Surface tension · Volume-of-fluid

1 Introduction

The modeling of nanoscale fluid problems involves considering a number of issues, in particular when free bound-
aries are involved. This modeling is further complicated in setups involving fluid/solid interfaces. One member of a
family of problems where these effects are relevant involves the evolution of liquefied metals. Very recently, these
materials have been extensively considered for synthesis and assembly on the nanoscale (e.g., [1–3]). The dewetting
of liquefied gold (Au) nanoparticles was experimentally considered by Habenicht and coauthors [1,2], for example.
In these physical experiments, the long time dynamics of the nanodroplet is governed by the competition of the
inertial, capillary, and surface forces, giving rise to droplet contraction toward a global energy minimizer; if the
inertial forces overcome the adhesion energy and dissipative losses, the nanodroplet is ejected from the substrate
on a time scale of the order of 10 ns. The small length and short time scales involved in this process make the
experimental study of dewetting dynamics a daunting task.

Discrete molecular dynamics (MD) approaches can be utilized to simulate systems at the nanoscale [4,5].
Fuentes-Cabrera et al. [4], for example, carried out MD simulation using a Lennard-Jones (LJ) interface potential
to study various wetting regimes of nanoscale liquefied copper (Cu) nanodisks on graphite. They showed that
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6 S. Afkhami, L. Kondic

the dewetting velocities were consistent with inertial flow estimates and that thicker and smaller radius nanodisks
had proportionally lower velocities. They also found that for a particular choice of the LJ potential, the dewetting
nanoparticles jump off from the graphite substrate at velocities that are similar to those observed experimentally in
[1] for Au liquefied nanostructures on glass.

While the MD approach is very powerful, it is computationally expensive. An alternative approach is to use
continuum modeling, although it is unclear that the assumptions of continuum fluid mechanics are satisfied on
these very short spatial and temporal scales. In addition to concerns related to the validity of continuum models at
the nanoscale, the modeling of fluid structures on substrates involves an additional degree of complexity since one
needs to carefully include the liquid–solid interaction forces, which may be dominant on such short length scales.
Time-dependent evolution necessarily involves a consideration of contact lines, where liquid, solid, and gas phases
meet. Modeling of the physics in the vicinity of contact lines is demanding and challenging due to well-known
issues related to the so-called contact line singularity [6,7]. Due to all these complexities, typically the problem is
considered within the long-wave theory, although in the context of liquid metal films this approach is questionable
due to the large contact angles involved. Despite the concerns about its validity, this approach has turned out to
be very useful, providing significant insight into the dynamics and stability properties of fluids at the nanoscale,
including liquefied metals [8–10].

An important property of numerical schemes that must be developed for Navier–Stokes (NS) equations at the
nanoscale is the ability to accurately and robustly deal with the fluid–fluid as well as fluid–solid interactions.
Furthermore, capillary forces are often very important at the nanoscale, and therefore the efficacy of a numerical
scheme is highly dependent on the ability of both the surface tension disctretization and the flow solver to minimize
the introduction and amplification of errors. Accurate computation of the geometrical properties of an interface,
such as interfacial normals and curvature, sharp surface force representation, and accurate and stable simulation, is
a key ingredient in feasible computation at the nanoscale. Here we use the volume-of-fluid (VoF) interface capturing
methodology, which is a widespread approach to representing fluid interfaces and, when coupled to a flow solver,
is also used to compute quantities related to surface tension that enter the flow calculation. Until recently, however,
the VoF method was not generally deemed appropriate for the study of phenomena in which surface tension is the
driving force (e.g., the wetting and dewetting of solid surfaces, as occurs in droplet and spray technologies as well
as in various natural phenomena). However, recent improvements in calculating curvature and applying the surface
tension force appear to have resolved this issue [11–13].

In this paper, we use numerical simulations based on full three-dimensional (3D) NS equations using a VoF
method to study the dewetting of liquefied nanosized structures on substrates with varying wettability. The motion
of the fluid both inside the drop and in the surrounding flow is numerically modeled. Unlike in most other theoretical
and computational studies, here the Reynolds number and the contact angle need not be small. In this work, we
explore whether our continuum formulation will result in simulations consistent with MD simulations using LJ
potentials. We initially focus our simulations on the dewetting behavior of liquid Cu nanodisks and ring-shaped
nanostructures. We then consider Au triangular nanostructures, which do not possess radial symmetry.

