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Influence of thermal e�ects on stability of nanoscale films
and filaments on thermally conductive substrates
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We consider fluid films and filaments of nanoscale thickness on thermally conductive substrates
exposed to external heating and discuss the influence of the variation of material parameters with
temperature on film stability. Particular focus is on metal films exposed to laser irradiation. Due to the
short length scales involved, the absorption of heat in the metal is directly coupled to the film evolution,
since the absorption length and the film thickness are comparable. Such a setup requires self-consistent
consideration of fluid mechanical and thermal effects. We approach the problem via volume-of-fluid-
based simulations that include destabilizing liquid metal–solid substrate interaction potentials. These
simulations couple fluid dynamics directly with the spatio-temporal evolution of the temperature field
both in the fluid and in the substrate. We focus on the influence of the temperature variation of material
parameters, in particular of surface tension and viscosity. Regarding variation of surface tension with
temperature, the main finding is that while the Marangoni effect may not play a significant role in
the considered setting, the temporal variation of surface tension (modifying normal stress balance) is
significant and could lead to complex evolution including oscillatory evolution of the liquid metal-air
interface. Temperature variation of film viscosity is also found to be relevant. Therefore, the variations
of surface tensions and viscosity could both influence the emerging wavelengths in experiments. By
contrast, the filament geometry is found to be much less sensitive to a variation of material parameters
with temperature. Published by AIP Publishing. https://doi.org/10.1063/1.5008899

I. INTRODUCTION

Metal films of nanoscale thickness are of interest in
numerous applications including solar cells, plasmonics
related applications, sensing, and detection among others.
These applications include various geometries: particles, films,
filaments, and more complicated shapes; see Refs. 1 and 2
for recent application-centered reviews. These films are typi-
cally exposed to a heat source (pulsed nanosecond laser) and,
while in the liquid phase, evolve on a time scale measured in
nanoseconds. This evolution is typically unstable due to the
presence of destabilizing forces, in particular involving liquid
metal-solid substrate interactions.3 In addition to its scientific
interest, understanding these instabilities and the subsequent
dynamics is further motivated by their potential to drive var-
ious self- and directed-assembly mechanisms in a variety of
contexts; only some examples are cited here.4–9

A significant progress has been reached in understanding
the instability mechanisms by considering essentially isother-
mal models that assume films and other geometries under
isothermal conditions.10–14 In particular for the film geometry,
the film-substrate interaction forces are crucial: a destabi-
lizing force is needed for the instability to develop. In our
earlier studies, such a force has been included in the Navier-
Stokes solver,15,16 and the implemented approach is used
in the present work as well. For filaments or other geome-
tries that are characterized by limited spatial extent and the
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presence of contact lines, capillary effects are known to be
dominant. In particular, for the commonly considered fila-
ment geometry, it has been shown that simply considering
the Rayleigh-Plateau instability mechanism with appropriately
chosen material parameters (contact angle in particular) leads
to satisfactory results; see, e.g., Ref. 17.

Clearly, the evolution of metal films and other geometries
exposed to laser radiation is more complicated than that of an
isothermal film; see Refs. 18 and 19 for rather general discus-
sion of the influence of the Marangoni effect in the context of
irradiated films with internal heat generation. Going back to
metal films, we note that a laser pulse leads to a significant
variation of the temperature field both in the film and in the
substrate, resulting in phase change and in variation of material
parameters. The influence of such variation of material param-
eters with temperature on the stability of films and other metal
geometries has been considered only to the limited extend so
far.7,20–23 Furthermore, the existing studies, some of which
we discuss next, have focused mostly on Marangoni effects,
related to spatial variation of the film surface tension with tem-
perature. We are not aware of any studies in the present context
that focus on the influence of temporal variation of surface ten-
sion (that is clearly relevant in the case of a time dependent
laser pulse) or on the influence of variation of the film viscosity
with temperature. These effects are among those discussed in
the present work.

The Marangoni effect results from the spatial variation
of tangential stresses due to temperature dependence of sur-
face tension. In Ref. 21, the Marangoni effect is claimed
to be responsible for the change of the average distances
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between the drops that form during pulse irradiation of metal
films. For computing the temperature field, Ref. 21 used
the model, that we reference in the remaining part of this
paper as “reduced” model, which includes two important
assumptions (i) that the temperature field is slaved to the film
thickness, meaning essentially that the temperature is com-
pletely defined by the current value of the film thickness, and
(ii) that the heat flux in the plane of the substrate can be ignored.
Next, in a recent modeling and computational study,23 the
Marangoni effect was considered (within long wave limit)
in a setup that relaxed assumption (i) above but still used
assumption (ii). In that work, it was found that the results
were dramatically different compared to the ones obtained
if assumption (i) was used. In particular, a regime character-
ized by an oscillatory instability development has been found.
This is in contrast to the usual monotonic nature of instability
evolution.

To summarize, the influence of thermal effects on the
evolution of metal films and other geometries has not been
studied extensively, and the results of the existing studies are
not always consistent. This motivates the present paper that
focuses on providing further insight by carrying out careful
and self-consistent simulations of the evolution of metal films
and filaments. The considered approach is mainly computa-
tional and is based on a volume-of-fluid (VoF) method for
solving the fluid mechanical problem, coupled with a ther-
mal solver that computes the temperature field in the metal
and in the substrate. Thin film (long wave) limit is used only
for the purpose of obtaining basic insight via linear stabil-
ity analysis (LSA), and the thermal problem is solved fully
and self-consistently with the Navier-Stokes equations gov-
erning thin film evolution. In particular, the thermal problem
considers both the in-plane and out-of-the-plane heat trans-
port: we will see that for the setup considered, considering
the in-plane heat diffusion is crucial. The VoF solver includes
the interaction between metal and the substrate modeled via
the disjoining pressure approach16 as well as the efficient cal-
culation of tangential stresses and the resulting Marangoni
effect that has been developed recently.24 We note that in
the present work, we discuss the phase change effects only
indirectly, by limiting the metal film and filament evolution
to the times for which metal temperature is above melting.
Furthermore, we do not consider possible phase change of
the substrate itself25 nor chemical reactions between metal
and the substrate. Inclusion of these effects is left for future
work.

The remainder of this paper is organized as follows. First,
in Sec. II, we formulate the governing equations coupling
fluid mechanics with the thermal effects. We outline two tem-
perature solutions used in the study of film breakup: first in
Sec. II A 1, we present a reduced model that ignores the in-
plane heat conduction as well as temporal evolution of the
film or filament (referred to as the “reduced” model from
now on);20 and second in Sec. II A 3, we present the numeri-
cal two dimension (2D) temperature solution computed using
Gerris (referred to as the “complete” model). In Sec. II A 2,
we outline an analytical solution for a flat film, which we
use for validating and comparing the two models above.
For definiteness, throughout the paper we use the parameters

corresponding to nickel at the melting temperature, if not
specified differently.

