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a b s t r a c t 

We present a computational investigation of thin viscoelastic films and drops on a solid substrate subject 

to the van der Waals interaction force, in two spatial dimensions. The governing equations are obtained 

within a long-wave approximation of the Navier–Stokes equations with Jeffreys model for viscoelastic 

stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and the substrate slippage on 

the dynamics of thin viscoelastic films. We also study the effects of viscoelasticity on drops that spread 

or recede on a prewetted substrate. For dewetting films, the numerical results show the presence of 

multiple secondary droplets for higher values of elasticity, consistently with experimental findings. For 

drops, we find that elastic effects lead to deviations from the Cox–Voinov law for partially wetting fluids. 

In general, elastic effects enhance spreading, and suppress retraction, compared to Newtonian ones. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Thin liquid films play a central role in many real life applica-

tions and therefore are studied widely theoretically, numerically,

and experimentally. Thin polymer films, in particular, are of special

importance due to their presence in a broad variety of applications,

for example, in the food, chemical, and pharmaceutical industries,

as well as in materials science. Polymeric liquids are one exam-

ple of a wider class of viscoelastic liquids, constituted by a New-

tonian (viscous) solvent and a non-Newtonian (polymeric) solute.

In general, viscoelastic films combine characteristics of viscous flu-

ids with features typical of elastic matter. The interface between

the liquid and the surrounding fluid (usually a gaseous phase) is

a free and deformable boundary, and therefore thin liquid films

can display a variety of dynamics and interfacial instabilities. As

widely presented in the literature, see, for instance, [1–3] , these

instabilities can lead to film breakup, dewetting the substrate. The

understanding of the instability mechanisms relevant to thin poly-

mer films has thus motivated many theoretical and experimental

studies, see, e.g., [4–7] . Perhaps one of the first experimental works

on this matter has been carried out by Reiter [8] , where the influ-

ence of the film thickness on the interfacial instability of polymer

films of nanometer size is examined. His study shows that, when

dewetting occurs, a rim can form ahead of the dewetting edge and

subsequently decay into drops on the substrate. Since his work, the

investigation of thin polymer film morphologies at the nanoscale

has been a major focus of many studies, see, e.g., [9–14] . Addi-
∗ Corresponding author. 
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ional works focused on the stability, the dynamics, and the mor-

hology of the fluid interface due to rheological properties [15–19] ;

hese investigations are carried out with the goal of understand-

ng whether the effects related to viscoelasticity, slippage, surface

eterogeneities, or forces of electrohydrodynamic origin play a key

ole in the development of surface instabilities. 

Despite numerous works focusing on polymeric films, very

ew studies consider numerical simulations of the interface of

hin layers of viscoelastic fluids dewetting a solid substrate, see,

.g., [20,21] . In particular, Vilmin and Raphaël develop a model

ased on a simplified dewetting geometry of the film, neglect-

ng the surface tension [20] . They demonstrate that the friction

orce and the residual stresses, due to the film viscoelasticity, can

ave an opposing influence on the dewetting dynamics. They show

hat these residual stresses can accelerate the onset of the dewet-

ing, followed by a slow, quasi-exponential, growth of the hole. Al-

hough their model is useful to explain the main features of the

ynamics of the evolving rim, it is unable to provide a detailed

escription of the dewetting process and a quantitative investi-

ation of the final morphological structures. An earlier study of

omar et al. [21] uses the lubrication model derived by Rauscher

t al. [22] for thin viscoelastic films of Jeffreys type, although with-

ut including the substrate slippage. Using both linear stability

nalysis and nonlinear simulations, they show that viscoelasticity

oes not have a major influence on the dewetting dynamics. Their

umerical solutions suggest that the length scale of instability in

he nonlinear regime is unaltered by the viscoelasticity. 

In this work, we present a detailed description of numerical

olutions of the nonlinear governing equation based on the long-

ave (lubrication) model developed by Rauscher et al. [22] for thin
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o  
iscoelastic films, with Jeffreys constitutive model for viscoelastic

tresses [4,23] . In this model, viscoelastic stresses are described

ith a Newtonian contribution (due to the solvent) plus a poly-

er contribution that is governed by the linear Maxwell model [6] .

o model the film breakup and the consequent dewetting process,

s well as to impose the contact angle, we include the van der

aals attraction/repulsion interaction force. This force introduces

n equilibrium film on the solid substrate, leading to a prewetted

often called precursor) layer in nominally dry regions. In particu-

ar, we focus on the emerging length scales due to the instability

f a viscoelastic film at dewetting stage, that to date have not been

eported in the literature. Unlike the previous numerical studies

ntroduced, we consider the effect of transitioning from no-slip to

eak slip on the initial instability development and the dewetting

ynamics. A surprising finding is that the resulting morphologies

re influenced by viscoelasticity and slippage. In fact, we show the

ormation of not only main drops, as previously demonstrated in

21] , but also of multiple satellite droplets that are completely ab-

ent for Newtonian films. These secondary droplets are compara-

le with those found experimentally (see, e.g. [8,12] or [10] , where

hey are called “nanodroplets”), but, to the best of our knowledge,

ave not been found in previous computational studies of the evo-

ution of viscoelastic films. 

The first part of our investigations concerns the spontaneous

ewetting of a thin viscoelastic film, initially at rest, due to van der

aals interactions, in two spatial dimensions. Consistently with

24] , we find that in the linear regime, the critical and most un-

table wavenumbers are neither dependent on the viscoelastic pa-

ameters, nor on the slip length, but only on the van der Waals

nteractions with the substrate. We then provide numerical simu-

ations of the evolution of the interface in the nonlinear regime.

n this regime, we find that the instability and the final configu-

ation of the fluid in primary and secondary droplets are affected

y the viscoelastic parameters and the slippage of the substrate.

e show how a larger viscoelasticity induces the formation of sec-

ndary droplets, and how the slip at the substrate prevents them

rom forming. We thus provide, for the first time, numerical sim-

lations leading to novel morphologies for thin viscoelastic dewet-

ing films. 

Finally, we focus on the spreading/receding of viscoelastic pla-

ar drops on a solid substrate. We study viscoelastic drops that

pread/recede spontaneously due to the imbalance between the

nitial and the equilibrium contact angles. The theoretical and

xperimental studies of spreading or retracting drops, both for

ewtonian and viscoelastic fluids, are numerous (see, e.g., [25–

2] ). Surprisingly, only a few studies report computational results

or viscoelastic dynamic contact lines, see [33–35] . Yue and Feng

33] use a phase-field model to simulate the displacement flow 

f Oldroyd-B fluids in a channel formed by parallel plates. They

how that viscoelastic stresses close to the contact line region af-

ect the bending of the interface. Also, Wang et al. [34] use an

xisymmetric formulation to describe the spreading of viscoelastic

rops, comparing the Giesekus (shear-thinning) and the Oldroyd-B

odels. They show that the spreading speed depends on the vis-

oelastic relaxation time. Most recently, Izbassarov and Muradoglu

35] study the effects of viscoelasticity on drop impact and spread-

ng on a solid substrate. They investigate the spreading rate of vis-

oelastic drops, using the FENE-CR model, and find that viscoelastic

ffects enhance the spreading speed. 

In the present work, we consider partial wetting by accounting

or van der Waals interactions between the solid and the fluid. Al-

hough our approach is developed strictly for configurations char-

cterized by small interfacial slopes, we expect that it still provides

easonably accurate results for the situations such that the contact

ngle is not small (see, e.g., [27] for a discussion of this topic). Our

umerical results show that viscoelasticity enhances the spread-
ng in the early stage of wetting by smoothing the interface in

he contact line region. Similar considerations are drawn by Wang

t al. [34] , and Izbassarov and Muradoglu [35] . Finally, the study

f the advancing dynamic contact angle allows us to determine

hat the Cox–Voinov law [36,37] holds for the viscous Newtonian

uid, but not for the viscoelastic counterpart. For retracting drops,

e find that the interface of a viscoelastic drop provides more re-

istance to the motion, causing the drop to retract slower, consis-

ently with the experimental study [32] . Our results regarding re-

eding viscoelastic drops show a deviation from the Cox–Voinov

aw as well. 