2 Mathematical model

The equations of conservation of mass and momentum (NS equations),

∇ · u = 0, (1a)
D(ρu)

Dt
= ∇ · (−pI + τ̃ ) + Fst, (1b)

govern the fluid motion in the drop and the surrounding gas. Here u is the velocity vector, p pressure, ρ fluid density,
τ̃ = μ(∇u + ∇uT ) the viscous stress tensor, where μ is the fluid dynamic viscosity, and Fst the surface tension
force (per unit volume). The flow equations are written in an Eulerian frame of reference, and thus a solution of
these equations must be coupled with a methodology for following the deforming fluid–fluid interface. Here, the
VoF volume-tracking algorithm is implemented [12,14,15]. Volume tracking requires the introduction of a scalar
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Liquefied metal nanostructures 7

function f , defined as f = 1 inside the drop and f = 0 outside the drop, for a two-fluid system. Since f is passively
advected with the flow, it satisfies the advection equation

Df

Dt
= 0. (2)

Density and viscosity are then evaluated via volume-weighted formulae as

ρ = ρg + (ρd − ρg) f, (3a)

μ = μg + (μd − μg) f, (3b)

where subscripts d and g refer to the drop and gas phases, respectively. Surface tension is reformulated as an
equivalent volume force as originally proposed in the continuum surface force (CSF) model [16] as Fst = σκδSn,
where σ is a constant interfacial tension, and δS denotes the Dirac delta function for the surface separating the
fluids. The curvature κ and unit normal n are geometric characteristics of the surface and are described in terms
of f and computed with a second-order height-function (HF) method [11,17–19]. If partial slip is allowed at the
contact line, we will impose the Navier-slip boundary condition at the (static) solid surface y = 0:

(u, w)

∣
∣
∣
∣
y=0

= λ
∂(u, w)

∂y

∣
∣
∣
∣
y=0

, (4)

where λ is the slip length.
To investigate the effects of the relevant dimensionless parameter, we nondimensionalize the governing equations

using a velocity scale V = √
σ/(ρL), where L is the appropriate length scale. The resulting time scale, T =

√

ρL3/σ , is proportional to the time it takes for the capillary wave to propagate across the drop. With these choices
of scales, the NS equations can now be written in nondimensional form:

D(ρu)

Dt
= ∇ · (−pI + Oh−1τ̃ ) + Fst. (5)

Here Oh = η/
√

ρσ L is the Ohnesorge number, representing the ratio of the time it takes for momentum to diffuse
across the droplet to the period of the capillary wave.

3 Numerical model

A complete description of the numerical methodologies can be found in [11,12,20]. Our in-house code is built
based on an early version of the open-source flow solver Gerris (see [20]). Briefly, the domain is discretized
adaptively using oct-tree finite volumes arranged hierarchically (Fig. 1). Primitive variables are collocated at cell

Fig. 1 Adaptive mesh: the mesh is adaptively refined around the contact line (solid line) and areas of high capillary pressure. Color
contours depict the pressure distribution colored according to the reference pressure in the gas phase, with a maximum value colored
in dark red and a minimum value colored in dark blue. (Color figure online)
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8 S. Afkhami, L. Kondic

(a) (b) (c)

Fig. 2 Initial structures: a disk, b ring, and c triangular liquid nanostructures deposited on a substrate. Initial contact angle θ0 = 90◦
(a, c), and 60◦ (b). The computational box is 375 Å for (a, b) and 494nm for (c)

centers; normal velocities are also specified at faces, as in the marker and cell (MAC) grid. The flow equations are
discretized using a projection method based on a fractional-step scheme. In the fractional-step projection method,
an interim velocity is computed first; this velocity field is projected onto a divergence-free velocity field, with the
pressure field obtained as the solution of a Poisson equation. Advection terms are discretized using a second-order
upwind scheme [21]. As the face-centered velocities are exactly divergence-free, the volume fractions are advected
using these velocities. The numerical algorithm for the imposition of the contact angle is described in details in
[12]. In this algorithm, the value of the contact angle affects the overall flow calculation in two ways: it defines the
orientation of the VoF reconstruction in cells that contain the contact line and it influences the calculation of Fst by
affecting the curvature calculated in cells at and near the contact line to balance the surface tension forces on the
contact line, as in Young’s relation [22]