Section III presents the main findings. First, in
Sec. III A, using linear stability analysis (in long wave
limit), we find that the spatial temperature variations in the
film can have a stabilizing or destabilizing effect depending
on the film thickness: for films thinner than a critical value
hc, the temperature variations have a stabilizing effect, and for
the films of thickness larger than hc, the temperature varia-
tions have a destabilizing effect; such a critical value appears
due to the nature of absorption of the laser energy by the film.
Second, in Sec. III B, using the direct numerical simulations,
we consider the influence of temperature variation of surface
tension on stability of a film, for the reduced and complete
temperature models. We find that for the reduced model, the
relevance of the Marangoni effect is exaggerated due to the
lack of in-plane heat conduction. Furthermore, we find that
compared to the spatial variations leading to the Marangoni
effect, the temporal variation of surface tension has a signifi-
cantly stronger effect on the film stability; in other words, the
balance of normal stresses (and its dependence on tempera-
ture) plays a much more important role than the variation of
tangential stresses that lead to the Marangoni effect. The tem-
poral variation of the temperature is found also to influence the
film evolution via temperature dependence of viscosity; this
effect is discussed in Sec. III C. Section III D is devoted to a
brief discussion of the expected influence of temperature vari-
ation of material properties in physical experiments. Finally,
in Sec. III E, we consider the influence of the thermal effects
on the breakup of the liquid metal filaments. We find that the
influence of thermal effects is weak compared to the capillary
ones governing the Rayleigh-Plateau type of instability. The
paper is concluded by Sec. III F, where we also discuss some
directions for the future work.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

We represent the two-phase flow by the Navier-Stokes
equations, where the material properties are phase dependent;
the additional energy equation is discussed later in this section.
The surface forces at the interface between two fluids are rep-
resented by a body force using the Continuum Surface Force
(CSF) method.26–29 Hence, the equations governing the flow
are

⇢
�
@tu + u · ru

�
= �rp + r · (2µD) + F, (1)

r · u = 0, (2)

and the advection of the phase-dependent density ⇢ (�)

@t ⇢ + (u · r)⇢ = 0, (3)

where u = (u, 3,4) is the fluid velocity, p is the pressure, and
⇢(�) = �⇢1 + (1 �)⇢2 and µ(�) = �µ1 + (1 �)µ2 are
the phase dependent density and viscosity, respectively. D is
the rate of deformation tensor, D =

⇣
ru + ru

T
⌘
/2. Subscripts

1 and 2 correspond to the fluids 1 and 2, respectively (see
Fig. 1). Here, � is the characteristic function, such that � = 1
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FIG. 1. Schematic of a system with two immiscible fluids and the correspond-
ing boundary conditions.

in fluid 1, and � = 0 in fluid 2. Note that any body force can
be included in F. The characteristic function is advected with
the flow, thus

@t � + (u · r)� = 0. (4)

Note that solving Eq. (4) is equivalent to solving Eq. (3).
The presence of an interface gives rise to the stress

boundary conditions; see Fig. 1. The normal stress boundary
condition at the interface defines the stress jump30,31

[[n̂ · T · n̂]] = � (x) , (5)

where T = �pI + µ
⇣
ru + ru

T
⌘

is the total stress tensor, � (x)
is the surface tension,  is the curvature of the interface, and
n̂ is the unit normal at the interface pointing out of fluid 1.
The variation of surface tension results in the tangential stress
jump at the interface

[[n̂ · T · t̂]] = t̂ · r� (x), (6)

which drives the flow from the regions of low surface tension
to the ones with high surface tension. Here, t̂ is the unit tan-
gent vector in two dimensions (2D); in three dimensions (3D),
there are two linearly independent unit tangent vectors. Using
the CSF method,26 the forces resulting from the normal and
tangential stress jumps at the interface can be included in the
body force F = Fsn + Fst , defined as

Fsn = � (x) �sn̂ (7)

and
Fst = rs� (x) �s, (8)

where �s is the Dirac delta function centered at the interface,
�sn̂ = r�, and rs is the surface gradient. The details of the
computations of the interfacial curvature and normals in the
VoF method can be found in Ref. 29 and the implementation
of the surface gradients of the surface tension in Ref. 24.

The destabilizing mechanism leading to breakup of
nanoscale films is modeled by the fluid-solid interaction in
the form of a disjoining pressure.14 The disjoining pressure
can be included in the Navier-Stokes equations (1) as a body
force specified by

F

vdw

(y) = K⇡

" 
h⇤

y

!m

�
 

h⇤

y

!n#
n̂�s, (9)

K⇡ =
�0(1 � cos ✓eq)

Mh⇤
, (10)

M =
n � m

(m � 1)(n � 1)
, (11)

where �0 is the surface tension of nickel at the melting tem-
perature and ✓eq = 70� is the prescribed equilibrium contact
angle. We use the exponents m = 3 and n = 2 as in Ref. 14;
see also Refs. 11 and 32 and the references therein for fur-
ther discussion regarding disjoining pressure models for metal
films. The equilibrium film thickness used is h⇤ = 1.5 nm,
comparable to the values discussed in Ref. 14. Hence, the com-
plete Navier-Stokes equations with the surface forces are as
follows:

⇢(@tu + u · ru) = �rp + r · (2µD) + ��sn̂

+rs��s + F

vdw

(y). (12)

The details of the implementation of the disjoining pressure in
the VoF method can be found in Ref. 15.

A. Temperature models

The variations of the temperature of a liquid metal film
exposed to a pulsed laser can be caused by spatial variabil-
ity of the pulse itself. However, since the spatial scale of the
pulse is typically few orders of magnitude larger than any other
relevant length scale,11 we consider a spatially homogeneous
pulse where a temperature variation may result from variable
film thickness. This is due to the fact that the optical (and
energy absorption) properties of the metal depend on the film
thickness,33 as we will discuss in what follows.

We start this section by considering a simplified
(“reduced”) model that ignores various aspects of the heat flow,
such as heat transport in the in-plane direction, as well as the
convective effects. In Sec. II A 1, a numerical solution of such
a model that has been previously used in the context of metal
films20,21 is discussed, and in Sec. II A 2, an analytical solution
of the underlying one-dimensional model for heat transport is
presented. A complete numerical solution of the energy equa-
tion is given in Sec. II A 3. Note that for simplicity we are not
considering latent heat associated with melting of the metal
film, since the associated effects are known to be weak.20

1. Reduced model for the temperature of a thin film

In this section, we outline the reduced model for the metal
temperature; a version of such model is discussed in Ref. 20.
The film–substrate bilayer is assumed to be infinitely wide in
the in-plane directions. The substrate layer is assumed to be
thick compared to the film thickness, and it is modeled as a
semi-infinite medium 1 y < 0. Assuming that any variation
of film thickness occurs on the scale which is much larger than
the film thickness, one could argue that the heat conduction in
the in-plane direction in the film is negligible compared to
the conduction in the out-of- plane direction. Although the
same argument does not apply to a (thick) substrate, it is still
assumed to hold. Hence, within this reduced model, the heat
conduction in the bilayer is described by the one-dimensional
heat equation in each layer,

⇣
⇢Cp

⌘
m

@Tm

@t
= km

@2Tm

@y2
+ S(y, t) in the fluid, (13)

⇣
⇢Cp

⌘
s

@Ts

@t
= ks

@2Ts

@y2
in the substrate, (14)
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where Cp is the effective heat capacity and k is the thermal
conductivity. The subscripts s and m correspond to substrate
and metal, respectively. The source term can be written as

S(y, t) =
E0f (t)p
2⇡�tp

f
1 � r0

⇣
1 � e�arh

⌘g
e�↵a(y+h), (15)

where the first factor represents the incident energy from the
laser source, the second factor accounts for the reflectance
of the metal film, and the last factor represents the energy
absorbed by the film. In Eq. (15), h is the film height, E0 is the

intensity of the incident radiation, �tp = tp
⇣
2
p

2 ln 2
⌘�1

is the
width of the Gaussian laser pulse at half maximum, and f (t)
gives the temporal profile of the laser fluence,

f (t) = exp
f
�(t � tp)2/(2�2

tp)
g
. (16)

More details regarding the derivation of the source term and
the explanation of the parameters are given in Appendix A; the
parameters themselves are specified in Table I. The boundary
conditions are as follows:

@Tm

@y
= 0 at y = h(t, x), (17)

km
@Tm

@y
= ks

@Ts

@y
at y = 0, (18)

Tm = Ts at y = 0, (19)

Ts ! T0 as y ! �1, (20)

where y = h(x, t) corresponds to the film-air interface and
y = 0 is the film-substrate interface. Note that within the present
(one-dimensional) model the normal derivatives are replaced
by derivatives with respect to y coordinate. Note also that
for simplicity, we are using insulation boundary condition,
Eq. (17) since the heat transfer at the interface is negligible
due to small thermal conductivity of air.

