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On the influence of initial geometry on the evolution
of fluid filaments
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In this work, the influence of the initial geometry on the evolution of a fluid filament
deposited on a substrate is studied, with a particular focus on the thin fluid strips of
nano-scale thickness. Based on the analogy to the classical Rayleigh—Plateau (R-P)
instability of a free-standing fluid jet, an estimate of the minimal distance between the
final states (sessile droplets) can be obtained. However, this numerical study shows
that while the prediction based on the R—P instability mechanism is highly accurate
for an initial perturbation of a sinusoidal shape, it does not hold for a rectangular
waveform perturbation. The numerical results are obtained by directly solving fully
three-dimensional Navier—Stokes equations, based on a Volume of Fluid interface
tracking method. The results show that (i) rectangular-wave perturbations can lead to
the formation of patterns characterized by spatial scales that are much smaller than
what is expected based on the R—P instability mechanism; (ii) the nonlinear stages of
the evolution and end states are not simply related, with a given end state resulting
from possibly very different types of evolution; and (iii) a variety of end state shapes
may result from a simple initial geometry, including one- and two-dimensional
arrays of droplets, a filament with side droplets, and a one-dimensional array of
droplets with side filaments. Some features of the numerical results are related to
the recent experimental study by Roberts er al. [“Directed assembly of one- and
two-dimensional nanoparticle arrays from pulsed laser induced dewetting of square
waveforms,” ACS Appl. Mater. Interfaces 5, 4450 (2013)]. © 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4931086]

. INTRODUCTION

Synthesis and assembly on the nano-scale is one of the most important goals of contemporary
science and technology, see, e.g., Ref. 1. While there are a large number of examples involving a
variety of different fluids where self and directed assemblies are relevant, we focus here on one
particular example which is finding important applications: nano-scale metallic particles. These
particles have been used as a basis for controlled growth of carbon nano-fibers,” with applications
in numerous settings.> More generally, formation of nano-structures of metallic materials finds its
role in applications which range from plasmonics to liquid crystal displays and solar cells.*> For
example, the size and distribution of metallic particles are known to be related to the coupling of
surface plasmons to incident energy. Controlling this coupling has the potential for large increases
in the yield of solar cell devices, see, e.g., Ref. 6; for this application, it is particularly impor-
tant to be able to produce uniformly distributed and closely spaced metallic nano-particles.”® One
approach to produce nano-scale structures (metallic or not) with a desired size and distribution is
to use naturally occurring forces that drive the evolution of the nano-structures in the liquid phase;’
such an approach, if controlled, is significantly more efficient than to lithographically depositing
individual particles. With metal films, a recently developed technique is the irradiation with laser
pulses or electron-beams, leading to fast liquefaction. While in the liquid phase, the metal film
becomes unstable and breaks up into droplets which solidify and remain on the substrate as solid
particles. The understanding of this instability development is the focus of this paper. We note
that while the particular problem involving liquid metals on nanoscale motivated this work, the
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approach that we implement is general and it applies to any setup that allows for control of the
initial geometry.

One commonly considered geometry in the experiments is the one of a filament deposited on
a solid substrate. In the context of metal films, a liquid filament itself does not even have to be
deposited: it is sufficient to deposit a metal strip of a rectangular cross section, liquefy it, and let the
capillary forces drive the evolution. Such a setup has been recently demonstrated experimentally in
Ref. 10, which considers a geometry consisting of long, thin, strips with thicknesses of tens of nano-
meters, widths of hundreds of nanometers, and lengths of tens of microns. When liquefied by laser
pulses of typical duration of tens of nanoseconds, these strips quickly retract into filaments that then
break up into droplets, where the spacing of the droplets is not uniform, but instead obeys a distri-
bution consistent with the prediction of the classical Rayleigh—Plateau (R—P) analysis. This mech-
anism of breakup can be explained surprisingly well by an analogy with the R—P analysis of the
breakup of a free standing fluid jet, modified by the presence of substrate, as discussed in Ref. 11.
Following the analysis in Ref. 11, Ref. 10 shows that varying the width of the deposited metal strip
by a sinusoidal perturbation of a well defined wavelength can be used to produce an array of uni-
formly spaced particles, as long as this imposed wavelength is unstable, based on the R—P instability
analysis. They show that perturbing by stable (short) wavelengths leads to distances between the
particles that are nonuniform and not related to the imposed perturbation. In this paper, we explore
whether one could overcome this limitation by appropriately choosing the initial fluid geometry.

Before discussing this question further, we outline briefly the basic framework determining the
stability of fluid jets. The classical R—P linear stability analysis (LSA) predicts that radial sinusoidal
perturbations of a standing jet of radius R, with wavenumber k = 27/ A, and small amplitude, grow
or decay with the growth rate, w, specified by

=L (kR(l _ g2re)yIkR) ) (1)

pR? Io(kR)

where o is the surface tension, p the density, and Iy and I; the modified Bessel functions.'>!? This
result predicts a critical wavelength, 1., below which modes are stable, as 27 R'"? derives the growth
rate when the effects of viscosity are ignored; we should note, however, that the critical wavenumber
predicted based on the R—P analysis remains unchanged when considering viscous effects.'* We
also note that Eq. (1) applies to small amplitude varicose modes of any waveform, as these can be
decomposed into sinusoidal component modes via a Fourier transform.

The presence of a substrate naturally modifies Eq. (1). Viscous and viscointertial limits of the
dispersion relation for a filament on a substrate are derived by Ref. 15. The LSA based on long—wave
(L-W) theory demonstrates that A is modified only slightly by the presence of the substrate, showing
a weak dependence on the contact angle (the angle at which the interface between the liquid and
an ambient phase, such as a surrounding gas, meets a solid surface).!%!!1%17 Several methods for
calculating A, for a filament on a substrate are compared in Ref. 17; importantly, for a contact angle
of /2, the critical wavelength remains exactly the same as that predicted by the R—P analysis.