It is appropriate to make a remark about the choice of the con-

titutive model. Although linear viscoelastic models, such as the

effreys model, are known to be valid only for flows with small

isplacement gradients [4,21,22] , we expect a linear constitutive

odel to be sufficiently adequate to describe the viscoelastic be-

avior in the context of spontaneous wetting/dewetting processes.

or more complex flows, one should incorporate more general vis-

oelastic models, such as the Oldroyd-B model [4] . However, as

oted also by Tomar et al. [21] , the nonlinear convective terms

f the stress tensor in an Oldroyd-B model would not change the

inear stability analysis, and therefore our results for the linear

egime are valid for both linear and nonlinear viscoelastic mod-

ls. Furthermore, our numerical simulations show how, in the final

tage of the nonlinear evolution, dewetting viscoelastic films dis-

lay a slow, viscous dynamics, for which a linear viscoelastic model

s considered to be appropriate. Additionally, we have verified that

isplacement gradients (hence the shear rate) are not large even

n the intermediate time of the dewetting process, in which vis-

oelastic fluids exhibit a non-Newtonian response to deformations.

n summary, in the context of spontaneous wetting/dewetting

rocesses driven by the van der Waals interaction force only,

he assumption of small displacement gradients is not violated,

nd a linear viscoelastic model suffices to describe the effects of

iscoelasticity. 

The rest of this paper is organized as follows: In Section 2 ,

e introduce the governing equations; In Section 3 , we outline

he numerical methods used to solve the nonlinear problem; In

ection 4 , we present the linear stability analysis (LSA), and discuss

he numerical results for both dewetting and wetting studies; In

ection 5 , we draw our conclusions; We finally report the deriva-

ion of the governing equations and their numerical discretization

n Appendix A and Appendix B , respectively. 

. Governing equations 

We consider an incompressible liquid, with constant density ρ ,

urrounded by a gas phase assumed to be inviscid, dynamically

assive, and of constant pressure. The equations of conservation of

ass and momentum, respectively, for the liquid phase then be-

ome 

( ∂ t u + u · ∇ u ) = −∇(p + �) + ∇ · τ, (1a) 

 · u = 0 , (1b) 

where u = (u (x, y, t) , v (x, y, t)) is the velocity field in the Carte-

ian xy -plane (as by convention, the x -axis is horizontal, and the

 -axis is vertical), and ∇ = (∂ x , ∂ y ) ; τ is the stress tensor, p is the

ressure, and � is the disjoining pressure induced by the van der

aals solid-liquid interaction force (we note that ∇� = 0 except

t the liquid-gas interface). This force is attractive (destabilizing)

or thicker films and repulsive (stabilizing) for thin ones, leading

aturally to the concept of equilibrium film thickness, defined be-

ow as h � , at which repulsive and attractive forces balance each

ther [38] . We provide the form of the disjoining pressure used in
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Fig. 1. Schematic of the fluid interface and boundary conditions. Fluid 1 is the vis- 

coelastic liquid and fluid 2 is the ambient (passive) gas. 
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this work in Appendix A , where the long-wave approximation of

the system (1) is described in detail. 

To model the stresses, we use a generalization of the Maxwell

model for viscoelastic liquids: the Jeffreys model. It describes the

non-Newtonian nature of the stress tensor τ , interpolating be-

tween a purely elastic and a purely viscous behavior. The stress

tensor according to Jeffreys model follows the constitutive equa-

tion 

τ + λ1 ∂ t τ = η( ˙ γ + λ2 ∂ t ˙ γ ) , (2)

where ˙ γ is the strain rate tensor, e.g. ˙ γ12 = ∂ x v + ∂ y u (other com-

ponents of ˙ γ are similarly expressed in terms of derivatives of u ),

and η is the shear viscosity coefficient. In Jeffreys model, the re-

sponse to the deformation of a viscoelastic liquid is characterized

by two time constants, λ1 and λ2 , the relaxation time and the re-

tardation time , respectively, related by 

λ2 = λ1 
ηs 

ηs + ηp 
. (3)

Here ηs and ηp are the viscosity coefficients of the Newtonian sol-

vent and the polymeric solute, respectively, such that η = ηs + ηp .

Noting that the ratio ηr = ηs / (ηs + ηp ) ≤ 1 , we have that λ1 ≥ λ2 

[4,21,22] . We also observe that, within the Jeffreys model, we re-

cover the Maxwell viscoelastic model when λ2 = 0 , and a Newto-

nian fluid when λ1 = λ2 . 

Fig. 1 shows a schematic of the fluid interface, represented

parametrically by the function f (x, y, t) = y − h (x, t) = 0 , and the

boundary conditions at the free surface ( y = h (x, t) ) and at the x -

axis ( y = 0 ). At the latter, we apply the non-penetration and the

Navier slip boundary conditions, with slip length coefficient de-

noted by b ≥ 0 ( b = 0 implies no-slip). As discussed in [39,40] ,

long-wave models for thin films can be derived in different slip

regimes. In the present work, we will focus on the weak slip

regime; for strong slip, a different system of governing equations is

derived in [24] . The interested reader can find the derivation of the

governing equation for the evolving interface h ( x, t ) in Appendix A,

where all quantities and scalings are defined. We report here its

final dimensionless form 

(1 + λ2 ∂ t ) h t + 

∂ 

∂x 

{
(λ2 − λ1 ) 

(
h 

2 

2 

Q − hR 

)
h t 

+ 

[
(1 + λ1 ∂ t ) 

h 

3 

3 

+ (1 + λ2 ∂ t ) bh 

2 

]
∂ 

∂x 

(
∂ 2 h 

∂x 2 
+ �(h ) 

)}
= 0 , 

(4)

where Q = Q(h ) and R = R (h ) satisfy, respectively, 

(1 + λ2 ∂ t ) Q = − ∂ 

∂x 

(
∂ 2 h 

∂x 2 
+ �(h ) 

)
, (5a)
(1 + λ2 ∂ t ) R = −h 

∂ 

∂x 

(
∂ 2 h 

∂x 2 
+ �(h ) 

)
. (5b)

We note that in the absence of viscoelasticity (i.e. with λ1 =
2 ), Eqs. (4) and (5) reduce to the well-known long-wave formula-

ion for viscous Newtonian films (see, e.g., [2] ). 

. Numerical methods 

To numerically solve Eqs. (4) and (5) , we use the finite differ-

nces technique, described in detail in Appendix B. To simplify, we

rst consider a purely elastic (Maxwell) liquid, that is λ2 = 0 . Thus,

he governing Eqs. (4) and (5) reduce to a first order in time for-

ulation given by 

 t − ∂ 

∂x 

{
λ1 

h 

2 

2 

(
h xxx + �′ (h ) h x 

)
h t −

[
h 

3 

3 

+ bh 

2 + λ1 
∂ 

∂t 

(
h 

3 

3 

)]

×
(
h xxx + �′ (h ) h x 

)}
= 0 . (6)

o discretize Eq. (6) , we isolate the time derivatives from the spa-

ial ones, so that we can apply an iterative scheme to find the

pproximation to the solution at the new time step. We do so

y differentiating the spatial derivatives and, assuming the partial

erivatives of h ( x, t ) to be continuous, we obtain 

∂ 

∂x 

[(
h 

3 

3 

+ bh 

2 

)(
h xxx + �′ (h ) h x 

)]
 ︷︷ ︸ 

f (h ) 