The spatial variation of the temperature in the metal film
is expected to be small due to the small film thickness and high
thermal conductivity of the metal. Hence, within this model,
it can be assumed that the temperature only weakly depends
on the y-coordinate, and the temperature of the film-air inter-
face can be approximated by the average film temperature,
T ⇤m =

1
h s

h
0 Tm dy. Integrating Eq. (13) with respect to y, from

y = 0 to y = h, and using the boundary conditions (17) and
(18), gives the equation for the average temperature of the
film, T ⇤m,

@T ⇤m
@t
= S⇤ (h, t) � 1

h
qs(t)

(⇢Cp)m
, (21)

S⇤(h, t) =
KSf (t)

h

f
1 � r0

⇣
1 � e�arh

⌘g f
1 � e�↵ah

g
, (22)

where

qs(t) = @Ts/@y|y=0 and KS = E0/
⇣p

2⇡�tp(⇢Cp)m

⌘
.

The heat equation for the substrate (14) can be solved using
Green’s functions or Laplace transform. Using the boundary
conditions (18)–(20), the average temperature of the film is
found to be

T ⇤m (h, t) = T0 + S⇤ e
� t2p

2�2
tp

⇥
⌅ t

0
exp *,�

(t � u)2

2�2
tp

+
tp
�2

tp

(t � u)+- eK2u erfc(K
p

u) du,

(23)

where erfc(u) is the complementary error function and

K (h) =

p
(⇢Cpk)s

(⇢Cp)mh
.

TABLE I. The values of the parameters used in simulations. The material parameters come from Ref. 34, the
source term properties are as in Ref. 35, and the parameters related to disjoining pressure are the ones used in
Ref. 14.

Description Notation Value/expression

Density of the metal ⇢m 7 900 kg/m3

Density of the substrate ⇢s 2 200 kg/m3

Room temperature T0 300 K
Melting temperature of the metal TM 1 728 K
Viscosity of the metal at TM µm 4.61 ⇥ 10 3 Pa s
Surface tension �(T ) �0 + �T (T TM )
Reference surface tension �0 1.778 N/m
Change of � with respect to temperature �T 3.3 ⇥ 10 4 N/m K
Conductivity of the metal km 90 W/m K
Conductivity of the substrate ks 1.4 W/m K
Heat capacity of the metal (Cp)m 0.44 ⇥ 103 J/kg K
Heat capacity of the substrate (Cp)s 0.712 ⇥ 103 J/kg K
Laser fluence E0 2 500 J/m2

Time of maximum fluence tp 18 ⇥ 10 9 s
Absorption length ↵a 0.116 88 ⇥ 10 9 m 1

Fit parameter for reflectance r0 0 459 4
Absorptivity ar (8.0 ⇥ 10�9 m)�1

Equilibrium contact angle of metal with substrate ✓eq 70�

Exponents in the disjoining pressure model (n, m) (2, 3)
Precursor film thickness h⇤ 1.5 ⇥ 10 9 m
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FIG. 2. The average temperature of a metal film, T⇤m, as a function of film
thickness and time. The red highlighted curve represents the melting tem-
perature of nickel, TM = 1728 K. The parameters used are specified in
Table I.

Figure 2 shows the contour plot of the average tempera-
ture of the metal film, T ⇤m(h, t), as given by Eq. (23). The red
highlighted curve represents the melting temperature of nickel
(TM = 1728 K). We note that the energy absorption depends on

the film thickness in a non-monotonic manner. For a small film
thickness, h < hc ⇡ 14.3 nm, only a part of the laser energy is
absorbed, which leads to low film temperature. For film thick-
nesses h > hc, the film absorbs most of the laser pulse energy.
Hence, the film of thickness h ⇡ hc reaches the highest temper-
ature, and for the film of thicknesses h > hc, the temperature
decreases as h grows due to the larger amount of material that
needs to be heated. Later in Secs. III A and III B, we study the
dynamics of the films with the film thickness either smaller or
larger than hc.

A known temperature at the interface which is expressed
as a function of the film thickness, h, and time, t, only is
convenient for implementing the Marangoni force in the VoF
solver. The surface gradients of the surface tension, rs�, can
be evaluated directly as

rs� =
�T

@T
@h

@h
@x

ds
ˆ

t, (24)

where ds =
q

1 + (@H/@x)2 is the arc length, and H is the
height function.24,36 As discussed earlier, T is approximated
by the average temperature T ⇤m, and therefore the gradient of the
temperature with respect to the film thickness is approximated
by @T ⇤m/@h that can be computed analytically from Eq. (23)
as follows:

@T ⇤m
@h

(h, t) =
@S⇤

@h
e
� t2p

2�2
tp

⌅ t

0
exp *,�

(t � u)2

2�2
tp

+
tp
�2

tp

(t � u)+- eK2u erfc(K
p

u) du

+ 2S⇤ e
� t2p

2�2
tp

⌅ t

0

dK
dh

exp *,�
(t � u)2

2�2
tp

+
tp
�2

tp

(t � u)+-
"
KeK2u erfc(K

p
u) �

r
u
⇡

#
du,

@S⇤

@h
= KS

( f
�r0are�arh

⌘g f
1 � e�↵ah

g 1
h

+
f
1 � r0

⇣
1 � e�arh

⌘g " f
↵ae�↵ah

g 1
h
�
f
1 � e�↵ah

g 1
h2

#)
. (25)

Note that @h/@x in Eq. (24) is equivalent to @H/@x, i.e., the
derivative of the height function. For small film thicknesses,
T ⇤m and @T ⇤m/@h need to be carefully computed to ensure that
the integrals in Eqs. (23) and (25) converge; see Appendix B.
When used in our simulations, both T ⇤m and @T ⇤m/@h are eval-
uated for an array of t and h values before the start of the
simulations. During the simulation, we use bilinear interpola-
tion to find the temperature at each interfacial cell and each
time step. This makes the computations significantly faster,
since we do not need to use the numerical integration to com-
pute the integrals in Eqs. (23) and (25) for each interfacial cell
at each time step.

2. Analytical solution of the heat equation

in a film–substrate system

Equations (13) and (14), including the spatial variations
in the y-direction in both the metal and the substrate, can be
solved analytically using separation of variables, following
the technique given in Ref. 37. The analytical solution pre-
sented here is used for the verification of the reduced model
given in Eq. (23) and the complete model is presented in
Sec. II A 3.

In contrast to the reduced model presented in Sec. II A 1,
for computing the analytical solution, we assume that the
substrate is of finite depth. However, when comparing the solu-
tions resulting from different models, we use substrate depth
large enough so that the temperature solution is converged with
increasing substrate thickness, and the solution is equivalent to
that for the semi-infinite substrate (see Fig. 22 in Appendix C).
Therefore, instead of Eq. (20), here we use the following
boundary condition:

Ts = T0 at the bottom of the substrate y = �b, (26)

where b is the substrate thickness.
The solution can be found using separation of variables,37

and it can be written compactly in terms of Green’s functions
as

Tm (y, t) =
⌅ t

0

⌅ b

a
G12 (y, t; ⇠, ⌧)

Dm

km
S (⇠, ⌧) d⇠d⌧, (27)

Ts (y, t) =
⌅ t

0

⌅ b

a
G22 (y, t; ⇠, ⌧)

Ds

ks
S (⇠, ⌧) d⇠d⌧, (28)

where G12 and G22 are given in Appendix C along with the
details of the solution.
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FIG. 3. (a) h0 = 10 nm. (b) h0 = 20 nm. The analytical solution for the temperature of the film (y > 0) and the substrate (y < 0). The lines show different times;
the time specified in the legends is in ns. Note very small variation of the temperature across the film.