σ cos θeq = σsg − σsl, (6)

where σsg and σsl are interfacial tensions for the solid–gas and solid–liquid surfaces, respectively, and θeq is the
equilibrium contact angle. If the actual contact angle is out of equilibrium, the resulting mismatch in curvature
generates a force, thereby driving the contact line to a configuration that satisfies Young’s relation.

3.1 Computational setup

We consider three geometrical configurations. Figure 2 shows the initial configurations for the case of Cu disk
(Fig. 2a), Cu ring (Fig. 2b), and Au triangular (Fig. 2c) nanostructures. We denote the disk geometry by an initial
height h0 and radius R0; the ring geometry by an initial outer radius Rout and inner radius Rin; the triangle
geometry by an initial long side a, short side b, and thickness h0; and the initial contact angle is denoted by θ0.
The computational domain is Lx × Ly × Lz , and the maximum grid resolution of the adaptive mesh is denoted
by Δ. For all the simulations, an open boundary condition (pressure and velocity gradient equal zero) is imposed
at the top, and a symmetry boundary condition is imposed on the lateral sides. For nanodisk and nanoring liquid
structures, a free-slip boundary condition is specified at the substrate in accordance with the MD simulations in [4].
For triangular nanostructures, the Navier-slip boundary condition with λ = 3 nm is imposed, so that the computed
detachment velocities are consistent with the experimental results [1,23]. The amount of slip of thin films dewetting
different substrates may vary depending on a number of conditions (such as liquid–solid interactions, shear rate,
and thermal roughness). The focus of this work, however, is not to study the effect of slip, and therefore we leave
this issue for future work.

4 Results

4.1 Dewetting of Cu nanostructures

4.1.1 Nanodisks

We first consider a Cu disk of h0 = 15 Å, R0 = 150 Å, and θ0 = 90◦ when the equilibrium contact angle θeq = 80◦
is imposed. The nanodisk dewets the substrate and collapses into a spherical cap with an equilibrium base radius
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Liquefied metal nanostructures 9
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Fig. 3 Retraction of Cu nanodisk on substrate (h0 = 15 Å, R0 = 150 Å, θ0 = 90◦). Front position, R(t), as a function of time for
θeq = 80◦; direct numerical simulation Δ = 2.93 Å (dashed line), and 1.46 Å (solid line) for Oh ≈ 0.35. The effect of increasing the
Oh number on the retraction of the nanodisk is also plotted (continuous dotted line) for Oh ≈ 1.1

Table 1 Overview of set of parameters used in numerical simulations [1,5]

ρ (kg m−3) η (kg m−1s−1) σ (kg s−2) �v (nm)

Air 1.22 1.98 × 10−5

Cu 7,900 4.28 × 10−3 (at 1,500 K) 1.30 1.78

Au 17,310 4.25 × 10−3 (at 1,500 K) 1.15 0.90

Req = 8.65nm corresponding to a contact angle of 80◦. We set Lx = Ly = Lz = 375 Å. Numerical simulations
are carried out on an adaptive mesh (Fig. 1) with a maximum grid resolution of Δ = 2.93 Å. We compute the
retraction of the disk and consequent coalescence into a nanodroplet. We track the position of the edge of the
retracting rim R(t) as a function of time. Figure 3 shows the results of direct simulations (dashed line). We also plot
the simulation results with Δ = 1.46 Å (solid line) to show convergence with mesh refinement. After 140 ps (not
shown in Fig. 3), the Cu nanodrop reaches an equilibrium state with Req = 8.63nm. The final stage is followed
by contact line oscillations about the equilibrium state, a signature of inertially dominated convection. To gain
additional insight regarding the effects that drive oscillations, we carried out an additional set of simulations with
modified inertial effects. This was implemented by varying incompressible fluid density, but more generally the
dynamics can be characterized by the Ohnesorge number, here defined as Oh = η/