As mentioned above, the R—P driven breakup limits how closely spaced particles can be based
on the critical wavelength. To overcome this limitation, in an experimentally focused study,'® intro-
duce a rectangular-wave type perturbation form. The initial geometry consists of a central strip of
width w and height £, to which perpendicular protrusions are attached, with amplitude A,, width
wp, and period A, as illustrated in Fig. 1(b). Such a structure can be compared with a strip whose
cross-sectional area is given by

Quir = h(w + 2A,w,/ ) = Qo + 2A,hw, /A,

where () is the cross-sectional area of the main strip (without protrusions), and Q. is the average
cross-sectional area obtained when the total amount of liquid (including protrusions) is distributed
evenly over a wavelength A,,. We call Qg an effective cross-sectional area.

In Ref. 18, the initial condition shown in Fig. 1(b) was found to lead to two distinct end states,
consisting of either one- or two-dimensional array of particles. Fig. 2 illustrates these end states.
For smaller A, the end state is a one-dimensional array of particles whose centers are exactly at
the location of the original rectangular-wave perturbations (Figs. 2(b), 2(d), and 2(f)). As A, is
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(a) (b)

FIG. 1. Two perturbation geometries for assembling arrays of nano-particles: (a) sinusoidal initial geometry and (b)
rectangular-wave initial geometry. The rectangular-wave geometry consists of a central strip of width w and height /; the
perpendicular protrusions have an amplitude A ;,, width w),, and period 4.

increased, the end state transitions to a two-dimensional array of particles (Figs. 2(h) and 2(j)): one
set of particles is located at the same locations as the one dimensional arrays of Figs. 2(b), 2(d),
and 2(f), while two more sets of particles are located on either side. In the present paper, we focus
on understanding the physical mechanisms that lead to the end states illustrated by Fig. 2, as well
as to a variety of other possible end states that have not been observed in experiments yet. While
the approach that we use is general and applies to any setup such that the initial geometry can
be controlled, for definitiveness we choose the relevant length and time scales as well as material
parameters corresponding to metal filaments of nano-scale thickness, as in Ref. 18. We computa-
tionally investigate the effects of varying parameters on conditions for which the breakup occurs and
demonstrate that not only is it possible to destabilize the structure when 1, < 1.(Q.q) but also even
when 1, < 1.(Qp). That is, despite the additional liquid added into the system by the protrusions,
we can actually induce the strip to break up with a period less than its own critical wavelength,
leading, as a final outcome, to droplets spaced much closer than that would appear possible by
considering the R-P predictions. This finding is surprising and also potentially very useful, since in
many applications, it is desirable to have closely spaced particles.'”

The rest of this paper is organized as follows. In Sec. II, we outline the simulation setup. The
results are given in Sec. III, including description of the basic instability mechanism, classification

FIG. 2. Experimental images of the initial conditions (left column) and end states (right column) for the rectangular-wave
geometry such as shown in Fig. 1. The film thickness is & ~7 nm. Here, the amplitude of perturbation, A, is increased,
while all other parameters are kept the same. Reprinted with permission from Roberts et al., ACS Appl. Mater. Interfaces 5,
4450 (2013). Copyright 2013 American Chemical Society.
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of various end states uncovered by the simulations, and dependence of the results on the parame-
ters defining the perturbations. In Sec. IV, we discuss in more details some crucial aspects of the
instability mechanism. The conclusions and the outline of future work are presented in Sec. V.

Il. SETUP

Figure 1(b) shows our initial geometry, which is a flat strip with a rectangular-wave edge
perturbation similar to the one considered by Ref. 18. The geometry consists of what we refer to as a
“central strip” defined by

{(X,y,Z)| —0 <X <00, y< h’ |Z| < LU/Z}
and “protrusions” defined by
{Ce,y.2)| |x = nd,| <wp/2, y < h, |z| < (w/2+ Ap), forn € Z}.

Throughout this paper, we take the central strip to be specified by 4 = 10 nm and w = 100 nm.
As described above, experimental studies begin by depositing metal in prescribed geometries such
as a strip with an edge perturbation and then liquefying these structures with laser pulses. While in
the experiments, the metal geometries may be going through repeated melting and solidification, in
the present work, we neglect the effects of phase change and furthermore assume that temperature
variation of material parameters (viscosity, density, surface tension) is not crucial for the purpose of
understanding the main mechanisms leading to instability. This approach is supported further by the
fact that the constant temperature model has generally been very successful in modeling the breakup
of nanometallic films.'®!"!8 These approximations are also motivated by our desire to focus on the
influence of the initial geometry on instability development in a general setting. In the particular
case of laser-irradiated metals, thermal simulations'” suggest that the phase change itself happens
on a very fast time scale. A simplified model addressed by Ref. 20 also indicates that the heating of
nanometallic films takes place rapidly, leading to a sharp, short-lived peak in the temperature. In the
present work, we are essentially assuming that during the time that the metal is in the liquid phase,
we can ignore temperature variations. Of course, if the temperature of the metal is significantly
higher than the melting temperature, one may expect a decrease of the viscosity and surface tension
that may modify the results. We leave such considerations for future work and focus here on the
influence of geometry on the development of the instability. Within present isothermal model, the
evolution of the initial structure is thus governed by the Navier—Stokes (N-S) equations for an
isothermal fluid. We consider an initial geometry that is far from equilibrium and rapidly evolves to
what we refer to as its “end state.”