Figure 3 shows the analytical temperature solution in the
metal film (y > 0) and the substrate (y < 0). The tempera-
ture variation across the film thickness is small compared to
the variation in the substrate. Therefore, ignoring temperature
gradients across the film, as used in the reduced model, is jus-
tified. We note, however, that such a conclusion can be reached
only for stationary flat films. As we will see later, using the
reduced model for nonuniform films, or for the time depen-
dent films, in general cannot be justified. On a different note,
we point out that since there is no in-plane dependence in the
source term, the 1D analytical solution presented here holds
for 2D or 3D flat stationary films.

3. Computational model for the temperature

of the film–substrate system

Next we consider the outlined problem via direct numer-
ical simulations. We implement our numerical methods into
the open source Gerris software.38 We denote the top sub-
domain containing metal and air by ⌦f and the bottom one
containing the substrate by ⌦s. In general, the temperature in
⌦f , denoted as Tf , satisfies the advection-diffusion equation,
and the temperature in ⌦s, Ts, satisfies the diffusion equation,

⇢Cp

f
@tTf + (u · r)Tf

g
= r ·

⇣
krTf

⌘
+ Sn(x, t) in ⌦f , (29)

⇣
⇢Cp

⌘
s
@tTs = ksr2Ts in ⌦s, (30)

where ⇢ = ⇢ (�), Cp = Cp (�) and k = k (�) are the phase
dependent density, the heat capacity, and the conductivity of
the metal and air, defined as the volume fraction weighted
average of the metal and air properties.

The simulation setup has to address the following issue:
using Gerris we cannot solve for the temperature inside of
the solid substrate directly, since except on the boundaries,
the implementation of the solid entities does not contain the
computational cells. Hence, in order to solve for the temper-
ature in the fluid and the substrate using Gerris, we treat the
solid domain—the substrate—as an immobile fluid. Further-
more, in order to impose the no-slip boundary condition on
the metal-substrate boundary, we separate the two phases by
a thin solid plate; see Fig. 4. Later in this section we show by

direct comparison with the analytical solution that this setup,
referred to as the complete model, produces correct results.

The coupling of the temperature solution between the liq-
uid and solid domains is accomplished using Newton’s law of
cooling, which we impose on the top and bottom of the solid
plate as follows:

km
@Tf

@y
= ↵

⇣
Tf � Ts

⌘
at the top of the solid, (31)

ks
@Ts

@y
= ↵

⇣
Tf � Ts

⌘
at the bottom of the solid, (32)

where↵ is the heat transfer coefficient. Note that the right-hand
sides of Eqs. (31) and (32) are equal, implying the continuity
of the flux between the liquid and substrate. Furthermore, in
the limit ↵ !1, the boundary conditions (31) and (32) both

FIG. 4. The fluid–substrate setup used in the direct numerical simulations.
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FIG. 5. (a) h0 = 10 nm. (b) h0 = 20 nm. The convergence of the average temperature in the metal film using the numerical solution of the complete model with
increasing ↵. The units of ↵ in the legend are in W m 2 K 1. Note that the source term is a Gaussian centered at t = tp = 18 ns and of the width �tp; see Eq. (16).

imply Tf = Ts. Hence, the boundary conditions specified by
Eqs. (31) and (32) effectively encapsulate both the continuity
of flux, Eq. (18), and the continuity of temperature, Eq. (19).
Additionally, in Appendix C, see Fig. 23, we confirm that the
analytical solution, given in Sec. II A 2, with Newton’s cooling
law boundary condition, converges for large ↵ to the solu-
tion specified by requiring continuity of temperature. We note
that the presented computational approach can be used for the
arbitrary metal-air interface shape.

In the remainder of this section, we verify that the numer-
ical solutions to Eqs. (29) and (30), along with the boundary
conditions, Eqs. (31) and (32), converge with the increasing
heat transfer coefficient, ↵, and the substrate thickness, b.
To do this, we consider the following test problem. Assume
that the metal-air interface is flat and the solution is x-
independent. Hence, the temperature for the 2D problem sat-
isfies the 1D heat equation at any fixed position x, and the
1D analytical solution, presented in Sec. II A 2, holds. We
compare the temperature solution obtained from the complete
model to the 1D analytical solution, where we average the

temperature over the film thickness for the purpose of this
comparison.

Figure 5 shows the temperature solution of the com-
plete model for a flat film geometry and vanishing velocity
in Eq. (29) compared to the analytical solution for increasing
values of ↵. Clearly, as ↵ increases, the results of the complete
model approach the analytical solution. The largest relative
difference in the temperature between ↵ = 50 W m 2 K 1 and
↵ = 70 W m 2 K 1 is 0.7% for h0 = 10 nm and 0.6% for
h0 = 20 nm. Since larger ↵ decreases the required time step,
we use ↵ = 50 W m 2 K 1 in order to reduce the computational
time. Figure 6 shows the convergence of the solution of the
complete model for the averaged temperature for increasing
substrate size, b. The largest relative difference in the tem-
perature between b = 400 nm and b = 600 nm is 0.12% for
h0 = 10 nm and 0.08% for h0 = 20 nm. We conclude that it is
sufficient to use b = 400 nm.

So far, we have shown that the solution to the complete
model described in this section converges with the increased
heat transfer coefficient, ↵, and the substrate thickness, b,

FIG. 6. (a) h0 = 10 nm. (b) h0 = 20 nm. The convergence of the average temperature in the metal film using the solution of the complete model with increasing
substrate size, b.
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FIG. 7. (a) h0 = 10 nm. (b) h0 = 20 nm. The comparison of the average temperatures of a flat film for the reduced, the analytical, and the complete model. Here,
the substrate thickness is b = 400 nm, and the heat transfer coefficient is ↵ = 50 W m 2 K 1.

to the analytical solution with continuity of temperature
boundary condition at the fluid-substrate interface. Next, Fig. 7
shows the comparison of the average temperature in the metal
film obtained using the reduced model given in Sec. II A 1, the
analytical solution outlined in Sec. II A 2, and the complete
model described in this section. The average temperature of
a flat metal film in both the reduced and the complete model
agrees with the analytical solution. Hence, we are confident
in the numerical implementation of the temperature models in
our numerical solver.

We point out this agreement between different models, in
particular the reduced and complete models hold only for flat
films for which the heat flow in the in-plane direction is not
relevant. For perturbed films, the two models produce different
results, as we will discuss in Sec. III.

III. RESULTS AND DISCUSSION

We are now ready to discuss the influence of thermal
effects on the film stability. First in Secs. III A–III D, we focus
on film geometry, and then consider filaments in Sec. III E.
We start by discussing briefly in Sec. III A the results of linear
stability analysis carried out within the long wave limit in a
simplified setting (that assumes film temperature to be depen-
dent only on the current value of the film thickness). Then,
we follow in Sec. III B by presenting the results using the
models for temperature computation outlined in Sec. II A.
We will see that the outcomes of the models considered dif-
fer significantly. The main finding is that the reduced model
overestimates the Marangoni effect, and the particular rea-
son for this is the omission of the in-plane heat conduction.
We will also see that the temporal temperature variations lead
to a change in the surface tension, which can in turn affect
the stability of the perturbed interface during the evolution.
As we will see, the interplay of the stabilizing/destabilizing
Marangoni effect and temporal variation of surface tension
lead to a complex form of film evolution. In Sec. III C, we also
consider temperature variation of film viscosity and its influ-
ence on the film stability. Section III E discusses the influence
of thermal effects on stability of metal filaments.