√
ρσ R0. For the Cu nanodisk,

Oh ≈ 0.35, suggesting that inertial effects are important; the same conclusion can be reached by considering an
intrinsic length scale, �v = η2/(ρσ), above which inertial effects become significant; for liquid Cu, �v ≈ 1.78nm
(Table 1); therefore smaller than typical length scales that are considered here. As an example, we also present the
computational results for Oh ≈ 1.1 (continuous dotted line) in Fig. 3. As shown, reduced inertial effects eliminate
the final stage oscillations.

Figure 4a–c shows sequences of snapshots of the simulations at various times for θeq = 80◦, 115◦, and 140◦.
For θeq = 80◦, viscous forces overcome the capillary force during dewetting until the drop assumes its equilibrium
shape. For θeq = 115◦, the nanodisk quickly dewets the surface and at approximately 40ps the retracting rim has
already collapsed into a droplet that begins to elongate in the y (vertical) direction. The collapsing nanodrop then
reaches a maximum elongation at around 100ps. After that, the droplet rebounds and settles to an equilibrium state
with θeq = 115◦ at around 250ps. In addition, the contraction in the x (horizontal) direction and the elongation in
the y direction are now more pronounced compared to what was found for θeq = 80◦. A different type of evolution
occurs when θeq is increased beyond 130◦. For θeq = 140◦, the contraction is so fast that the nanodrop jumps off the
surface, following elongation in the y direction. This process begins with the accumulation of the liquid material
toward the center of the nanodroplet, leading to a vertical movement of the center of mass. The nanodroplet detaches
from the substrate at approximately 100ps.
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10 S. Afkhami, L. Kondic

30 ps 100 ps 190 ps(a)

(b)

(c)

Fig. 4 Snapshots of Cu nanodisk with h0 = 15 Å, R0 = 150 Å, and θ0 = 90◦. Direct numerical simulations of NS equations for
θeq = 80◦ (a), 115◦ (b), and 140◦ (c). The computational box corresponds to 375 Å

These continuum-based simulation results are in quantitative agreement with the MD simulations carried out
in [4], suggesting that the continuum approach provides an accurate description at the scales considered. While
this may appear surprising, the Cu nanodisks considered here are of a volume similar to that of a sphere with
diameter corresponding to approximately 100 Cu atoms. This rather large number of atoms suggests that the
continuum approach is still appropriate. Of course, precise agreement between our continuum simulations and
atomistic simulations provides a much stronger argument for the appropriateness of a continuum description in the
present setting.

Figure 5a–b further illustrates the relevance of inertial effects. Here we compare the x–y cross sections for the
case θeq = 140◦ where Oh ≈ 0.35 and 1.1. As shown, reduced inertial effects eliminate the ejection of the nanodrop
from the surface. For Oh ≈ 0.35 (Fig. 5a), a capillary ridge is formed at the initial stage and propagates from the
nanodisk rim along the drop–gas interface, progressing to the top of the droplet, causing a rapid rise in the droplet
height and eventual ejection, while for Oh ≈ 1.1 (Fig. 5b), the capillary ridge is less pronounced, leading to a
weaker collapse and no ejection.

We also study the effect of the equilibrium contact angle, θeq, on the retraction time and the upward velocity.
Table 2 presents the variation in the retraction time and the upward velocity with θeq. As shown, the retraction
dynamics is slower for smaller θeq, and the upward velocity increases with increasing θeq. These values are fully
consistent with those obtained in [4] using MD simulations.