As discussed in more detail below, the computational solver that we use requires the presence
of two fluids, and therefore we consider two phases that are immiscible and incompressible, sepa-
rated by an interface: metal in its liquid phase (referred to as “liquid”) and the ambient phase. The
governing equations under these assumptions become the two-phase N-S equations

p(Ou+u-Vu)=-Vp+V-(u(Vu+Vu"))+ ok, )
V-u=0, 3)

where u = (u,v,w) is the velocity field, p the pressure, o the surface tension, « the interfacial
curvature, 0 a delta function centered on the interface, and n the unit normal to the interface. The
viscosity, u, and density, p, depend on the phase of the fluid, taking values of y;, p; in the liquid
phase and y,, p, in the ambient phase. For our simulations, we use the physical values of liquid
nickel (Ni) used in Ref. 18, so that p; = 7905 kg/m3, M =0.0047 Pa s, and o = 1.781 N/m. The
values of y, and p, are chosen to minimize the effects of the ambient phase; we discuss these
values further when the numerical methods are described. We note that Eq. (2) does not include the
effects of the disjoining pressure. Previous models of similar problems, based on long—wave theory,
included the disjoining pressure to model partial wetting and the linear stability of the interface,
as discussed by Ref. 11. In the present work, partial wetting is introduced differently (described
below). Furthermore, we expect that the interfacial instability due to the disjoining pressure effects
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is weak compared to other effects; a rough estimate shows that the breakup time of a uniform
10 nm film by the disjoining pressure is considerably longer than the evolution time of the structures
considered in the present work (see the linear stability analysis in Ref. 21). Our current model
and computational methods were previously shown to result in good qualitative agreement when
compared to the experimental results in Ref. 18.

On the solid substrate, we impose the Navier slip boundary condition

w) = A2 ). @)
oy

where A is the slip length. Experimental results for various liquids and substrates have generally
reported significant slip on surfaces with large contact angles,?? with a range of possible slip lengths
depending on the surface topography and chemistry.”? Often, a slip length on the order of 100 nm
is reported for systems with contact angles ranging from 95° to 105°.22-2* Reference 25 also show
that the slip is large in the present system by comparing the N-S solutions with molecular dynamics
simulations of nano-scale metal films by Ref. 26. In this work, we briefly survey the effects of
varying slip, but unless noted otherwise, we take A = 60 nm. This particular value of slip length is
motivated by Ref. 18, where good agreement between the simulation results and the experimental
data was obtained for this value of A. We also set the contact angle to 90° for all the results,
since this simplifies the numerical implementation considerably. We note that in a previous study,
very good agreement with experiments was found when using this value of contact angle in the
simulations.'® Furthermore, similar experiments reported in Ref. 10 show an equilibrium contact
angle of 88°, very close to the value used here.

To present the considered model in a more general setting, we rewrite Eqgs. (2) and (3) in a
dimensionless form. We take the scales as L = w = 100 nm, and 7 = 1 ns, based on the typical
in plane dimensions and the observed retraction times. We define the following dimensionless
quantities:

. X Lt
X'= =, ==,
L T
«_ P «_ M
p = H =,
p1 Hi
u Lu T
= —u, p =—Dp,
r Hi
K =«kL, 8 = 0L,
L? L
Re = l—, a= NL.
wT oT
With these scales, our dimensionless equations are
Re p" (du” +u”- VW) = =V'p" + V- (" (V'u' + V'ur’)) + Ca”'k"6%m, (5)
Vieu' =0. (6)

For our choice of parameters, the Reynolds number and capillary number are, respectively, Re =
16.8, Ca =~ 0.26, so the evolution takes place in a regime with a moderate dominance of inertial and
surface tension effects over viscosity. The relevance of inertial effects, as well as the fact that contact
angles involved are large, supports the use of the direct numerical modeling as described next.

We directly solve the NS equations using a Volume of Fluid (VoF) based solver implemented
in Gerris?’” and described in Ref. 28; we briefly survey the method here. Results obtained using
Gerris are referred to as VOF results throughout this paper. The solution of the N-S equations is
accomplished using a standard projection method. Spatial discretization is carried out using an
adaptive octree; our adaptive mesh resolves the interface at a resolution of approximately 1 nm, and
regions of high curvature are resolved to approximately 0.5 nm. The simulations that we present
in Secs. III and IV are insensitive to any further refinements in the mesh. Gerris solves the N-S
equations in two phases, and the VoF method tracks which fluid phase occupies a spatial point by
introducing a volume fraction function F(t,x), which gives the fraction of each computational cell
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occupied by the liquid phase. The volume fraction is advected with the velocity field according to
the following equation:

O,F +u-VF =0. @)

The VoF method naturally handles the breakup and coalescence of fluid regions, so that these
phenomena do not require any separate treatment;?®2° breakup is said to occur when a liquid region
separates into two disconnected regions. The viscosity, u, and density, p, depend on F(¢,x) by a
mean of the respective liquid and ambient phase values. In order to minimize the effect of the
ambient phase, we set u, = 0.01y; and p, = 0.2p;. This choice of p, is a compromise between
minimizing the influence of the ambient phase and the computational cost of having very large
differences between the p; and p,. The cell centered normal vector for the interface is given by
approximating VF using a Mixed-Young’s method®® and the interface curvature is approximated
using a modified height function method.*'~** For all the computations, we only simulate a half of
the period due to symmetry, so that 0 < x < A,/2. Simulations with a computational domain of a
full period were run for selected cases, and no difference was observed when compared with the
half period simulations. In subsequent figures, we will often mirror the domain when we plot the
simulations results, so that one or more periods are visible.

The partial wetting of Ni on the silicon dioxide (SiO;) substrate is modeled by imposing a
mirror condition on F(z,x). Since the interface normal is given by VF, a mirror condition on the
substrate implies that VF = (9,F,0,0,F), and thus this is equivalent to a 90° contact angle. The
limitation of imposing a 90° contact angle is not intrinsic to the VoF method,*' however the numer-
ical implementation of this contact angle is considerably simpler (and also arbitrary contact angles
are not currently implemented in Gerris). Since the contact angle in the experiments'® is very close
(88°), the use of this simplification is well justified.