+ 

[
1 − 1 

2 

λ1 
∂ 

∂x 

[
h 

2 
(
h xxx + �′ (h ) h x 

)]]
︸ ︷︷ ︸ 

g(h ) 

h t 

+ 

∂ 

∂t 

(
∂h 

∂x 

)
︸ ︷︷ ︸ 

l(h ) 

{ 

−1 

2 

λ1 

[
h 

2 
(
h xxx + �′ (h ) h x 

)]} 

︸ ︷︷ ︸ 
m (h ) 

+ λ1 
∂ 

∂t 

[
∂ 

∂x 

(
h 

3 

3 

(
h xxx + �′ (h ) h x 

))]
︸ ︷︷ ︸ 

p(h ) 

= 0 . (7)

e can now differentiate the time derivatives and use the Crank–

icolson scheme on the term f ( h ) as 

(h ) n i 

h 

n +1 
i 

− h 

n 
i 


t 
+ m (h ) n i 

l(h ) n +1 
i 

− l(h ) n 
i 


t 

+ λ1 

p(h ) n +1 
i 

− p(h ) n 
i 


t 
= −1 

2 

[
f (h ) n i + f (h ) n +1 

i 

]
. (8)

he nonlinear terms h 2 and h 3 are computed at the cell-centers, as

utlined in [41,42] . After the linearization, we obtain a system of

quations of the form A 1 ξ = B 1 , that we numerically solve for the

orrection term, ξ , using a direct method [43] . The initial condition

iven for h ( x , 0) is a known function that either describes the ini-

ial perturbation of the fluid interface for the film simulations or a

ircular cap for the drop simulations (see Section 4 ). 

For λ2 � = 0, the governing Eq. (4) , after taking the spatial deriva-

ive, and isolating the time derivatives, can be recast to a second
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rder in time equation given by 

2 h tt + 

∂ 

∂x 

[(
h 

3 

3 

+ bh 

2 

)(
h xxx + �′ (h ) h x 

)]
︸ ︷︷ ︸ 

f (h ) 

+ 

{
1 + (λ2 − λ1 ) 

[
∂ 

∂x 

(
h 

2 

2 

Q − hR 

)]}
︸ ︷︷ ︸ ̂ g (h ) 

h t 

+ 

∂ 

∂t 

(
∂h 

∂x 

)
︸ ︷︷ ︸ 

l(h ) 

(λ2 − λ1 ) 

(
h 

2 

2 

Q − hR 

)
︸ ︷︷ ︸ ̂ m (h ) 

+ λ1 
∂ 

∂t 

[
∂ 

∂x 

(
h 

3 

3 

(
h xxx + �′ (h ) h x 

))]
︸ ︷︷ ︸ 

p(h ) 

+ λ2 
∂ 

∂t 

[
∂ 

∂x 

(
bh 

2 
(
h xxx + �′ (h ) h x 

))]
︸ ︷︷ ︸ 

q (h ) 

= 0 , (9) 

here now the discrete versions of the Eqs. (5a) and (5b) are: 

Q 

n +1 
i 

− Q 

n 
i 


t 
= −Q 

n 
i 

λ2 

− 1 

λ2 

(
h xxx + �′ (h ) h x 

)n 

i 
, (10a) 

R 

n +1 
i 

− R 

n 
i 


t 
= − R 

n 
i 

λ2 

− 1 

λ2 

h 

n 
i 

(
h xxx + �′ (h ) h x 

)n 

i 
, (10b) 

hat we simply solve by the forward Euler method with initial con-

itions Q 

0 
i 

= 0 and R 0 
i 

= 0 . Again, discretizing all terms and apply-

ng Crank–Nicolson scheme we obtain 

2 

h 

n +1 
i 

− 2 h 

n 
i 

+ h 

n −1 
i 


t 2 
+ ̂

 g (h ) n i 

h 

n +1 
i 

− h 

n 
i 


t 
+ ̂

 m (h ) n i 

l(h ) n +1 
i 

− l(h ) n 
i 


t 

+ λ1 

p(h ) n +1 
i 

− p(h ) n 
i 


t 
+ λ2 

q (h ) n +1 
i 

− q (h ) n 
i 


t 

= −1 

2 

[
f (h ) n i + f (h ) n +1 

i 

]
. (11) 

imilarly, we proceed by linearizing the nonlinear terms and solv-

ng the resulting system A 2 ξ = B 2 . We note that in this case the

artial differential equation is second order in time. We therefore

eed a two-step method with a second initial condition, in addi-

ion to the prescribed h ( x , 0). We use h t (x, 0) = 0 , resulting from

he assumption that the considered films and drops are initially at

est. 

. Results and discussion 

.1. Linear stability analysis 

To study the fluid response to a prescribed disturbance, we per-

orm the linear stability analysis (LSA). We perturb a flat film of

nitial thickness h 0 by a Fourier mode of amplitude δh 0 (such that

� 1), with wavenumber k and growth rate ω. Hence we let

 (x, t) = h 0 + δh 0 e 
ikx + ωt . The dispersion relation ω = ω(k ) is 

2 ω 

2 + 

[
1 + (k 4 − k 2 �′ (h 0 )) 

(
λ1 

h 

3 
0 

3 

+ λ2 bh 

2 
0 

)]
ω 

+(k 4 − k 2 �′ (h 0 )) 

(
h 

3 
0 

3 

+ bh 

2 
0 

)
= 0 . (12) 

olving for the two roots of this quadratic equation, we obtain

ne strictly negative root, ω 2 , and one root with varying sign,

 . The latter one is positive (unstable) for k 2 < �′ ( h ). We note
1 0 
hat both the critical wavenumber, k c , given by k 2 c = �′ (h 0 ) , and

he wavenumber of maximum growth, k m 

= k c / 
√ 

2 , do not de-

end on λ1 and λ2 , nor on the slip length b (as also discussed in

24] ). Moreover, we note that in the absence of retardation, i.e. for

2 = 0 , the dispersion relation for a purely elastic film leads to an

nbounded growth rate for λ1 = −3 /h 3 
0 
(k 4 − k 2 �′ (h 0 )) . However,

or λ2 � = 0, the growth rate ω is always finite. This observation

bout the unboundedness of the growth rate in purely elastic films

as also been drawn by other authors, see, for instance, [19,21] .

e also note that the maximum growth rate, ω m 

= ω(k m 

) , is an

ncreasing function of λ1 and b , while a decreasing function of λ2 .

n Section 4.2 , we will discuss in more details the effects of λ1 , λ2 ,

nd b on the dewetting dynamics. 

.2. Dewetting of thin viscoelastic films 

In this section, we present the numerical results for a dewet-

ing thin film under the influence of the van der Waals interaction

orce. We perturb the initially flat fluid interface of thickness h 0 as

escribed in Section 4.1 , with k = k m 

and δ = 0 . 01 . We choose the

omain size to be equal to the wavelength of maximum growth,

hat is � = 2 π/k m 

, unless noted otherwise. For unstable pertur-

ations, the van der Waals interaction force is attractive, causing

he liquid interface to retract towards the substrate. When the

uid interface approaches the substrate, dewetting occurs, i.e. a

ole (nominally a dry region) forms, leading to the formation of

 rim that retracts and collects the liquid at the edge. The system

hen gradually evolves toward an equilibrium state, corresponding

o separate drops on the substrate characterized by the equilibrium

ontact angle, θ e . We are mainly interested in the dynamics of the

nstabilities and the resulting morphologies, so we will only show

esults for unstable films. The set of parameters used for all simu-

ations shown hereafter is: an initial normalized height of the fluid

 0 = 1 , an equilibrium film thickness h � = 0 . 01 , a constant contact

ngle θe = 45 ◦, a normalized surface tension σ = 1 , and a fixed

rid size 
x = 5 × 10 −3 , unless specified differently. All numerical

esults shown in this work are verified to be mesh-independent.

e also validate our numerical investigations by comparing the

rowth rate for the early times with the LSA ( Eq. (12) ). Fig. 2 (a)

hows the comparison of the computed growth rates for differ-

nt wavenumbers (red circles) with the one given by the disper-

ion relation ω 1 ( k ) (blue solid curve), for a film with λ1 = 5 and

2 = 0 , when b = 0 . For these numerical simulations, we choose

he domain size according to the wavelength that corresponds to

he specified wavenumber. Although not shown here, comparisons

etween computed growth rates and the LSA are performed for all

ollowing results as well. 