For both films and filaments, we focus on developing
the basic understanding of the influence of thermal effects
on their stability. Therefore, we focus on relatively simple
computational domains and initial conditions–in particular, in
simulations we will consider films and filaments perturbed
by a single wavelength and defer considering more complex
domains and initial conditions to future work. As we will see,
even for simple setups, the influence of variation of material
parameters (surface tension and viscosity) is rather complex,
and the simplicity of the considered computational domains
and initial conditions helps in focusing on the basic questions.
In addition, we focus on the question of stability versus insta-
bility of a given perturbation; for this reason, in our simulations
we choose initial conditions that are close to the critical ones
where stability changes: such a choice helps us to further sim-
plify the problem considered and reach answers to the basic
stability questions.

A. Linear stability analysis of a thin film
in two dimensions

First, to gain basic insight, we present the results of linear
stability analysis (LSA) carried out within the long wave limit.
While the LSA provides only approximate results since (i) it is
valid only for early stages of instability and (ii) it corresponds
to the long wave limit, we still expect it to provide a useful
insight.

The long wave limit,39 for a Newtonian film with the
Marangoni effect and the fluid-substrate interaction in the form
of the disjoining pressure,40 leads to the following 4th order
nonlinear partial differential equation:

3µ
@h
@t

+
@

@x

"
�0h3 @

3h
@x3

+
3
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h2 @�(T )
@x

+ K⇡h3 @

@x

 
hn
⇤

hn �
hm
⇤

hm

!#
= 0, (33)

where K⇡ is given by Eq. (10). We assume that the film
thickness is perturbed around the equilibrium one, h0, as

h(x, t) = h0

⇣
1 + "e�t+ikx

⌘
, (34)
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FIG. 8. (a) h0 = 10 nm. (b) h0 = 20 nm. The average temperature, T⇤m (thick solid blue line), and @T⇤m/@h (thick dashed orange line) of a metal film as a function
of time, using the reduced model. The thin horizontal blue and orange dashed lines indicate the meting temperature, TM , and the line @T⇤m/@h = 0, respectively.

where " is a small parameter, � is the growth rate of the per-
turbation, and k is the wavenumber. Note that temperature
is not an independent variable here, instead it is a function
of h. An alternative approach is to consider both h and T as
independent variables and perturb each of them separately;
however, we are not doing this here for simplicity. Keeping
only the leading order terms in ", we obtain the dispersion
relation

� = �
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(35)
To illustrate the expected influence of the Marangoni

effect on stability, in Fig. 8 we plot the temperature gradi-
ent, @T ⇤m/@h, for a fixed film thickness computed using the
reduced model [see Eq. (25)]. The temperature of the film, T ⇤m
[see Eq. (23)], is plotted to show the film melting time. We
assume that before the temperature of the film rises above T ⇤m,
the film does not evolve. The value of the gradient changes as
a function of time, and in order to obtain an estimate for the
stability of a perturbed film using Eq. (35), we approximate

@T /@h by the largest absolute value of @T ⇤m/@h, during the
time the film is melted. Hence, the obtained dispersion curve
provides the upper bound on the influence of the Marangoni
effect.

Figure 9 shows the dispersion curve for 10 and 20 nm thick
films. For the h0 = 10 nm thick film, Fig. 9(a), the Marangoni
effect is stabilizing, since @T /@h > 0, for all the times at which
the film is melted. Conversely, for h0 = 20 nm film, Fig. 9(b),
the Marangoni effect is destabilizing for a significant period
after melting, since @T /@h < 0.

In the rest of this section, we will use the outlined LSA
results to rationalize the results computed using the reduced
and complete models for the flow of thermal energy.

B. Evolution of a thin film interface in two dimensions

In this section, we examine the stability of the films
by solving the Navier-Stokes equations including the ther-
mal effects. We also include the fluid-substrate interaction
in the form of a disjoining pressure [see Eq. (12)]. We
compare the influence of thermal effects on the film breakup

FIG. 9. (a) h0 = 10 nm, @T /@h = 76.7 K nm 1. (b) h0 = 20 nm, @T /@h = 33.9 K nm 1. The growth rate for a perturbed film resulting from the LSA, where
@T /@h is approximated by the specified maximum values, as explained in the text, with (blue solid) and without (orange dashed) the Marangoni effect.
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(occurring within the present model when the film thickness
reaches the precursor level) using the temperature solution
from the reduced and from the complete model, described in
Secs. II A 1 and II A 3, respectively.

The initial geometry of the film in the simulations is as
described by Eq. (34) where " = 0.1. At the time t = 0, the
metal is in solid state (the pulse maximum occurs at tp = 28 ns).
For the simulations that use the reduced temperature model,
we simulate only the times after the film is melted. In the
case of simulations such that the complete temperature model
is implemented, we keep the film stationary until melted (by
putting the fluid velocity to zero).

1. Film of thickness 10 nm; dT/dh > 0

Figure 10 shows the evolution of the interface for a 10 nm
film. We use stable perturbation wavelength, � = 100 nm, that
is slightly smaller than the critical one, �c = 114 nm, found
from the LSA in Sec. III A. Hence, we expect the perturbation
to be stable. Figure 10(a) shows the evolution of the interface
with temperature solution from the reduced model. The pertur-
bation of the interface decays, as expected. Figure 10(b) shows

the evolution with the temperature solution from the complete
model, where initially (see t = 20 ns) the perturbation decays,
then grows for all following times, and the film eventually
breaks into drops. Hence, the two temperature models, which
agree for a flat film, produce different evolution for a perturbed
interface.

Understanding the difference in stability resulting from
the models requires considering both normal and tangential
stress balances at the liquid-air interface, that is, both spatial
gradients of the surface tension leading to the Marangoni effect
and the temporal evolution of surface tension due to the evo-
lution of temperature. We discuss both of these effects next,
for both reduced and complete models.

First, let us consider the influence of the temperature on
the normal component of the surface force and ignore the tan-
gential component (therefore ignoring the Marangoni effect).
The lower panels in Fig. 10 show the evolution of the interface
using the complete model, for (c) constant surface tension,
� = �0, and (d) temperature dependent, � = �(T ), but the
Marangoni effect is not included. In the simulation that uses
constant surface tension, the perturbation is stable, as expected

FIG. 10. (a) Reduced model, Marangoni effect included. (b) Complete model, Marangoni effect included. (c) Complete model, Marangoni effect not included,
� = �(TM ). (d) Complete model, Marangoni effect not included, � = �(T ). The evolution of the interface for h0 = 10 nm and � = 100 nm showing the
comparison of the two models and the relevance of the Marangoni effect. The film is stable in (a) but goes through oscillatory instability in (b) [for early times,
until t = 20 ns, the imposed perturbation decays slightly in (b)]. The Marangoni effect is ignored in (c) and (d), with the fixed (c) and temperature dependent
(d) surface tension as noted. Note different thickness scales in (a) and (c), and (b) and (d). Note also that for this figure and the following figures, the evolution
starts at t ⇡ 11.4 ns, the time at which the film temperature rises above the melting temperature, TM .
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FIG. 11. (a) The average temperature of the metal film from Figs. 10(a) and 10(b). (b) Growth rate given by Eq. (35), for h0 = 10 nm and for � at the melting
temperature, TM , and at the maximum temperature predicted by the reduced model, Tmax. The vertical dotted line in (b) shows the value of k used in the
simulations. Marangoni effect is not considered.

from the dispersion relation, Eq. (35). However, when the sur-
face tension dependence on the temperature is included, the
perturbation initially decays (see t = 20 ns) but grows for
all later times. Note in particular that the results shown in
Figs. 10(b) and 10(d) are almost identical, showing that the
Marangoni effect is essentially irrelevant in the present con-
text. Therefore, the stability change is not due to the spatial
variations of � but due to the change of the normal component
of the surface tension force due to temporal change of �.