It is also instructive to compare the velocity field for various θeq. Figure 6a, b shows the velocity field, with the
adaptivemesh depicted on the background, at 40ps for θeq = 80◦ and at 20ps for θeq = 140◦, respectively, where the
position of the edge of the rim is the same in both cases. As shown, the magnitude of the velocities is larger for θeq =
140◦ than the magnitude of those for θeq = 80◦. Figure 6c, d shows the pressure field distribution corresponding
to Fig. 6a, b, respectively. As described in Sect. 3, the liquid–solid interaction affects the computational results by
defining the orientation of the reconstructed interface on the solid surface, which in turn influences the calculation of
the curvature in cells at and near the contact line to balance the surface tension forces, resulting in a large pressure
gradient there. The pressure in this region is strongly dominated by the local interfacial curvature; as shown in
Fig. 6d, due to a large contact angle (θeq = 140◦), the capillary pressure attempts to balance the difference between

123

Author's personal copy
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Fig. 5 x–y cross sections of a Cu disk (h0 = 15 Å, R0 = 150 Å, θeq = 140◦) at t = 0, 5, 10, 20, 30, 40, 110 ps with a Oh ≈ 0.35
and b Oh ≈ 1.1. Case a results in a drop that eventually detaches from the substrate as in Fig. 4c, while for b the final outcome is a
sessile droplet. (Color figure online)

Table 2 Effect of contact angle on retraction time and upward velocity

θeq 130◦ 140◦ 150◦

Collapse time (ps) 120 100 90

Upward velocity (m s−1) 62 119 137

a constant pressure in the gas (dark blue contours) and the increased pressure in the liquid (dark red contours) by
bending the interface. As a consequence, this leads to a thinning of the liquid in the region close to the drop center.

Figure 7 shows the front velocity, Ṙ(t), at the early time as θeq is varied. The results show a fast initial retraction
followed by a slow contraction. We postulate two likely scenarios: (I) an inertially dominant regime transitions to a
viscous regime and (II) the part of the kinetic energy associated with horizontal motion is transformed into that of
vertical motion. We also show that the early-time inertial regime is regulated by the generation and propagation of
the capillary wave initiated at the contact line (e.g., Fig. 5a). Figure 7 also shows that the contact angle condition
can influence the rapid inertial flow.

4.1.2 Nanorings

We next consider the collapsing of Cu liquefied nanorings. When a ring of liquid is placed on a substrate, it retracts
and collapses into a static droplet due to capillary effects [24,25]. We show here the direct computational results
for the dewetting of Cu liquefied nanorings as θeq is varied. We consider the ring geometry with an initial outer
radius of Rout = 150nm, an inner radius of Rin = 75nm, and θ0 = 60◦ (Fig. 2). The radii and the θ0 are chosen
so that the drop volume remains almost unchanged from the previous nanodisk case. The nanoring structure is out
of equilibrium, and the capillary pressures resulting from the inner and outer curvature imbalance drive an inward
flow that eventually leads to a collapse of the ring into a static drop. Here, Oh ≈ 0.4 calculated based on the average
radius, i.e., (Rout + Rin)/2 = 75nm. We set Lx = Ly = Lz = 375 Å. Numerical simulations are carried out on an
adaptive mesh (Fig. 1) with a maximum grid resolution of Δ = 2.93 Å.
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12 S. Afkhami, L. Kondic

Fig. 6 Velocity vectors of
Cu nanodisk dewetting
(h0 = 15 Å, R0 = 150 Å,
θ0 = 90◦) a at 20ps for
θeq = 80◦ and b at 40ps for
θeq = 140◦; the front has
moved about the same
distance in both cases. c, d
Pressure field distribution
colored according to
reference pressure in gas
phase, with a maximum
value colored in dark red
and a minimum value
colored in dark blue,
corresponding to a and b,
respectively. (Color figure
online)

Fig. 7 Early-time
retraction velocities of Cu
nanodisk dewetting
(h0 = 15 Å, R0 = 150 Å,
θ0 = 90◦). θeq = 80◦ (green
square), 115◦ (blue
upward-pointing triangle),
130◦ (black circle), and
140◦ (black diamond).
(Color figure online)
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Figure 8 shows the time evolution of the nanorings for θeq = 45◦, 60◦, 75◦, and 90◦. In particular, we are
interested in the time, τ , it takes for a ring to collapse, defined as the time when the inner radius goes to zero.
Figure 9 shows τ as a function of θeq. We find that a larger θeq leads to a smaller collapse time. We also observe
that τ scales approximately linearly with θeq.
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20 ps 45 ps 76 ps
(a)