We begin our analysis with the simplest case of a purely elastic

uid, λ2 = 0 , and with no-slip at the substrate, b = 0 . Figs. 2 (b)–

d) show the evolution of four distinct films with different values

f the relaxation time, λ1 = 0 (blue circles), 2 (cyan triangles), 4

green squares), and 6 (red crosses), at three selected times. The

nterfacial dynamics can be divided into three phases. The initial

egime corresponds to the short-time viscous response of the fluid,

ntil the film separates in two retracting rims ( Fig. 2 (b)). During

ntermediate times, the fastest dynamics occurs, and the liquid re-

ponds elastically: in this stage holes and retracting edges form

 Fig. 2 (c)). In the last phase, the rims grow further in height, un-

il the interface reaches its final configuration, attaining an equi-

ibrium contact angle with the substrate ( Fig. 2 (d)). During this

hird stage, the fluid shows a long-time Newtonian response again.

hese observations of the dewetting dynamics are in agreement

ith results in [20,21] ; moreover, we note that the shape of the

ewetting front that forms a retracting rim is consistent with find-

ngs in [13,14,21] . In addition, we observe that non-zero values of

not only slightly increase the speed of the breakup, but also
1 
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Fig. 2. 2(a) The comparison of the computed growth rate (red circles) with the prediction of the LSA (blue solid line) given by Eq. (12) , for h 0 = 1 , h � = 0 . 01 , b = 0 , 

λ2 = 0 , λ1 = 5 . 2 (b)–(d) Evolution of four distinct dewetting films with λ1 = 0 (blue circles), 2 (cyan triangles), 4 (green squares), 6 (red crosses), at three selected times. At 

t = 3 . 345 × 10 5 2 (b), the separation of the rims and the formation of a secondary droplet for values of λ1 � = 0 are shown. In 2 (c), t = 3 . 37 × 10 5 , and in 2 (d), t = 3 . 38 × 10 5 . 

The insets show a close-up of the region where a secondary droplet forms. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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1 Defined in Appendix A. 
allow for the formation of a satellite droplet, in contrast to the

Newtonian film (with λ1 = 0 ). In particular, in the inset in Fig. 2 (b),

we distinguish the formation of dips on the interface in the vicin-

ity of the secondary droplet formed in the film with the highest

value of λ1 = 6 . These oscillations disappear at a later time, as the

interface around the secondary droplet flattens ( Figs. 2 (c) and (d)).

To study analytically the observed oscillations, we perform a linear

analysis, as the one presented in [22,40] , for the inner region of

the growing hole. We find that the linearized solution, under quasi

steady state conditions, does not depend on the viscoelastic pa-

rameters. Therefore the oscillations that the viscoelastic interface

exhibits in the inner region of the dewetting hole cannot be ana-

lytically described with a linear analysis. In what follows, we also

show that increasing the elasticity even further, provided a small

retardation time (e.g. λ2 = 0 . 01 ) is also included, can lead to mul-

tiple strongly pronounced dips, and subsequently form numerous

secondary droplets. 

Next, we take into account the viscosity of the Newtonian sol-

vent by including λ2 � = 0. As anticipated in Section 4.1 , λ2 has the

effect of slowing down the growth rate of the instability. We find

that a slower dynamics provides a numerical advantage as well: By

stabilizing the computations, hence avoiding the high Weissenberg
umber 1 problem (see [44] and references therein for a discussion

n the computational challenges regarding this aspect), which oth-

rwise can destabilize the numerical solutions. In fact, our simula-

ion results show that when λ2 = 0 , for λ1 > 6, unfeasibly small

ime steps would be required to overcome numerical instabilities,

ue to the rapid growth rate for purely elastic films. On the con-

rary, when viscoelastic films are considered, even a small contri-

ution of the retardation time (e.g. λ2 = 0 . 01 ) allows simulations

f films with a high Weissenberg number, that are yet numerically

table. 

Figs. 3 (a)–(c) show the evolution of a viscoelastic dewetting

lm with λ1 = 10 , λ2 = 0 . 01 , at three selected times. In partic-

lar, in the inset of Fig. 3 (a), we observe the separation of the

wo rims (at time t = 3 . 341 × 10 5 ), and the formation of oscil-

ations on the interface. These undulations lead to multiple sec-

ndary droplets that are shown in Fig. 3 (b) ( t = 3 . 345 × 10 5 ), and

hat remain present until the final configuration shown in Fig. 3 (c)

 t = 4 × 10 5 ). To our knowledge, secondary droplets of this na-

ure have not been reported in numerical investigations of thin
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Fig. 3. Evolution of a viscoelastic film with h 0 = 1 , h � = 0 . 01 , b = 0 , λ1 = 10 and λ2 = 0 . 01 , at three selected times. 3 (a) The separation of the two rims ( t = 3 . 341 × 10 5 ). 

3 (b) The formation of oscillations that lead to the formation of secondary droplets ( t = 3 . 345 × 10 5 ). The secondary droplets remain present until the final configuration 

shown in 3 (c) ( t = 4 × 10 5 ). In all three figures, the insets show a detailed close-up of the dewetting region. 

Fig. 4. Evolution of the secondary droplets with h 0 = 1 , h � = 0 . 01 , b = 0 , λ2 = 0 . 01 , and λ1 = 2 (yellow diamonds), 4 (blue circles), 6 (cyan triangles), 8 (green squares), 

and 10 (red crosses). 4 (a) The number of droplets versus time. For λ1 = 2 , 4 , 6 , only one secondary droplet is formed, so the lines overlap. For values of λ1 > 6, there are 

multiple secondary droplets; due to coalescence, the number of secondary droplets decrease in time. 4 (b) The mean height of the secondary droplets versus time. 4 (c) The 

width (at half height) of the secondary droplets versus time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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iscoelastic films, but their observation is consistent with experi-

ental findings (see, for instance, [8,10,12] ). While we do not at-

empt a direct comparison with experiments in the present work,

ur results suggest that the emergence of secondary droplets in

imulations is related to viscoelastic phenomena, in accordance

ith experimental observations. Our results therefore highlight the

eed for more refined numerical models for a comprehensive pre-

iction of the instabilities in viscoelastic thin films. 

We can rheologically explain the presence of the secondary

roplets by noting that a higher relaxation time λ1 manifests a

igher molecular weight of the polymers [45] . Thus, in the pres-

nce of an extensional flow, as the one produced by the two sep-

rating rims, the chains of molecules are more stretched, and the

lastic response to deformation is more visible. Similar considera-

ions can be found in studies on beads-on-string structures of vis-

oelastic jets (see, for instance, [46,47] ). We note that both in our

tudy and in the cited works on extensional flows of viscoelastic

laments, there is no strong correlation between the breakup time

nd the relaxation time. The latter mostly influences the formation

f droplets, their migration and coalescence [47] . We also note that

dditional simulations have shown that λ2 does not affect signifi-

antly the final configurations (results not shown for brevity). We

oreover remark that a high Weissenberg number does not break

he assumption of small shear rates, for which linear viscoelastic

onstitutive models, such as the one that we consider, are valid.

his observation is confirmed numerically by analyzing the quan-

ity | ∂ u / ∂ x | ∼ | h t ( x, t )/ h ( x, t )| over the entire time of the evolution.

n particular, for the times presented in Figs. 3 (a) and (b), | ∂ u / ∂ x |
oes not exceed the value of 10 −2 , and for the final stage of the

volution, shown in Fig. 3 (c), it has an order of magnitude of 10 −5 .
ence, we can confirm that for the flows considered, even for a

igh value of the dimensionless relaxation time, λ1 U / L , which cor-

esponds to a high Weissenberg number (see Appendix A), the as-

umption of small deformation gradients is not violated. 