When a long strip of width w = 100 nm and height 2 = 10 nm is placed on a surface, it rapidly
retracts to a half-cylinder, which we call a filament, of radius ro = V2wh/m ~ 25 nm; we remind
the reader that this value of r( remains constant throughout this work, since it describes the radius
of the half-cylinder corresponding to the central strip alone (without perturbation). Equation (1)
therefore predicts that the critical wavelength of the central strip is approximately 160 nm. This
result is consistent with the VoF simulations; we find that a half-cylindrical filament of radius ry is
unstable when perturbed by a sinusoidal mode of a wavelength greater than approximately 160 nm,
and stable otherwise. This result is insensitive to the slip length A; we tested the critical wavelength
of such filaments with A = 10 nm, A = 60 nm, and a free slip boundary condition (equivalent to
A — oo limit and also to a standing jet) and found the critical wavelength to be the same to an
accuracy of about 1%. We therefore use Eq. (1) to calculate the critical wavelength for filaments
throughout this paper. While Eq. (1) strictly applies only to small perturbations, we will show below
that at least in the present setting it also describes stability of sinusoidal perturbations, even if they
are not small.

lll. RESULTS

We first investigate the case A, = 150 nm; this value of A, is below the critical wavelength
which is predicted by the R—P analysis for the central strip, 4. = 27ry = 160 nm. Fig. 3(a) (Multi-
media view), shows the breakup of a rectangular-wave geometry for A, = 110 nm and w,, = 75 nm.
The cross section shows the pressure distribution in the liquid as it breaks up. The initially imposed
shape quickly evolves, resulting in a low pressure region at the protrusion centers, (x,z) = (nd,,0)
(t = 0.5 ns). As the protrusions retract, more liquid accumulates at the centers, while higher pres-
sure necks form in between, (x,z) = ((n + 1/2)4,,0) (+ = 1.0 ns). While these necks have high
negative curvature in the y-z plane, the pressure there is still high relative to the protrusion centers.
Eventually, the resulting pressure gradient causes the necks to pinch off (r = 1.5 ns) and separate
droplets form with a center to center spacing equal to 4, (f = 10 ns).

We can contrast the described evolution with the one of a sinusoidal shape perturbation, with
the same A, and total liquid volume. Figure 3(b) (Multimedia view), shows that the evolution
initially follows a similar path: as the perturbations retract, low pressure regions again form at the
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Low Pressure
Protrusion Center

Low Pressure
Perturbation Center

High Pressure
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t=1.5ns E f
t=10.0 ns

|
> Low High
(a) (b)

FIG. 3. Time evolution and the pressure distribution for the rectangular-wave and sinusoidal geometries with a perturbation
wavelength of 150 nm: (a) rectangular-wave perturbed strip with A, =110 nm, w, =75 nm and (b) sinusoidally perturbed
strip of the same volume as in (a) with wg =100 nm, A =110 nm; see Fig. 1 for the definition of all geometric quantities.
Each box is 75 nm by 75 nm, and the pressure scale is the same for both figures. (Multimedia view) [URL: http://dx.doi.org/
10.1063/1.4931086.1] [URL: http://dx.doi.org/10.1063/1.4931086.2]

perturbation centers (x, z) = (nd;,0). After this initial stage, however, the evolution is different from
the rectangular-wave geometry. Most notably, the peaks of sinusoidal perturbations retract much
more quickly, and nearly all of the liquid accumulates close to the perturbation centers. While
negative curvature necks still form in between, the pressure in these necks is actually lower than in
the centers (r = 1.0 ns), contrary to what is found for rectangular-wave geometry. Consequently, the
structure stabilizes (f = 1.5 ns), ultimately forming a half-cylindrical filament (r = 10.0 ns).
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FIG. 4. Time evolution of the velocity field in the z =0 plane for times # =0.5, 1.0, and 1.5 ns, for (a) the rectangular-wave
and (b) sinusoidal geometries. The respective parameters are the same as in Fig. 3. The solid curve shows the interface. The
arrows show the velocity in both the liquid and ambient phases.

Figure 4 shows the velocity field of each geometry from Fig. 3 in the z = 0 plane, for
x € (=A4,/2,4,/2), where again A, = 150 nm. For the rectangular-wave geometry (Fig. 4(a)), at
t = 0.5 ns, vortices have developed at the interface approximately midway between the origin and
the necks, draining the liquid from the necks to the low pressure region at x = 0. This trend con-
tinues for longer times, with the vortices slowly moving towards the necks, draining the liquid from
there and leading eventually to rupture. Meanwhile, for the sinusoidal geometry, shown in Fig. 4(b),
the vortices form later and show a much weaker component of flow towards x = 0 and are therefore
not strong enough to lead to breakup.

In addition to the rectangular waveform perturbation, we have considered the breakup of other
initial configurations that we mention here only briefly. We find that triangle waveform patterns
(with a base attached to the central filament) break up similarly to sinusoidal type geometries and
so do not display the richness of behavior as the rectangular waveform perturbation. If a vertex
of a triangular perturbation is connected to a filament, a breakup occurs at the vertex, without
influencing stability of the filament. Therefore, it appears that a rectangular waveform perturbation
is the most obvious one if the goal is to modify the stability properties of the central filament.