20 ps 45 ps 70 ps
(b)

20 ps 45 ps 66 ps
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(d)

Fig. 8 Snapshots of Cu nanoring with Rout = 150 Å, Rin = 75 Å, and θ0 = 60◦ for θeq = 45◦ (a), 60◦ (b), 75◦ (c), and 90◦ (d). The
frames on the far right show the drop at the moment at which the collapse takes place, with the inner radius going to zero. Oh ≈ 0.4.
The computational box corresponds to 375 Å
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Fig. 9 Effect of θeq on collapse time, τ , for a Cu nanoring on
substrate (Rout = 150 Å, Rin = 75 Å, and θ0 = 60◦). Oh ≈ 0.4

Fig. 10 Droplet detachment velocity for liquefied triangular Au
nanostructures with a side length of 405nm and various thick-
nesses, numerical results (black upward-pointing triangle), and
experimental measurements (red square). Numerical results are
obtained using a slip length of 3nm. The numerical simulation
predicts zero ejection velocity for h0 ≥ 200nm. (Color figure
online)
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14 S. Afkhami, L. Kondic

4.2 Dewetting of Au nanostructures

4.2.1 Nanotriangles

Recently, Habenicht and coauthors [1,2] experimentally examined whether it would be possible to begin with
initially deformed droplets, in the form of solid flat triangular gold structures, on the surface and observe dewetting-
induced detachment. They considered Au triangular structures on the SiO2 substrate with side lengths between 400
and 800nm and thicknesses between 50 and 160nm.Whenmelted by laser irradiation, the energetically unfavorable
initial structure coalesces into a droplet. The transformation of surface energy into kinetic energy drives the motion,
and, under appropriate conditions, detachment of the resulting droplets was observed.

Here, we simulate the experiments of Habenicht et al. [1]. The initial triangle geometry has equal sides of
a = 405nm and an initial contact angle of θ0 = 90◦ with θeq = 140◦ (equilibrium contact angle of liquid Au on
SiO2). The computational domain is Lx = Ly = Lz = 494nm, and the maximum grid is Δ = 1.5nm. At the
substrate, a Navier-slip with a slip length of 3,nm is imposed; this particular value is obtained by direct comparison
with the experiments of Habenicht et al. [1]. Figure 10 represents the droplet velocity as a function of the initial
thickness h0. Our numerical results reproduce very well the experimental findings in [1]. In particular, we note
that both experiments and simulations show decreasing ejection velocity as the initial thickness is increased. This
trend can be intuitively understood by realizing that the upward momentum is gained by the transformation of
surface into kinetic energy. Thus, increasing the initial thickness results in a lower upward velocity by decreasing
the surface-to-volume ratio. We observe that both the simulations and the experimental results show approximately
the same trend for the ejection velocity as a function of h0, with the simulation predicting zero ejection velocity for
h0 ≥ 200nm.

Figure 11 shows sequences of simulations of the dewetting of initially triangular nanostructures when the initial
thickness is varied. The consequent detachment of the droplet at various times is also demonstrated. As shown, the
dewetting process begins at the corners, where the curvature is high. Due to a high surface tension force and large
equilibrium contact angle, the liquid starts to accumulate at the corners. Vertices accumulate more mass than the
straight sides. The humps at the corners then coalesce into a droplet. Finally, owing to a low viscosity of liquid gold
(�v ≈ 0.9 nm; Table 1), inertia dominates over viscous dissipation, giving rise to an upward movement that leads
to droplets detaching from the surface at velocities of tens of meters per second (Fig. 10). As shown, increasing
the initial thickness will result in a slower dynamic and an increase in the collapsing time. The time scale of the
retraction process is consistent with the experiments of Habenicht et al. [1] measuring a detachment time scale on
the order of 10ns.

Figure 12 shows the pressure distribution at the (substrate) x–z plane for h0 = 24nm (Fig. 12a) and 47nm
(Fig. 12b). The solid line represents the line of contact and the background demonstrates the adaptive grid used. The
high surface tension force due to the high curvature increases the capillary pressure at the corners. This pressure
gradient results in a transversal velocity driving the traveling rims. The time at which all the rims coalesce depends
on the pressure gradient, explaining the difference in the collapsing times shown in Fig. 11. As is also shown,
the sides of the triangle reach the center first, followed by the vertices. This asynchronicity is the reason for the
excitation of the contact line oscillations during the dewetting process, as illustrated in Fig. 12.