We proceed by analyzing the influence of λ1 on the charac-

eristic length scales of the secondary droplets. The corresponding

esults are shown in Fig. 4 , where we keep λ2 = 0 . 01 , and study

he resulting morphologies for λ1 = 2 , 4 , 6 , 8 , 10 . Fig. 4 (a) shows

he number of secondary droplets versus time. For λ1 = 2 , 4 , 6 , de-

oted by yellow diamonds, blue circles, and cyan triangles respec-

ively, only one secondary droplet is formed. Whereas, for values

f λ1 = 8 , 10 , denoted by green squares and red crosses respec-

ively, multiple secondary droplets form. At later times and when

1 = 8 , 10 , the secondary droplets can coalesce, resulting in a sud-

en change in their numbers, height, and width. From Fig. 4 (a), we

lso notice that the merging of secondary droplets is much more

evere for λ1 = 10 , implying that the elastic force is responsible for

he secondary droplets migration and coalescence. We note that

he coarsening process of droplets under the influence of the dis-

oining pressure has been studied for Newtonian fluids [4 8,4 9] . Ex-

ending such analyses to include viscoelastic effects would be of

nterest, but is beyond the scope of the present work. 

The results presented so far suggest that the relaxation time λ1 

ignificantly affects the final morphologies of dewetting films, but

t has a weaker effect on the growth rate and the breakup time.

e note that in the results presented above, the viscoelastic relax-

tion time, λ1 , is relatively short with respect to the breakup time.

ence, in the linear early-time regime of the evolution, the vis-

oelastic fluid shows a Newtonian response. It is therefore reason-

ble to raise the question of the effect of the liquid viscoelasticity
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Fig. 5. Evolution of four distinct films with h 0 = 0 . 1 and h � = 0 . 06 , λ2 = 0 , b = 0 , and λ1 = 0 (blue circles), 10 (cyan triangles), 20 (green squares), and 50 (red crosses), at 

t = 50 5 (a), t = 70 5 (b) and t = 250 5 (c). For this set of parameters, the dynamics of the breakup is faster compared to the simulations considered in earlier figures. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Evolution of dewetting films for h 0 = 1 , h � = 0 . 01 , λ1 = 10 and λ2 = 0 . 01 at three selected times, for b = 0 (blue circles), 0.001 (cyan triangles), 0.01 (green squares), 

and 0.1 (red crosses). At time t = 2 . 5 × 10 5 in 6 (a), the film with b = 0 . 1 is separating, while in 6 (b) at time t = 3 . 34 × 10 5 , and in 6 (c) at time t = 3 . 345 × 10 5 , the films 

with b = 0 . 01 and b = 0 . 1 are already fully developed. We note that for large slip, the evolution is faster and no satellite droplets form. As b is decreased, the dynamics is 

slower and satellites form. The insets show a close-up of the secondary droplets. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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when the breakup time is comparable to the relaxation time of the

liquid, i.e. when ω 

−1 
m 

≈ λ1 . Figs. 5 (a)–(c) present the evolution of

four distinct films with h 0 = 0 . 1 and h � = 0 . 06 , λ2 = 0 , b = 0 , and

λ1 = 0 (blue circles), 10 (cyan triangles), 20 (green squares), and

50 (red crosses), at three selected times. For this set of parame-

ters, the relaxation time and the breakup time are comparable. We

see that in this regime, the influence of the elasticity parameter λ1 

on the time scale of the evolution of the dewetting prior to rup-

ture is more pronounced, with respect to the cases analyzed ear-

lier. We furthermore notice that for this set of parameters, the van

der Waals interaction force, higher in this case, prevents formation

of satellite droplets. 

Finally, we focus on the influence of the slip coefficient b . In

Figs. 6 (a)–(c), we fix the viscoelastic parameters λ1 = 10 , λ2 = 0 . 01 ,

and consider b = 0 (blue circles), 0.001 (cyan triangles), 0.01 (green

squares), and 0.1 (red crosses). The results show that the dynam-

ics with a non-zero slip coefficient is faster. In fact, we can see in

Fig. 6 (a), that the film with b = 0 . 1 is already separating at time

 = 2 . 5 × 10 5 , whereas the other films are still in the initial phase

in which the perturbation has not grown significantly. Moreover,

we see in Fig. 6 (b) at time t = 3 . 34 × 10 5 , and in Fig. 6 (c) at time

 = 3 . 345 × 10 5 , that the films with b = 0 . 01 , and b = 0 . 1 are al-

ready fully developed, whereas the ones with b = 0 , and b = 0 . 001

are still retracting. We show that not only slip has an influence

on the dynamics of the evolution, but it also has two main effects

on the resulting morphologies of the interface: First, by raising the

height of the retracting rims in the early stage of the evolution (we

note in Fig. 6 (b) the dip in the interface of the receding rim for
 F  
he film with b = 0 . 001 in contrast to the one with no-slip); Sec-

nd, by preventing the formation of the secondary droplets in the

nal configuration. In fact, multiple satellite droplets form in the

ases with b = 0 , and b = 0 . 001 , while only one secondary droplet

emains present when b = 0 . 01 , and none when b = 0 . 1 . 

.3. Spreading and receding viscoelastic drops 

.3.1. Spreading drops 

Next, we discuss spreading of a planar viscoelastic drop.

he initial condition is a circular cap of radius R and center

(0 , −R cos θi ) , that lies on the substrate with an offset of thickness

 � . We specify the initial contact angle between the fluid interface

nd the solid substrate, called θ i , different from the equilibrium

ngle, denoted by θ e . The latter is implicitly defined by the form

f the disjoining pressure given by Eq. (A.5) . We investigate the

ynamic contact angle, θD , formed at the moving contact line, and

tudy its relation with θ e . θD is calculated as the slope of the tan-

ent line at the inflection point of the fluid interface h ( x, t ). In the

iscussion that follows, we start with θi = 30 ◦, and let the drop re-

ax to θe = 15 ◦. For all cases shown, we impose a no-slip boundary

ondition. 

Fig. 7 shows the comparison of numerical simulations of a New-

onian drop, with λ1 = λ2 = 0 (blue dotted curve), versus a vis-

oelastic drop with λ1 = 15 , λ2 = 0 . 01 (red solid curve), at three

elected times ( t = 10 , 50 , 100 ). Figs. 7 (a)–(c), where we use h � =
 . 01 , illustrate the difference in the velocity of the contact line. In

ig. 7 (a), we note that viscoelasticity influences predominantly the
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Fig. 7. The spreading of a viscoelastic drop with λ1 = 15 , λ2 = 0 . 01 (red solid curve) versus a Newtonian drop with λ1 = λ2 = 0 (blue dotted curve), at t = 10 , 50 , 100 from 

left to right. In 7 (a)–(c) the equilibrium thickness h � = 0 . 01 ; in 7 (d)–(f) h � = 0 . 005 . The insets show a close-up of the contact line region. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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nitial stage of the spreading. This behavior can be attributed to

iscoelastic effects due to stretching of liquid around the contact

ine region in the direction of spreading. As the spreading veloc-

ty decreases, viscoelastic stresses relax in the contact line region,

eading to the same spreading speed for both drops. In both cases,

he drops relax towards the final configuration defined by θ e (this

egime of spreading is not shown in Fig. 7 ). To shed more light

n the origin of the difference in the spreading behavior, we plot

n Figs. 7 (d)–(f) the simulation results where we use h � = 0 . 005 .