Next, we consider the evolution of the rectangular-wave geometry when varying the size of the
protrusions. Figure 5 shows the structures characterized by the same dimensions as in Fig. 3, except
that in Fig. 5(a), A, = 100 nm, and in Fig. 5(b), A, = 300 nm (Multimedia view). When A, is too
small, the structure does not break up, meaning that there is a critical amplitude, A., below which
breakup does not occur. For small A, the protrusions collapse too quickly, so that the low pressure
region in the junction is not sustained long enough for breakup to occur. The existence of A, is
consistent with the R—P stability predictions, since for sufficiently small A, linear stability should
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FIG. 5. Time evolution and the pressure distribution for 4, =150 nm, w,, =75 nm, showing a stable case and a case with
secondary protrusion breakup: (a) A, =100 nm, and (b) A, =300 nm. Each box is 75 nm by 75 nm, and the pressure scale
is the same as in Fig. 3. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4931086.3] [URL: http://dx.doi.org/10.1063/
1.4931086.4]

hold independently of the perturbation shape. On the other hand, when A, is sufficiently large, a
secondary breakup occurs, such that the protrusions form separate side-droplets that then recoalesce
to form central droplets at x = nd,,. A similar situation is observed in experiments.'® We note (and
discuss further below) that for very large A, a set of side droplets form as the droplets do not re-
coalesce, similar to the two-dimensional array of end droplets shown in Figs. 2(h) and 2(j). A more
complete discussion of possible breakup mechanisms is given next; as we will see, there is still a
more diverse range of end states to be described. For now, it is important to emphasize the most
interesting point: although perturbations add to the total volume and may therefore be expected
to stabilize short wavelengths, their influence may be opposite, leading actually to instability at
perturbation wavelengths that would be expected to be stable based on the classical R-P prediction.
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FIG. 6. (a) Classification of end states resulting from the evolution of the rectangular-wave geometry defined in Fig. 1(b).
Each symbol below a sketch of a possible end state is used in Figs. 7-10 to show that this particular end state is observed. The
end state consisting of three parallel filaments is not observed for the parameters considered and is included for completeness.
(b) Classification of dynamics. Filled symbols show the cases when either the protrusion breaks, the central strip breaks, or
no breakup occurs at any time, and the color of each indicates which of these cases is observed. Hollow symbols show cases
when both the central strip and the protrusions of the rectangular-wave breakup, and the color shows the order of the breakup
scenarios.

A. Parametric dependence

In this section, we explore the dependence of the dynamics on the parameters A, wy,, and A4,.
To reduce the number of parameters, unless otherwise noted, we fix w = 100 nm and 4 = 10 nm.

Figure 6 classifies the dependence of the breakup process on w, and A, for two wavelengths,
Ap. Figure 6(a) shows the observed end configurations. As shown, a diverse range of end states
can be achieved by harnessing this initial geometry. The one-dimensional arrays (circle) and arrays
with side droplets (square), as also observed in Ref. 18, viz., Fig. 2, are accompanied by additional
configurations such as a filament (triangle), a filament with side droplets (inverted triangle), and a
one-dimensional array with side filaments (diamond). Although not observed for these parameters,
a sixth state, consisting of three parallel filaments, is also possible. We note that within the consid-
ered framework, any resulting filaments ultimately should destabilize due to the R-P instability
mechanism, and an array of droplets should form with a distribution according to the prediction
of the R—P analysis as discussed in Ref. 11. However, this subsequent breakup takes place signif-
icantly later than the formation of the filament; Eq. (1) suggests that a filament resulting from,
say, A, = 110 nm, A4, = 150 nm, w, = 75 nm, would take nearly twice as long to break up when
compared to the time the filament would take to form (4.5 versus 2 ns). This longer time evolution is
not considered in the present work; we note that in the context of liquid metal films that are in liquid
state for a short time, any state discussed here may as well be the final outcome.

Figure 6(b) shows the relevant dynamics of the breakup; our goal is to classify what type of
breakup occurs, during any point in the evolution of the structure, even if later on, there is recoa-
lescence. We classify the evolution of this system according to whether the protrusions and/or the
central strip break up, and the order in which the breakup occurs. Hollow symbols show that both
the protrusion and the central strip rupture, and the color corresponds to whether the protrusions
break off before the central strip ruptures (red (dark grey) symbols), after the central strip ruptures
(green (light grey) symbols), or at approximately the same time as the central strip ruptures (blue
(black) symbols). All other cases are shown using filled symbols: blue (black) indicates that no
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breakup occurs at any time during the evolution, red (dark grey) that only the protrusions break off,
and green (light grey) that only the central strip ruptures. These breakup scenarios may be followed
by a secondary recoalescence of droplets to produce the static states discussed above. The end state
is not independent of the dynamics, for example, when the end state includes side droplets and
side filaments, indicated by an inverted triangle, a square, and a diamond in Fig. 6(a), this must
be accompanied by the protrusions breaking off (filled green (light grey), hollow red (dark grey),
hollow green (light grey), and hollow blue (black) symbols in Fig. 6). We find that decoupling
the classification of the end states and dynamics will more effectively facilitate discussion of the
parametric dependence.

Figure 7(a) summarizes the possible static and dynamic states for 4, = 150 nm. Let us first
consider an intermediate range of w), for which a breakup occurs, i.e., 45 nm < w, < 75 nm. Within
this range, we find that there is a critical amplitude, A., below which there will be no breakup and
the end state is a filament, and above which the central strip will rupture at some point. We find
that A. is about 110 nm for w,, 2 75 nm, and it increases to between 150 and 200 nm for 45 nm <
w, < 65 nm. However, for A, > A, variation of A, has no effect on the stability of the central strip.
That is, once A, is sufficiently large, any further increase does not affect whether or not the central
strip breaks up at some point in time. For w, between 65 nm and 95 nm, side droplets form when
A, = 500 nm; for small w, (25 nm < w, < 45 nm), side droplets form for A, ~ 300 nm, although
the strip does not rupture for w, = 25 nm. For large A, if side droplets do not form, the protrusions
introduce a large amount of excess liquid which may prevent the formation of a central array, even
though the central strip does break up (see, for example, w,, = 95 nm, A,, = 200 nm, and 300 nm).