Finally, we explore the effect of the initial shape.We consider an isosceles nanotriangle geometry with initial long
side a = 488nm, short side b = 247nm, h0 = 24nm, θ0 = 90◦, and θeq = 145◦. Figure 13a shows the sequence
of the numerical results. As shown, the dewetting behavior is different compared to the dewetting dynamics of an
equilateral triangle, although both processes lead to the ejection of the formed droplet from the substrate. Figure 13b
shows the pressure distribution at the x–z plane. It shows a higher capillary pressure at the vertex of the long edges
due to a higher curvature. However, the triangle small edge vertices arrive faster at the center than the vertex of the
longer sides. This mismatch excites the oscillation of the droplet, translating into a tumbling movement after the
droplet leaves the substrate.
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Liquefied metal nanostructures 15

1.2 ns 2 ns 5 ns
(a)

1.2 ns 2 ns 7 ns
(b)

1.2 ns 2 ns 11 ns
(c)

1.2 ns 2 ns 13 ns
(d)

Fig. 11 Snapshots of Au equilateral nanotriangles with a = 405nm, θ0 = 90◦, and θeq = 140◦ for h0 = 24nm (a), 47nm (b), 95nm
(c), and 142nm (d). The computational box corresponds to 494nm. The nanotriangular structure collapses into a droplet and detaches
from the substrate (see Fig. 10 for corresponding ejection velocities)

5 Conclusion

We show that a direct numerical simulation based on Navier–Stokes equations can be utilized to study the dewetting
of liquefied metal nanostructures. In particular, we find that the early-time dynamics of the dewetting of a Cu
nanodisk is inertially dominated and that viscous dissipation cannot be expected to be the dominant resistance
to short-time dewetting. Furthermore, we demonstrate that the equilibrium contact angle, θeq, plays a key role in
dewetting dynamics. For sufficiently large θeq, the retraction and consequent collapse into a nanodroplet is followed
by the detachment of a nanodroplet from the substrate at an upward velocity that is an increasing function of θeq.
Considering Cu nanorings, we show that θeq affects the retraction velocity and the collapsing time. Our numerical
results, based on a VoF formulation, are consistent with the results of MD simulations, offering a potential venue
for modeling dewetting phenomena at the nanoscale. We also directly simulate the dewetting process of initially
triangular Au nanostrucutres that coalesce into nanodroplets that, in turn, detach from the surface. We demonstrate
that dewetting dynamics is consistent with experimental observations and that the computed detachment velocity
is consistent with experimental measurements. We expect our findings to be of direct relevance to nanomaterial
processes involving rapid dewetting.
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3 ns 4 ns 4.5 ns

(a)

0.6 ns 1.2 ns 2 ns

3 ns 4 ns 5 ns

(b)

Fig. 12 Contours of pressure field distribution and adaptive mesh at x–z plane for Au equilateral nanotriangles with a = 405nm,
θ0 = 90◦, and θeq = 140◦. a h0 = 24nm and b 47nm. The computational box corresponds to 494nm. The high capillary pressure at
the corners are shown. The pressure distribution is colored according to the reference pressure in the gas phase, with maximum value
colored in dark red and minimum value colored in dark blue. (Color figure online)
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0.6 ns

1.2 ns

2 ns

4.1 ns

(a) (b)

Fig. 13 a Snapshots of Au isosceles nanotriangle structure with a = 488 nm, b = 247 nm, h0 = 24nm, θ0 = 90◦, and θeq = 145◦.
The nanotriangular structure collapses into a droplet and detaches from the substrate at around 5ns. b Contours of pressure field
distribution and adaptive mesh at x–z plane. The computational box corresponds to 494nm. The pressure distribution is colored
according to the reference pressure in the gas phase, with maximum value colored in dark red and minimum value colored in dark blue.
(Color figure online)
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