he consideration of thinner h � is motivated by [50,51] , where it

as shown, within the Oldroyd-B model, that elastic effects influ-

nce the behavior of the film ridge more remarkably when h � is

educed. The comparison of Fig. 7 (d) and (a) shows that the dif-

erence between the Newtonian and the viscoelastic drop is in-

eed more significant for thinner h � . We attribute this difference

o the dynamics of the interface at the contact line region: For the

ewtonian drop, the interface of the prewetted film shows an os-

illatory “sagging” behavior, slowing down the spreading velocity.

hen decreasing h � , this oscillation is more noticeable. For the vis-

oelastic drop, however, the prewetted film does not exhibit such

ronounced oscillatory behavior, as the interface at the contact line

egion is smoothed by viscoelasticity. A similar oscillatory behav-

or is demonstrated, both analytically [22] and experimentally [52] ,

n the far-field region of dewetting viscoelastic fronts. In partic-

lar, Seemann et al. [52] also show that viscoelastic effects tend

o stabilize the observed undulations, in agreement with our re-

ults. In addition, our simulations suggest that viscoelasticity en-

ances spreading, consistently with findings in [35,51] . We note

hat, Spaid and Homsy [51] observe that the viscoelastic fluid inter-

ace tends to be stabilized primarily because of changes of trans-

ort of momentum in the spreading direction, and finite restor-

ng forces that are present when a viscoelastic fluid is stretched.

ore recently, Izbassarov and Muradoglu [35] consistently demon-

trate that the enhancement of the spreading of viscoelastic drops
s mainly due to the stretched polymer chains that exert an ex-

ensional stress, pushing the contact line, and thus increasing the

preading rate. 

We next investigate the influence of the viscoelasticity on the

ynamic advancing contact angle. In Fig. 8 , we consider three vis-

oelastic spreading drops with a fixed retardation time, λ2 = 0 . 01 ,

nd three different relaxation times, λ1 = 5 (cyan triangles), 10

green squares), and 15 (red crosses), and compare them to the

ewtonian drop with λ1 = λ2 = 0 (blue circles). All drops spread

n a prewetted substrate with thickness h � = 0 . 005 . In Fig. 8 (a), we

how the front contact line, x CL , determined as the x -coordinate of

nflection point of h ( x, t ). Fig. 8 (b) shows that viscoelastic drops

nitially move faster than the Newtonian counterpart. Eventually,

oth viscoelastic and Newtonian drops reach the same speed to-

ards the equilibrium configuration. We also note that increasing

1 enhances the velocity of the contact line, v CL . Fig. 8 (c) shows

he difference of the cubes of the dynamic and equilibrium contact

ngles, θ3 
D 

− θ3 
e , versus time in a semilogarithmic plot. As shown,

he quantity θ3 
D 

− θ3 
e is smaller for viscoelastic drops with a higher

elaxation time λ1 , due to the fact that the viscoelastic drop con-

act line displaces faster from the initial configuration compared

o the Newtonian one, as discussed above. Finally, Fig. 8 (d) shows
3 
D 

− θ3 
e versus the capillary number Ca = v CL (given our choice for

cales), both in logarithmic scales. The direct proportionality be-

ween these quantities is known as the Cox–Voinov law [36,37] ,

hat we consider in the general form θ3 
D 

− θ3 
e ∝ Ca β (consistently

ith [27] ). In Fig. 8 (d), we show that this law holds for the New-

onian fluid, where the best linear fit of the data (denoted by blue

ircles) has unit slope (i.e. β = 1 ); while lower values of β are

isible for the viscoelastic counterparts. These findings are con-

istent with recent experimental [30] and computational [34] re-

ults, showing that the viscoelasticity enhances contact line mo-

ion, and that there is a slight variation in the slope of the linear

ependence on the capillary number in the Cox–Voinov law, due to



34 V. Barra et al. / Journal of Non-Newtonian Fluid Mechanics 237 (2016) 26–38 

Fig. 8. The spreading of a planar drop on a prewetted substrate with h � = 0 . 005 , from an initial angle θi = 30 ◦ to an equilibrium configuration with θe = 15 ◦ for a viscous 

Newtonian drop, with λ1 = λ2 = 0 (blue circles), and viscoelastic drops, λ1 = 5 (cyan triangles), 10 (green squares), and 15 (red crosses) when λ2 = 0 . 01 . 8 (a) Contact line 

position, x CL , versus time. 8 (b) The velocity of the contact line, v CL , versus time. 8 (c) θ3 
D − θ3 

e versus time in a semilogarithmic scale. 8 (d) θ3 
D − θ3 

e versus the capillary number 

Ca in a log-log plot. The dashed black line has a reference slope equal to one. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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viscoelasticity. Furthermore, we have verified (figures not shown

for brevity) that different values of the precursor film thickness do

not significantly alter the dynamic contact angle, and hence the

results of the comparison with the Cox–Voinov law. 

4.3.2. Receding drops 

Similarly to the spreading case, we carry out investigations of

the dynamic contact angle for receding drops. We use the same

geometrical framework as the one for a spreading drop, but we

impose θi = 15 ◦ and θe = 30 ◦. Figs. 9 (a)–(c) show the comparison

of the evolution of two retracting drops at three selected times: a

Newtonian drop with λ1 = λ2 = 0 (blue dotted curve), and a vis-

coelastic one with λ1 = 15 , λ2 = 0 . 01 (red solid curve); for both

simulations, we impose an equilibrium film thickness h � = 0 . 005 .

Again, the two drops exhibit discrepancy in their evolution. In

Fig. 9 (a), at time t = 100 , we see that the Newtonian drop has re-

ceded more than the viscoelastic one. This happens because, con-

trary to the spreading problem, the viscoelastic fluid interface ini-

tially shows more bending (visible in the inset of the Fig. 9 (a)),

indicating that there is resistance to the force that drives the re-

traction of the drop. In Fig. 9 (b), at time t = 350 , this oscillation
n the viscoelastic interface is flattened, and this allows for faster

otion of the contact line for viscoelastic drop. As in the spreading

ase, eventually, both drops reach the same speed, and attain the

ame final configuration at time t = 10 0 0 , shown in Fig. 9 (c). The

lower retraction of a viscoelastic drop is also investigated in [32] ,

here it is demonstrated that this behavior is due to the elastic

ffects near the moving contact line. 

Finally, we present the results of the dynamic contact angle for

he receding drops. Fig. 10 (a) shows that the Newtonian drop with

1 = λ2 = 0 (denoted by blue circles) recedes faster than the vis-

oelastic drop with λ1 = 15 , λ2 = 0 . 01 (denoted by red crosses).

ig. 10 (b) shows the retraction velocities of the two drops as a

unction of time. The Newtonian drop initially recedes faster than

he viscoelastic one, and eventually they reach the same speed to-

ards the final configuration. Fig. 10 (c) shows θ3 
e − θ3 

D 
versus time,

n a semilogarithmic plot. The quantity θ3 
e − θ3 

D 
is higher for the

iscoelastic drop, since it retracts slower. Fig. 10 (d) shows θ3 
e − θ3 

D 
ersus Ca , both in logarithmic scales. Differently from the spread-

ng case, the best linear fit of the receding viscoelastic data has

 slope higher than the one corresponding to the Newtonian data

 β = 1 ). 