The stability of the central strip is also affected by the protrusion width, w,. For small w,,
such as 25 nm, shown in Fig. 7(a), the central filament remains stable for all values of A,, and the
protrusions may either not break at all for small A, (e.g., 100 nm), break off and coalesce for larger
Ap, (=150 nm), or break off and remain separated for even larger values of A, (2200). Larger w,
(245 nm) is associated with a critical protrusion amplitude, A, as discussed above. It is interesting
to note that for w, = 45 nm and A, > 200 nm, the protrusion breaks off first, yet the central strip
still ruptures. This may seem counterintuitive, as the protrusions drive the breakup of the central

500 v 'y Vo wva'ovnol e 500 v Ty N v o 0 TN e
R W W A \ \ PR W W WA \ \
VR U U W \ T W U W \
1 A
O A N U U A TR
\ \ \ \ \ \ \ \ \ \ \ \
) \ \ . \ \
W0F Wy N N Sl AL U W SN
\ \ \ \ \\ \ \ \ \ \ \ \\ \ \
Loy N PO N NN
—_ v \ \ N \ Py vV \ \ N \
g v ! \ \ \ g v \ \ \
= 300 v N o q o ) NA{ & 300}v v A A A A N A4
~ \ \ \ AN N < \ . \ \ N\ N
< v \ N \\ < v \ N \\
\ \ \ \ N \ \ \ N g
\ N \ N N \ N \ N ~N
\ \ . A S ] \ \ N N N
N \, N
200 v © 0 @ e A o A 200 v & A A A A o AA
o ~ . ~
\ \ o .0 0 » - ~ \ \ A.® A X - 4
AV AN e o0 0 N a AV AN A .4 A N_ a
\ N S ~ \ N S ~
N @ o o9 9 N 4 A 09 1
~ ~. N ~
w0fa & AN2 2 L4 wofba & 4464 2 e
20 40 60 80 100 120 20 40 60 80 100 120
wp(nm) w,(nm)
(@) (b)

FIG. 7. Phase plots classifying the dynamics and end states for the evolution of the geometry shown in Fig. 1(b), for two
values of A,,. The symbols shape gives the end state produced by the breakup (Fig. 6(a)), while the symbol color classifies
the dynamics (Fig. 6(b)). (a) A =150 nm and (b) 4, = 130 nm. The dashed curves show constant effective cross-sectional
area, Qqf. The area increases from bottom left to top right.
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strip. However, in these cases, the time at which the protrusions break is comparable to the time
when the central strip breaks, indicating that a sufficiently large perturbation is still imparted to the
strip that breakup could occur even in the absence of the protrusion. For very large w,, such as
wp = 125 nm, the central filament remains stable; for A, = 300 nm, the protrusions break off from
the filament at some point of the evolution but eventually recoalesce.

Figure 7(b) shows the corresponding results for A, = 130 nm. For this smaller 1, a much nar-
rower range of parameters allows for the formation of arrays of droplets. Instead, we most often find
either a filament or a filament with side droplets. To explain this, first note that for the same value
of A, and w), there is a larger effective area, Q.q, for 4, = 130 nm than for 4, = 150 nm. Larger
Q. implies that any droplets resulting from breakup will not only be more closely spaced due to
the smaller value of A, but also larger in radius, which will tend to lead to recoalescence. Second,
as the structure begins its retraction, smaller 4, implies a larger negative curvature in the x-z plane
at x = (n + 1/2)4,, which will tend to stabilize the structure. When the central strip does rupture at
some point during the retraction, increasing A, to 500 nm, for large enough w,,, leads to the unique
case of a one-dimensional array of droplets with side filaments on either side, as the large amount
of liquid and narrower spacing leads to the coalescence of the side droplets produced by the protru-
sions breaking off. We note that in addition to 4, = 130 nm, we also considered A, = 110 nm, but
for such a small A we did not find breakup of the central strip for any combination of protrusion
parameters. Also, geometries characterized by larger values of A, are considered numerically and
experimentally in Ref. 18; droplets resulting from the breakup of large 4, geometries tend not to
recoalesce, leading to arrays of droplets with spacing exactly equal to A, and as A, is increased
further, further droplets may form leading to arrays with spacing of A,,/2 or smaller.

Finally, we briefly consider the effects of slip length, A, on the results. We consider the effect
of A only for w, =75 nm and A, = 150 nm, while permitting A, to vary; this parameter set is
sufficient to demonstrate the main effects of slip on the dynamics of breakup. Figure 8 shows three
important consequences of slip on both the dynamic and static states. First, for small A, (<200 nm),
smaller A promotes breakup of the central strip; this is due to the fact that, in order for the central
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FIG. 8. Parametric dependence on the slip length A for A = 10 nm, 60 nm, and co (free slip condition). Symbols and colors
indicate the same static states and dynamics as in Fig. 6. The parameters 1, and w, are fixed at 150 nm and 75 nm,
respectively.
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strip to break up, the protrusion must not collapse too quickly, so that a smaller slip delays the
collapse of the protrusion and allows breakup. Thus, the critical amplitude above which breakup
occurs, A, increases with A. Second, for large A, (2300), small A prevents recoalescence of the
side droplets with the liquid near z = 0, so that an array with side droplets is possible for smaller A,
as indicated by the square symbols (compare A = 10 nm to A = 60 nm). Finally, large A facilitates
recoalescence of droplets; for the free slip case, note that even when rupture of the central strip
occurs, the droplets inevitably recoalesce when A, > 175 nm.

IV. DISCUSSION
A. Relation to Rayleigh-Plateau instability mechanism

One important finding so far is that the chosen rectangular-wave geometry leads to the forma-
tion of droplets characterized by a spacing that is appreciably smaller than the critical wavelength
expected from the prediction of the R—P instability analysis. This holds true even if only the
cross-sectional area of the central strip, g, is considered: of course, if the total area (including
protrusions), Q.g, is used, the result leads to even higher efficiency when compared to the R-P
prediction. To be specific, the central strip considered so far has a critical R-P wavelength of
A¢(€p) = 160 nm, and our simulation results find droplet formation for A, = 130 and 150 nm. In
particular, for A, = 150 nm, parameters leading to the formation of a one-dimensional array of
droplets (indicated by a circle in Fig. 7) show 1.(Qcg) to be 1.5-2 times larger than A,.