We still need to explain why they the results shown in
parts (a) and (b) of Fig. 10 differ. For this purpose, Fig. 11(a)
shows the average temperature of the film in the reduced and
complete models for the parameters as used in Figs. 10(a)
and 10(b). According to both models, from the melting time at
t = 11.4 ns, the temperature of the film increases to T & 4000 K,
which corresponds to the decrease in the surface tension from
�(TM ) = 17.78 N m 1 to�(Tmax) = 10.15 N m 1. Figure 11(b)
shows the dispersion curve computed using Eq. (35), with
�0 = �(TM ) and �0 = �(Tmax), and @T /@h = 0. The
change in �0 shifts the critical wavenumber, kc, and the

stable perturbation (� = 100 nm which corresponds to
k ⇡ 0.0628 nm 1) becomes unstable. This explains why the
stable mode in simulations in Figs. 10(b) and 10(d) becomes
unstable as the film temperature increases, eventually leading
to the film breakup. Note that we have already shown that the
Marangoni effect is not relevant for the simulations that use
the complete model for temperature calculation.

In contrast to the results obtained by implementing the
complete temperature model shown in Figs. 10(b) and 10(d),
the results obtained with the temperature from the reduced
model, Fig. 10(a), show stability, despite the fact that the
average temperature of the film increases similarly as in the
complete model; see Fig. 11(a). To gain better understanding
of this finding, we examine the difference in the tempera-
ture solutions along the liquid-air interface for a perturbed
stationary film, corresponding to the initial condition used in
Fig. 10. (The motivation for considering a stationary film is the
source term dependence on the film thickness–the film evolu-
tion would affect the source term, and we prefer to avoid this
effect for simplicity of the argument.) Figure 12(a) shows the

FIG. 12. (a) h0 = 10 nm, � = 100 nm. (b) h0 = 20 nm, � = 250 nm. The difference, �T, between the computed and average temperatures at the liquid metal-air
interface for a static perturbed film showing the results for the reduced (dashed) and the complete (solid) models. Note that for the temperature scale shown, the
temperature gradients for the complete model are almost invisible.
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differences of the computed temperature along the interface
from the average temperature. The temperature varies signifi-
cantly more for the reduced model compared to the complete
one. Thus, the temperature gradients at the liquid-air interface
are significantly larger for the reduced model, and the stabi-
lizing Marangoni effect prevents the interface in Fig. 10(a)
from becoming unstable. This finding explains the different
film evolution between the two models.

To summarize the results for the film thickness of
h0 = 10 nm: If the temperature is computed using the com-
plete model, the Marangoni effect turns out to be irrelevant;
however, the temporal change of surface tension due to the
evolving laser pulse and film thickness may influence film sta-
bility, leading to instability in the case considered here. If the
temperature is computed using the reduced model, then the
(stabilizing) Marangoni effect may compete with the destabi-
lizing effect of the overall surface tension decrease, leading
to stability. Therefore, computing the temperature carefully is
crucial for understanding the film stability.

2. Film of thickness 20 nm; dT/dh < 0

Next, we consider a thicker film, with the an average
thickness of h0 = 20 nm. Recall that for h0 = 20 nm, the

reduced model predicts essentially the opposite direction of
the Marangoni effect relative to h0 = 10 nm; see Fig. 8. Here
we impose a perturbation of the wavelength, � = 250 nm,
which is stable when the Marangoni effect is ignored; see the
dispersion relation, Eq. (35). Figures 13(a) and 13(b) show the
comparison of the evolution of the interface using the reduced
and complete temperature models. Using the reduced model,
Fig. 13(a), we find instability, and the perturbation grows
until the film breaks into drops. This is not surprising since
the reduced temperature model predicts @T ⇤m/@h < 0 which
destabilizes the film [see Fig. 9(b)]. When the temperature is
computed using the complete model however, see Fig. 13(b),
the evolution is oscillatory: at t = 20 ns the perturbation decays;
at t = 30 ns and t = 40 ns the perturbation grows; and at
t = 50 ns the perturbation decays again. Similarly as for
h0 = 10 nm, to explain these dynamics, we examine the simu-
lations without Marangoni effect and investigate the influence
of the temperature on the normal component of the surface
force.

Figures 13(c) and 13(d) show the evolution of the inter-
face when the surface tension is (a) constant, � = �0, and
(b) temperature dependent, � = �(T ), but the Marangoni
effect is ignored. When constant surface tension is considered,

FIG. 13. (a) Reduced model, Marangoni effect included. (b) Complete model, Marangoni effect included. (c) Complete model, Marangoni effect not included,
� = �(TM ). (d) Complete model, Marangoni effect not included, � = �(T ). The evolution of the interface for h0 = 20 nm and � = 250 nm showing the
comparison of the two models and the relevance of the Marangoni effect. The film is unstable in (a) but goes through oscillatory instability in (b). The Marangoni
effect is ignored in (c) and (d), with the fixed (c) and temperature dependent (d) surface tension as noted. Note that the evolution starts at t ⇡ 11.8 ns, the time at
which the film temperature rises above the melting temperature, TM . Note also different thickness scales in all panels.
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the perturbation is stable, as expected from the LSA. However,
for temperature dependent surface tension, we uncover the
same dynamics as in Fig. 13(b). Thus, we see again that the
Marangoni force is negligible. We show next that the changes
in the stability in the complete model are due to the temporal
changes of the surface tension.

Figure 14(a) shows the average temperature of the film
using the reduced and complete models for the parameters
as used in Fig. 13. From the melting time, at t = 11.8 ns,
the temperature evolution (and the surface tension change) is
similar as for the h0 = 10 nm films. Figure 14(b) shows the
dispersion curve computed using Eq. (35), with �0 = �(TM )
and �0 = �(Tmax), and @T /@h = 0. The change in �0 shifts
the critical wavenumber, kc, and the (linearly) stable pertur-
bation (� = 250 nm which corresponds to k ⇡ 0.025 12 nm 1)
becomes unstable, as we see in Figs. 13(b) and 13(d) after
t = 20 ns. After t = 40 ns, the temperature decreases again to
T ⇡ 3000 K; hence [see Fig. 14(b)], the perturbation becomes
(linearly) stable again. In summary, similarly to the h0 = 10 nm
film, the stability of the interface using the complete model is
governed by the temporal variations of �.

Similarly as for the h0 = 10 nm film, the temporal changes
of the surface tension do not explain the film instability for the
temperature from the reduced model in Fig. 13(a). Therefore,
we compare again the temperature at the liquid-air interface
of a stationary film using the reduced and complete models.
Figure 12(b) shows the deviation from the average temperature
at the interface of a stationary film corresponding to the initial
condition for the simulations shown in Fig. 13. We see once
again that the effect of the Marangoni effect is augmented
significantly by the reduced model.

To summarize, we find that for both thin and thick films
(relative to the critical thickness at which dT /dh changes
sign), the complete and reduced models produce different
results, showing clearly that careful computation of heat flow
is required to accurately describe the evolution. Using the
reduced model, or in other words ignoring the heat conduc-
tion in the in-plane direction, leads to qualitatively different

results compared to the ones obtained if this assumption is not
made.