V. Barra et al. / Journal of Non-Newtonian Fluid Mechanics 237 (2016) 26–38 35 

Fig. 9. The retraction of a viscoelastic drop with λ1 = 15 , λ2 = 0 . 01 (red solid curve) versus a Newtonian drop λ1 = λ2 = 0 (blue dotted curve), at t = 100 , 350 , 10 0 0 from 

left to right; equilibrium film thickness h � = 0 . 005 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. The retraction of a planar drop on a prewetted substrate with h � = 0 . 005 , from an initial angle θi = 15 ◦ to an equilibrium configuration with θe = 30 ◦ for a viscoelas- 

tic drop with λ1 = 15 , λ2 = 0 . 01 (red crosses), versus a Newtonian drop with λ1 = λ2 = 0 (blue circles). 10 (a) The contact line position, x CL , versus time. 10 (b) The speed of 

the contact line, v CL , versus time. 10 (c) θ3 
e − θ3 

D versus time. 10 (d) θ3 
e − θ3 

D versus the capillary number Ca . The dashed black line has a reference slope equal to one. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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d  
. Conclusions 

We numerically solve the nonlinear equation that governs the

uid interface of a dewetting thin film of viscoelastic fluid on a

olid substrate. The governing equation is obtained as the long-

ave approximation of the Navier–Stokes equations with Jeffreys
ype constitutive equation to describe the non-Newtonian nature

f the viscoelastic fluid. The van der Waals interaction force drives

he instabilities of the liquid interface and causes the film to break

p, forming holes bounded by retracting rims. We investigate how

hysical parameters involved, such as the relaxation and retar-

ation characteristic times of the viscoelastic fluid, and the slip
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coefficient, affect the dynamics and the final configuration of the

fluid. In the linear regime, our results are in agreement with the

linear stability analysis. Consistently with previous studies, we find

that viscoelastic parameters and the slippage coefficient do not in-

fluence either the wavenumber corresponding to the maximum

growth rate or the critical one, but influence the maximum growth

rate. In particular, an increase of the relaxation time, λ1 , or the slip

length, b , leads to an increase of the maximum growth rate. Con-

versely, increasing the retardation time, λ2 , leads to a decrease of

maximum growth rate. 

The simulations of the dewetting of thin viscoelastic films in

the nonlinear regime reveal novel complex morphologies that de-

pend on the viscoelasticity. The results show that for small values

of λ1 , a single secondary droplet can be formed, while for large

values, multiple secondary droplets can emerge. We note that the

emergence of these small length scales can be related to the re-

laxation time λ1 . Here, we not only provide, for the first time, a

study of these developing length scales, but also report on the mi-

gration and merging of the secondary droplets due to viscoelas-

tic effects. Simulation results also show that the inclusion of λ2 

provides a numerical advantage by stabilizing the computations at

high values of λ1 . In addition, the influence of the slip coefficient

on the dynamics and final configurations is also addressed. Fu-

ture work shall consider extension of these results to three spatial

dimensions. 

In the final part of this work, we investigate the dynamic con-

tact angle of viscoelastic drops. Our numerical simulations show

that the viscoelastic advancing front moves faster at early times,

and that eventually it behaves as the Newtonian counterpart for

large times. Our simulations suggest that the enhancement of the

speed of the viscoelastic spreading drop is due to the smoothness

of its interface in the prewetted region. The analysis of the dy-

namic contact angle also allows us to verify the Cox–Voinov law

for the viscous Newtonian case; while we show small deviations

from this law for viscoelastic drops. For receding viscoelastic drops,

we show that the speed of the contact line is instead decreased,

when compared to a Newtonian one. Again, we explain this be-

havior by the viscoelastic force at the contact line region resisting

the receding motion of the contact line. Although our study is lim-

ited to the Jeffreys linear viscoelastic model, we hope that it will

serve as a basis for further analysis of other viscoelastic models. 
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Appendix A. Derivation 

In this appendix, we outline the derivation of the long-wave

formulation, Eqs. (4) and (5) , for the evolution of the interface of a

thin viscoelastic film. The system of Eqs. (1a) and (1b) is subject to

boundary conditions at the free surface, represented parametrically

by the function f (x, y, t) = y − h (x, t) = 0 , and boundary conditions

at the x -axis ( y = 0 ), as introduced in Section 2 , and illustrated in

Fig. 1 . The stress balance at the interface (where the top fluid is

passive, as in our study) is expressed as 

( τ − (p + �) I ) · n = σκn , (A.1)

where I denotes the identity matrix. In the absence of motion, this

condition describes the jump in the pressure across the interface

with outward unit normal n , and a local curvature κ = −∇ · n , due

to the surface tension σ . We define the two mutually orthogonal
ectors n, t as 

 = 

1 (
h 

2 
x + 1 

)1 / 2 
( −h x , 1 ) , t = 

1 (
h 

2 
x + 1 

)1 / 2 
( 1 , h x ) . (A.2)

he kinematic boundary condition is given by f t + u · ∇ f = 0 ,

here substituting f (x, y, t) = y − h (x, t) gives 

∂h 

∂t 
(x, t) = − ∂ 

∂x 

∫ h (x,t) 

0 

u (x, y ) dy. (A.3)

he boundary conditions at the solid substrate are described by the

on-penetration condition for the normal component of the veloc-

ty and the Navier slip boundary condition for the tangential one

 = 0 , u = 

b 

η
τ12 , (A.4)

espectively, where b ≥ 0 is the slip length ( b = 0 implies no-slip).

The equilibrium contact angle, θ e , formed between the fluid in-

erface y = h (x, t) and the solid substrate can be included directly

n the disjoining pressure term �( h ), leading to 

( h ) = 

σ ( 1 − cos θe ) 

Mh � 

[(
h � 

h 

)m 1 

−
(

h � 

h 

)m 2 
]
, (A.5)

ith M = (m 1 − m 2 ) / [(m 2 − 1)(m 1 − 1)] , where m 1 and m 2 are

onstants such that m 1 > m 2 > 1, (in this work we chose m 1 = 3

nd m 2 = 2 , as also widely used in the literature, for instance by

he authors in [53–55] , but other values can be modeled as verified

n [56] ). 

Next, we nondimensionalize using commonly implemented

caling appropriate to long-wave formulation 

 = Lx ∗, (y, h, h � , b) = H(y ∗, h 

∗, h 

∗
� , b 

∗) , (p, �) = P (p ∗, �∗) , (A.6)

 = Uu 

∗, v = εUv ∗, (t, λ1 , λ2 ) = T (t ∗, λ∗
1 , λ

∗
2 ) , σ = 

Uη

ε 3 
σ ∗, (A.7)

τ11 τ12 

τ21 τ22 

)
= 

η

T 

(
τ ∗

11 

τ ∗
12 

ε 
τ ∗

21 

ε τ ∗
22 

)
, (A.8)

here H/L = ε � 1 is the small parameter. To balance pressure,

iscous and capillary forces, the pressure is scaled with P =
/ ( T ε 2 ) , and the time with T = L/U . Following the derivation in

22] , we can scale the surface tension σ∗ to one by an ad hoc

hoice of the length scale. We note that the Weissenberg num-

er, Wi , given the choice for scales, is W i = λ1 U/L = λ1 /T = λ∗
1 
. To

void cumbersome notation, we drop the superscript ‘ ∗’ and we

onsider from now on all quantities to be dimensionless. 

The incompressibility condition, Eq. (1b) , is invariant under

escalings, while the dimensionless form of Eq. (1a) for the x and

 component is, respectively, 

 

2 Re 
du 

dt 
= ε 2 

∂τ11 

∂x 
+ 

∂τ21 

∂y 
− ∂ p 

∂x 
, (A.9a)

 

4 Re 
dv 
dt 

= ε 2 
(

∂τ12 

∂x 
+ 

∂τ22 

∂y 

)
− ∂ p 

∂y 
, (A.9b)

where Re = ρUL /η is the Reynolds number, assumed to be

 (1/ ε) or smaller. The dimensionless components of the stress ten-

or given by the Jeffreys model, Eq. (2) , satisfy 

11 + λ1 
∂τ11 

∂t 
= 2 

(
∂u 

∂x 
+ λ2 

∂ 

∂t 

(
∂u 

∂x 

))
, (A.10a)

22 + λ1 
∂τ22 

∂t 
= 2 

(
∂v 
∂y 

+ λ2 
∂ 

∂t 

(
∂v 
∂y 

))
, (A.10b)
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12 + λ1 
∂τ12 

∂t 
= 

∂u 

∂y 
+ λ2 

∂ 

∂t 

(
∂u 

∂y 

)
+ ε 2 

(
∂v 
∂x 

+ λ2 
∂ 

∂t 

(
∂v 
∂x 

))
. 