B. Role of the effective area

Recall Fig. 7, where we plot dashed curves showing constant Q.g. Consider first 4, = 150 nm,
plotted in Fig. 7(a). For relatively small Q.g, (indicated by lines in the lower left corner), it is
impossible to destabilize a strip, as either the protrusions must be so thin (small w),) that they
break off without destabilizing effect, or A, is below the critical value. In the other extreme, for
large Q. (top right corner), either A, must be so large that side droplets form or w, must be
so large that no breakup occurs. Thus, only strips with an intermediate range of Q. result in
one-dimensional arrays of droplets. We also note that differing parameters lead to a variety of results
for the same Q.. Consider the line of constant Q. passing near w, =45 nm and A, = 300 nm
(plotted as a dashed-dotted line in Fig. 7(a)). Large amplitude perturbations permit the formation of
a two-dimensional array, as indicated by a square. Moving rightwards along the line, decreasing A,
results in a one-dimensional array (see, e.g., w, = 75 nm and A, = 175 nm), while further reduction
in A, leads to an end state which is a filament (see, e.g., w, = 125 nm and A, = 100 nm).

Figure 7(b) shows the corresponding results for 4, = 130 nm. Similarly to Fig. 7(a), perturba-
tions of strips with small Q.g (lower left corner) do not lead to the formation of an array of droplets,
while perturbations of strips with large Q.g (upper right corner) result in either a filament or an array
of droplets with side filaments. Only strips with an intermediate range of Qg result in one- and
two-dimensional arrays. Just as in the 2, = 150 nm case, the end state for the same Q.g depends on
the choice of A, and w,,. To show this, consider the line passing near w, = 65 nmand A, = 175 nm
(plotted as a dashed-dotted line); we see that only a small range of parameters permits the formation
of an array of droplets. For larger w),, breakup of the central strip still occurs, but these droplets
subsequently recoalesce. Thus, for both 4, = 130 nm and 150 nm, Q.g does not determine the end
state, as varying w, and A, can completely change both the type of breakup that occurs, as well as
whether or not recoalescence occurs after any breakup.

Next, we discuss the effect of A, on the breakup. Figure 9 shows (1,,w,) phase diagram for
a fixed A, = 150 nm, with curves of constant effective areas, Q.g. This plot shows that larger 4,
perturbations tend to promote breakup. This holds when moving along lines of constant Q.g from
wp =75 nm and A, = 150 nm, which results in a one-dimensional array of droplets, to w, = 65 nm
and A, = 130 nm, where no breakup occurs at all. Similarly, perturbed strips with Qg that breakup
for A, = 130 nm (red (dark grey) symbols) do not break up for 4, = 120 nm (blue (black) sym-
bols). As noted above, small Qg results in strips that do not break up, so that no breakup occurs for
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FIG. 9. Parametric dependence on A, and w), for A, =150 nm. Symbols and colors indicate the same end states and
dynamics as in Fig. 7. Dashed lines show curves of constant effective cross sectional area, Q.. The area increases from
bottom right to top left.

Ap = 130 nm, and w, < 65 nm. It is worth noting here that 1, has little effect on the behavior of the
protrusions when w), is fixed. For w,, < 45 nm, Fig. 9 shows that for all A,, the protrusions break
off, as indicated by the green (light grey) color. On the other hand, for w,, > 65 nm, the protrusions
do not break off, as indicated by the red (dark grey) and blue (black) colors.

C. Summary of the breakup

We are now in a position to summarize the mechanism by which the rectangular-wave geom-
etry breaks up. The primary driving mechanism of the break up is based on the fact that the
cross-shaped geometry near x = nd,, leads to an initial negative x-z curvature, which, as the struc-
ture begins its initial retraction, results in the formation of a low pressure bulge. Along the central
strip, near x = (n + 1/2)4,,, the liquid retracts to a half-cylinder. A positive x-y curvature of magni-
tude 1/v2hw/m leads to a large corresponding Laplace pressure at x = (n + 1/2)4,, between two
low pressure bulges at x = nd,, and so liquid drains out of the neck into the bulges, leading to
breakup.

Figures 7(a) and 7(b) show that neither the end state nor the dynamics are entirely determined
by the effective area Qcq. For strips with a small Qcg, either the perturbation has a small A, and
it cannot break the strip up or w), is so small that the protrusions form side droplets, and the strip
still does not break up. Strips with large Q.¢ may breakup, and then either a two-dimensional array
forms, or the droplets will recoalesce into a filament. Only for strips with an intermediate range of
Q. is a one-dimensional array of droplets a possible end state.

Since the dynamics of the retraction may vary with the same Q.4 and changing the amount
of liquid per wavelength necessarily changes the possible end states, it is necessary to consider
any breakup in terms of the dynamics (classification shown by color in Figs. 7(a) and 7(b)). The
amplitude A, is only important in that it must be larger than a critical one, A., in order for the
central strip to break up. For larger values of A, and a fixed w,,, the central strip does not change its
dynamics; that is, once breakup is possible, any further increase in A, does not affect whether or not
the central strip breaks up at some point in time.

Whenever droplets form, it is found that the resulting center to center spacing is always equal
to A, and as discussed in Sec. IV A, A, is generally smaller than the smallest possible spacing that
can be understood using the R—P instability analysis. Thus, a rectangular-wave edge perturbation is
a highly effective way of generating arrays of closely spaced droplets, far below what is expected
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based on the R—P instability mechanism. We note that the aspect ratio of the perturbations is impor-
tant: even if A, and Q. are specified, one of w, or A, is still a free parameter; selected value can
strongly influence the end state.