C. The influence of the temperature
dependent viscosity

Here we focus on the influence of the viscosity variations
with temperature on the stability and breakup dynamics. Dur-
ing the metal heating and melting, the viscosity of the metal
changes by several orders of magnitude.34 The viscosity of
most metals can be modeled by an exponential as

µ (T ) = µ0 exp
 

E
RT

!
, (36)

where µ0 = 0.1663 mN s m 2 and E = 50.2 kJ mol 1 are con-
stants dependent on the material and R = 8.3144 J K 1 mol 1

is the gas constant.34 Figure 15 shows the viscosity of nickel
as a function of temperature.

The influence of the temperature dependent viscosity on
the film breakup can be estimated based on the dispersion rela-
tion specified by Eq. (35). This relation says that the stability
of the film and, in particular, the critical wave number, kc, do
not depend on the viscosity. However, the growth rate, �, is
inversely proportional to µ and, as we will see, this may be
sufficient to influence the stability.

To study the influence of the variable viscosity on the
breakup dynamics, we use the same initial geometry as in
Sec. III B within the framework of the complete model
described in Sec. II A 3. Here, surface tension is taken as
temperature dependent, but for simplicity we do not include
the Marangoni effect (which is essentially irrelevant for the
complete model). Figure 16 shows the evolution of the film
interface with temperature dependent viscosity compared to
the evolution for constant viscosity, µ = µ(TM ). For the 10 nm
film, the same evolution dynamics are present in both cases:
perturbations initially decay but start growing as the film tem-
perature rises [see the discussion related to Figs. 10(b) and
10(d)]. As expected based on the LSA, the stability of the

FIG. 14. (a) The average temperature of the metal film from Fig. 13. (b) Growth rate given by Eq. (35), for h0 = 20 nm, @T /@h = 0, and � at the melting
temperature, TM , and the maximum temperature predicted by the reduced model, Tmax. The vertical dotted line in (b) shows the wave number used in the
simulations.
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FIG. 15. Viscosity of nickel as a function of temperature given by Eq. (36), for temperature range starting from (a) room temperature and (b) melting temperature
of nickel.

perturbations is not affected by the variable viscosity, but the
growth rate is faster, and therefore the breakup time occurs
⇡5 ns faster with variable viscosity compared to the constant
one (see Sec. III B). For the 20 nm film, again, the decay and
the growth of the perturbations for the variable viscosity follow
the same direction as the constant viscosity in Figs. 13(b) and
13(d). During the time of the perturbation growth, as in t = 20 ns
to t = 40 ns for µ = µ(TM ), the perturbation for µ = µ(T ) grows
fast enough so that the film breaks. Recall that for µ = µ(TM ),
the stability changes after t = 40 ns, and the film stabilizes due
to the decrease of the film temperature. Therefore, inclusion
of temperature dependent viscosity can strongly influence the
film evolution.

D. Discussion of the influence of thermal e�ects
on film stability

At the beginning of Sec. III, we motivated the focus of
this work on simple computational domains and initial con-
ditions. In principle, more complex setups would be needed

to reach precise understanding regarding the influence of
thermal effects in physical experiments where the relevant
domains are large and the film and temperature perturba-
tions are more complicated. However, based on the existing
results, we are already in the position to develop a basic
insight.

To be specific, let us ask the following question: What
is the influence of the fact that the temperature of metal
films rises significantly above melting temperature on the
film stability? Focusing first on the temperature dependence
of surface tension, we start by noting that the Marangoni
effect is not relevant. However, the overall decrease of
surface tension as the temperature of a film raises sug-
gests that shorter wavelengths are expected; see the dis-
persion curves in Figs. 11(b) and 14(b). Possibly, such a
decrease of surface tension may be responsible for obser-
vation of shorter wavelengths in experiments.21 Clearly, as
the film temperature changes as a function of time due to
the time-dependent source term (laser pulse) and heat loss
through the substrate, the effect of the surface tension change

FIG. 16. (a) h0 = 10 nm. (b) h0 = 20 nm. The comparison of the evolution of the film interface with constant (full line) and temperature dependent viscosity
(dashed line) using the complete temperature model.
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will be time dependent as well. Turning now to temperature
dependence of film viscosity, we note that viscosity influ-
ences the time scale of instability growth and could there-
fore influence the film stability strongly, as discussed in
Sec. III C.

To conclude this brief discussion, a variation of material
parameters with temperature clearly influences film stabil-
ity in a manner which may be complex in particular due to
the fact that the relevant time scales, related to the source
term and to the temporal evolution of the film itself, are
comparable. In general, based on the results presented so
far, one expects that heating of the films above melting
will result in a decrease of the emerging wavelengths (such
as the distance between drops that form eventually), com-
pared to the ones expected if one assumes that the mate-
rial parameters (surface tension and viscosity) are given by
their values at the melting temperature. The details of the
instability evolution however may depend on the particu-
lar choice of metals, substrates, and laser pulse energy and
duration.

E. Breakup of liquid metal filaments

In a recent work35 that included both experimental study
and computational study, we considered the concentration
Marangoni effect in a two-metal setup focusing on metal
filament geometry. In that study, it was found that the concen-
tration Marangoni effect played a significant role. In particular,
the Marangoni induced flow led to inversion of instability
development, in the sense that initially thicker filament parts
(nickel covered by a thin copper film) ended up thinning,
while initially thinner filament parts increased in thickness
due to concentration induced Marangoni flow. The ques-
tion that we will consider in the present paper is whether a
similar effect could be observed for the thermal Marangoni
effect.

To answer this question, we consider the following setup:
the initial geometry is a flat filament of width 4 and base thick-
ness h0, with superimposed perturbations of uniform thickness
�h. The lengths of the perturbed part (of thickness h0 + �h)
and unperturbed one (of thickness h0) are the same. A similar
setup was used in the experiments and simulations discussed
in Ref. 35—the only difference is that here we are consider-
ing a single metal (nickel). Since we know from Sec. III B
that the temperature gradients are small in the metal film, we
increase the thickness of the rectangular perturbations com-
pared to Ref. 35 in an attempt to increase the temperature
gradients. Therefore we take the base filament thickness as
h0 = 8 nm and superimpose the perturbations of �h = 8 nm
(so that the film thickness varies between 8 and 16 nm), and
the width of the filament is 4 = 185 nm. The average filament
thickness is kept at 12 nm as in Ref. 35. We note that the fila-
ment simulations are carried out using the approach described
in Ref. 35; briefly, we do not consider disjoining pressure here
but instead specify the contact angle (90� for simplicity) and
use the Navier-slip boundary condition with the slip length
of 20 nm. The simulations consider one half of the perturba-
tion wavelength and half of the filament width and impose
symmetry boundary conditions at all in-plane directions.

The fluid is stationary until the melting time of the filament
(see Sec. III B).