(A.10c) 

The kinematic boundary condition (A.3) is invariant under

escaling, while the non-penetration condition and the Navier slip

oundary condition for the velocity components parallel to the

ubstrate (A.4) in dimensionless form are 

 = 0 , u = bτ12 , (A.11)

here in the weak slip regime b = O (1) . The leading-order terms

n the governing Eqs. (A.9a) and (A.9b) respectively, are 

∂τ21 

∂y 
= 

∂ p 

∂x 
, (A.12a) 

∂ p 

∂y 
= 0 . (A.12b) 

The leading-order terms of the normal and tangential compo-

ents of the stress balance at the free surface (A.1) are 

p = −∂ 2 h 

∂x 2 
− �(h ) , (A.13) 

 x τ12 = 0 , (A.14) 

here the form of �( h ) in (A.13) is given by (A.5) , with all the

uantities considered nondimensional. Considering in general h x 
 0, from (A.14) follows that τ12 = 0 , at the interface. Now, in-

egrating (A.12a) with respect to y , from y to h ( x, t ), we obtain

21 = (y − h ) p x . Noting that the stress tensor is symmetric, and

ubstituting τ 21 into (A.10c) , we obtain (up to the leading-order)

∂ p 

∂x 
(y − h ) + λ1 

∂ 

∂t 

(
∂ p 

∂x 
(y − h ) 

)
= 

∂u 

∂y 
+ λ2 

∂ 

∂t 

(
∂u 

∂y 

)
. (A.15)

ntegrating (A.15) from 0 to y = h (x, t) and using the corresponding

oundary conditions at the substrate y = 0 , we obtain 

1 + λ2 
∂ 

∂t 

)(
u + bh 

∂ p 

∂x 

)
= 

(
1 + λ1 

∂ 

∂t 

)((
y 2 

2 

− yh 

)
∂ p 

∂x 

)
. 

(A.16) 

ntegrating (A.16) again from y = 0 to y = h (x, t) gives ∫ h (x,t) 

0 

udy + bh 

2 ∂ p 

∂x 
+ λ2 

∂ 

∂t 

∫ h (x,t) 

0 

udy 

+ λ2 b 
∂h 

2 

∂t 

∂ p 

∂x 
− λ2 h t u (y = h (x, t)) − λ2 h t bh 

∂ p 

∂x 

= −h 

3 

3 

∂ p 

∂x 
− λ1 h 

2 h t 
∂ p 

∂x 
+ λ1 

h 

2 

2 

h t 
∂ p 

∂x 
. (A.17) 

aking the spatial derivative of the latter equation and substituting

t into the kinematic boundary condition (A.3) , we obtain a long-
Fig. 11. Discretization of 
ave approximation in terms of u and h ( x, t ) 

 t + λ2 

[
h tt + 

∂ 

∂x 
(u (y = h (x, t)) h t ) 

]
= 

∂ 

∂x 

[
(1 + λ1 ∂ t ) 

(
h 

3 

3 

∂ p 

∂x 

)

+ (1 + λ2 ∂ t ) 

(
bh 

2 ∂ p 

∂x 

)]
− ∂ 

∂x 

[(
λ1 

h 

2 

2 

∂ p 

∂x 
+ λ2 bh 

∂ p 

∂x 

)
h t 

]
. 

(A.18) 

o write this in a closed form relation for h ( x, t ), we note that Eq.

A.16) can be written in a more compact form as a linear ordinary

ifferential equation 

 + λ2 
∂u 

∂t 
= −(1 + λ2 ∂ t ) bh 

∂ p 

∂x 
+ (1 + λ1 ∂ t ) 

[(
y 2 

2 

− hy 

)
∂ p 

∂x 

]
. 

(A.19) 

ne can simply solve this linear differential equation, obtaining 

 = 

1 

λ2 

∫ t 

−∞ 

e 
− t −t ′ 

λ2 ̂ f (x, y, t ′ ) d t ′ , (A.20)

ith 

̂ f equal to the right-hand side of Eq. (A.19) . Integration by

arts can be performed to recast (A.20) at y = h (x, t) , and one fi-

ally obtains Eqs. (4) and (5) . 

ppendix B. Numerical discretization 

The spatial domain [0, �] is discretized by uniformly spaced

rid points, that constitute a vertex-centered grid (see Fig. 11 ). Fol-

owing the natural order from left to right, adjacent vertices are

ssociated to the indices i − 1 , i, i + 1 , respectively. Thus, we let

 i = x 0 + i 
x, i = 1 , 2 , . . . , N (where N = �/ 
x, and 
x is the grid

ize), so that the endpoints of the physical domain, 0 and �, cor-

espond to the x 1 − 
x 
2 and x N + 


x 
2 cell-centers, respectively. Sim-

larly, we discretize the time domain and denote by h n 
i 

the approx-

mation to the solution at the point ( x i , n 
t ), where n = 0 , 1 , . . .

ndicates the number of time steps, and 
t is the temporal step

ize. 

In order to approximate the fourth order spatial derivative in

q. (4) , we need at least a 5-point stencil to obtain second or-

er accuracy. We define the first and third derivatives at the cell-

enters so that the second and fourth order derivatives are cen-

ered at the grid points (see [41] for a detailed description). 

We recall that the class of θ-schemes for the finite difference

iscretization of the time derivative, can be written as 

h 

n +1 
i 

− h 

n 
i 

� t 
= −

[
θF n i + (1 − θ ) F n +1 

i 

]
, i = 1 , 2 , . . . , N, (B.1)

here 0 ≤ θ ≤ 1 and the nonlinear function F i is related to the

patial discretization of Eqs. (4) and (5) . Here, θ = 0 leads to the

xplicit forward Euler scheme, θ = 1 to the implicit backward Euler

cheme, and θ = 1 / 2 to the implicit second order Crank–Nicolson

cheme. We use the latter, similarly to [54,57] , leading to a sys-

em of N nonlinear algebraic equations for h n +1 
i 

, i = 1 , 2 , . . . , N.

ollowing the procedure outlined in [41] , we linearize the nonlin-

ar terms with Newton’s method by expanding h n +1 
i 

= h 
† 
i 
+ ξi , and

 

n +1 
i 

= F 
† 

i 
+ ( ∂F 

† 
i 
/ ∂ξ j ) ξ j , for i = 1 , 2 . . . , N, j = 1 , 2 . . . , N; where
the spatial domain. 
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h † is a guess for the solution (commonly the previous time step

solution h n ), ξ is the correction term, and the notation F 
† 

i 
indicates

that F i is calculated using h 
† 
i 
. Once the linearized system is solved

for the correction term, the guess for the solution is updated, and

this iterative scheme is repeated until the convergence criterion is

met (up to a desired tolerance). 

To solve the discrete equations efficiently, we use an adaptive

time step 
t . In fact, 
t is increased to accelerate the time inte-

gration at stages where the solution does not vary rapidly. On the

other hand, 
t is decreased when the solution shows a high vari-

ation, where the Newton’s method requires more than a few steps

to converge. The behavior of the solution is discussed in detail in

Section 4 , where we present our numerical results. 

At the endpoints of the domain we impose the h x = h xxx = 0

boundary conditions. The condition h x = 0 gives the value of h at

the two ghost points x 0 and x N+1 outside the physical domain,

i.e. h 0 = h 1 and h N+1 = h N ; the condition h xxx = 0 specifies the two

ghost points x −1 and x N+2 , i.e. h −1 = h 2 and h N+2 = h N−1 . 
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