D. Formation of satellite droplets

The end state for a variety of parameters for 4, = 150 nm includes small satellite droplets
between the droplets in the central array; no satellite droplets are present in the end state when
Ap =130 nm. Figure 10(a) shows the snapshots of the droplet, for A, = 150 nm, 1, = 150 nm,
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FIG. 10. (a) Satellite droplets for wj, =75 nm and A, =150 nm. One box is 75 nm by 75 nm. (b) Close up of the breakup
of the filament connecting primary droplets for w, =75 nm and A, =150 nm. A mirror condition is applied at the solid
black line, so that the figure shows half of the filament. Note that an instability appears to be developing after the breakup
of the thin filament connecting the two main droplets, leading possibly to the formation of tertiary droplets. Capturing
the details of this breakup would require higher resolution than used in the present study (note insufficient grid resolution
resulting in non-smooth surface of the connecting filaments). (c) Satellite droplet radius for w,, =65 nm (red (dark grey)),
wp, =75 nm (green (light grey)), w, =85 nm (blue (black)), and w,, =95 nm (hollow red (dark grey)). Circles indicate that
the equilibrium is a one-dimensional array, and squares indicate that the end state is an array with side droplets. For these
results, 4, =150 nm.
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and w, = 75 nm, just prior to breakup (left), and at the end state (right). Prior to the breakup, a
very thin filament connects the two droplets; after the breakup, there are small satellite droplets
located at x = (n + 1/2)1,,. The formation of these satellite droplets is due to the fact that the thin
filament breaks up near its ends. Figure 10(b) shows a closeup of the connecting filament just prior
to (left) and after (right) the breakup. Just prior to the breakup, the connecting filament begins
to neck at a point close to the primary droplet, which results in the filament breaking up near its
ends. After breakup, this filament retracts into a small satellite droplet. The size of the satellite
droplet is therefore determined by the amount of liquid in the connecting filament. Figure 10(c)
shows the radius of the satellite droplets for all parameters when the central strip breaks up and
a satellite droplet results, for 4, = 150 nm. In general, larger w, leads to larger satellite droplets.
Regarding the influence of A, we find that the size of the satellite droplet peaks for A, = 150 nm
and is approximately the same for larger values of A,. We generally find that A, and w,, influence
the formation of different length filaments and consequently the formation of satellite droplets of
different sizes. We note, however, that the size of satellite droplets depend on the nature of the
evolution in a complicated manner, whether protrusions break up or not, and/or when they break up.
We leave the investigation of this issue for future work.

V. CONCLUSIONS

In this paper, we show that the initial geometry of a liquid deposited on a substrate has a
strong influence on the morphology of the final patterns that result due to the liquid instability. In
particular, we find that appropriate choices of the initial geometry may lead to instabilities even
in configurations that are expected to be stable based on the analogy with the R—P instability
mechanism. Our computational results show that the initial liquid shape strongly influences the
distribution of the pressure in the liquid. Therefore, rectangular waveform perturbations, considered
in this work, lead to evolution that is considerably different from, for example, the one resulting if
sinusoidal waveform perturbations are applied.

While the methods that we use are of general validity, we concentrate particularly on recent
experiments carried out with liquid metals on nano-scale, where the ability to control the location
and size distribution of the resulting nano-particles is of fundamental interest in applications in
the field of nano-assembly. We show that a diverse range of nano-particle arrays can be observed
and that the rectangular-wave geometries perturbed by short wavelengths (shorter than the critical
wavelength predicted by the R—P instability) exhibit a complex nonlinear evolution. We classify the
dynamic behavior as well as the end states for the perturbations that differ by their aspect ratio and
the perturbation wavelengths, 1,,. We demonstrate that it is possible to produce arrays of droplets
with the spacing, 4, as small as half the critical wavelength predicted by the R-P instability
mechanism. Added complexity is introduced by the fact that the aspect ratio of the introduced
perturbations plays an important role: for example, given an “effective” area, Q.g (total volume of
the liquid per A,), a significantly different evolution can be observed for different aspect ratios.
Depending on the parameters, one-dimensional arrays of droplets for an intermediate range of Q.g¢
can then be obtained; larger Q.¢ tends to produce central arrays of droplets with droplet arrays
on the sides (two-dimensional arrays), while smaller Q. structures do not break up. Additional
configurations are possible as well, see Fig. 6 for a complete classification.

One particular feature of the instabilities that are observed in this work is the complex coupling
between the dynamics and end configurations, with differing dynamics leading to possibly the same
end states, as illustrated in Fig. 6. Our study demonstrates some, perhaps not obvious, features of the
instability development. For example, we find that the perturbation amplitude, A, in general has to
be larger than a critical value, A., for breakup to occur, and for some cases, increasing A, results
in the final state transitioning from a filament, to a one-dimensional array, back to a filament, and
into a two-dimensional array of droplets. Decreasing A, tends to prevent the formation of droplets,
and for a very small A4, the central strip does not rupture at all. The slip length, A, is found to have
a significant effect on the formation of arrays and the stability of the structures, with a smaller A
associated with breakup and the formation of arrays, and a larger A either preventing the breakup
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altogether or leading to recoalescence of the resulting droplets after the breakup occurs. Therefore,
by varying the geometry and slip, it is possible to obtain, in a controllable manner, a large range of
different dynamics and a variety of end states.

In the present work, we have focused on the influence of liquid geometry on the evolution and
have not considered variation of material parameters that may lead to transition between inertial,
viscous, and capillarity dominated regimes. Other interesting considerations could include (i) the
role of surface active contaminants, as metals are subject to adsorption of species that lower their
tension, and (ii) the role of heat transfer between the metal and the substrate leading to variation of
material parameters and additional effects including thermo-capillary ones. We leave such studies
for a future work and note that ongoing work in material science makes them highly relevant.
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