Following the melting, the initial filament geometry
quickly (in ⇡2 ns) collapses to a cylindrical filament on a sub-
strate. Hence, the basic idea regarding the stability of such a
filament could be reached by considering the Rayleigh-Plateau
type of instability of a free standing cylindrical jet (clearly, the
presence of the substrate modifies the instability mechanism
slightly as discussed further below17). Within the cylindrical
jet model, the growth rate of the perturbations, �, is given
by41,42

�2 =
�

⇢R3

"
kR

⇣
1 � k2R2

⌘ I1(kR)
I0(kR)

#
, (37)

where R is the radius of the jet and I0 and I1 are the modified
Bessel functions. Hence the stability of a jet depends on its
radius, R: the modes, k, for which kR < 1 are unstable and the
modes for which kR > 1 are stable. Here, k is the wavenum-
ber related to the perturbation wavelength, �, by k = 2⇡/�.
The fastest growing mode corresponds to kmR ⇡ 0.7. In the
present context, R corresponds to the radius of a filament char-
acterized by the equilibrium contact angle ✓ and of the same
cross-sectional area as the initial rectangular geometry of the
thickness h and width 4, i.e.,

R =

r
hw

✓ � cos ✓ sin ✓
. (38)

Figure 17 shows the growth rate for a filament. We con-
sider both the filament thickness without the perturbation,
h0 = 8 nm, and the average filament thickness including
the perturbations, h0 = 12 nm. The Rayleigh-Plateau stabil-
ity curve gives us an approximation for the critical wave-
length, �c ⇠ 236 nm using h0 = 12 nm; including the pres-
ence of substrate is known to make �c slightly larger.17

Our numerical results show consistently that �c value is
in the range [240, 250] nm. In what follows, we show
the results for two filaments: one with a stable perturba-
tion and one with an unstable perturbation. We compare the
results for simulations with and without the thermal effects.

FIG. 17. Growth rate as a function of the wavelength for filament width
4 = 185 nm. Since the perturbation is large, the growth rate is computed
with both h0 = 8 nm and h0 = 12 nm (average thickness).
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FIG. 18. Evolution of a stable filament with wavelength � = 240 nm, (a) surface tension dependent on the temperature and (b) surface tension fixed at �0.
The color in (a) represents the temperature at the interface in degrees Kelvin.

The temperature is governed by the complete model described
in Sec. II A 3.

Figure 18 shows the evolution of a linearly stable filament,
with the wavelength of the perturbations close to the critical
one. The results are similar, independent of whether the sur-
face tension is treated as a constant or temperature dependent.
To understand this result, we note that the filament setup dif-
fers in a significant manner from the film one: here, a change
of the surface tension does not change the stability of the

filament; it only modifies the growth rate. Hence, the thermal
variation of the surface tension does not change the qualitative
behavior.

Figure 19 shows the evolution of an unstable fila-
ment. Again, the thermocapillary force does not change the
qualitative breakup dynamics. However, the breakup with
temperature dependent surface tension happens about 10 ns
slower compared to the constant surface tension. This is
expected, since the increase in the temperature leads to a
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FIG. 19. Evolution of an unstable filament with wavelength � = 250 nm, (a) surface tension dependent on the temperature and (b) surface tension fixed
at �0. The color in (a) represents the temperature at the interface in degrees Kelvin. Note slower breakup in (a) due to a decrease of surface tension with
temperature.

decrease in the surface tension, which in turn leads to a
decrease in the growth rate.

An obvious question to ask is why the concentration
Marangoni effect, discussed in Ref. 35, is so much more
prominent compared to the thermal Marangoni effect dis-
cussed here. There are at least two sources of the difference:
first, the thermal Marangoni effect is much weaker com-
pared to the concentration one (one needs the temperature

difference of ⇡1600� to produce the change of surface ten-
sion of nickel corresponding to the difference of the sur-
face tensions of nickel and copper considered in Ref. 35;
see Table I); and second, for the setup considered in the
present work, the thermal Marangoni effect is induced: the
filament needs to heat up for the thermal Marangoni effect
to be established; in the setup considered in Ref. 35, the
concentration Marangoni effect is present from the very
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beginning of the evolution. We note in passing that the present
results also suggest that the thermal Marangoni effect can
be safely ignored in two (or multi) metal setting: the con-
centration Marangoni effect is expected to play a dominant
role.

F. Conclusions

In this paper, we have studied the influence of the thermal
effects on the evolution of thin metal films and filaments. For
the films, we have shown that the dynamics of the evolution
can change due to the surface tension dependence on temper-
ature. Perhaps surprisingly, the influence of the temperature is
not manifested through the Marangoni effect, but through the
capillary force (balance of normal stresses). In other words,
the thermal effects influence the interface evolution due to the
time-dependent changes of the surface tension during a laser
pulse.

We have reached the main conclusion outlined in the
preceding paragraph by considering two models for com-
puting the film temperature. The reduced 1D temperature
model (Sec. II A 1) is found to overestimate the temper-
ature gradients along the free interface, since the in-plane
heat conduction is not considered. The complete model,
based on the numerical computation of the temperature
(Sec. II A 3), shows that the temperature gradients along the
interface are in fact not strong enough to influence the breakup
of the films. The changes in the viscosity during the metal
film heating can accelerate the growth of the perturbations,
leading to a breakup of films that would not break if a
constant value of viscosity at the melting temperature were
used. This finding is also to a certain degree unexpected
since it is known (at least within the long wave limit)
that viscosity influences only the growth rate and does not
modify the range of unstable wave numbers. However, an
interplay of the time scales responsible for heating and for
instability development modifies the evolution in a non-
trivial manner. Our results suggest that the fact that tem-
perature rises significantly over melting will result in the
emergence of shorter length-scales compared to the ones
expected if the material parameters considered were assumed
to be fixed at their values corresponding to the melting
temperature.

In the case of filaments, the temperature dependence
of surface tension has only rather minor influence on the
qualitative behavior of the breakup of the liquid metal
filaments. At least for the parameters considered here,
the stability of a (single metal) filament is not influ-
enced by surface tension variation. This is in contrast
to the two-metal filaments considered in Ref. 35, where

concentration dependence of surface tension can qualitatively
change the dynamics.

The presented results open new avenues of research. Some
of the questions that one may ask are as follows:

• What is the influence of the substrate thickness and
thermal properties on the findings reported here? Pre-
sumably for a sufficiently thin substrate, heat diffusion
in the in-plane direction may be less important, mod-
ifying the results, and perhaps bringing the findings
of the complete model (that includes the heat diffu-
sion in the in-plane direction) and the reduced model
(that does not include the in-plane heat diffusion) closer
together.

• The result presented here shows in some cases oscil-
latory instability, with the film evolution evolving in
a non-monotonous manner. Can one understand the
conditions required for such oscillatory evolution more
precisely?

• The results of the present paper, combined with the
analysis of the propagation of the melting front con-
sidered in a stationary setup,25 should allow us to
analyze evolution of metal films on the substrates
that may go through the phase transitions themselves.
What is the influence of substrate melting on the film
stability?

• How significant are thermal effects for the evolution
and stability of multi-metal films and alloys?

We expect that the results presented here will serve as a basis
for answering some of the outlined questions.
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APPENDIX A: LASER SOURCE TERM

The absorption, reflectance, and transmittance of a thin
metal film can be computed from Maxwell’s equations with
appropriate boundary conditions. The equations are greatly
simplified when considering a single film layer on a transpar-
ent (non-absorbing) substrate. The simplified expressions for
computing reflectance and transmittance given in the work of
Heavens33 are

R1 =
t2
12 + u2

12

p2
12 + q2

12

, (A1)

T1 =
n2

n0

((1 + g1)2 + h2
1)((1 + g2)2 + h2

2)

e2�1 + (g2
1 + h2

1)(g2
2 + h2

2)e�2�1 + C cos(2�2) + D sin(2�2)
, (A2)
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FIG. 20. E0 is the intensity of the incident radiation. R(h) and T (h) are the
thickness dependent reflectance and transmittance of the metal.

where the terms in Eqs. (A1) and (A2) are defined as

�1 =
2⇡k1h
�l

, �2 =
2⇡n1h
�l

,

g1 =
n2

0 � n2
1 � k2

1

(n0 + n1)2 + k2
1

, g2 =
n2

1 � n2
2 + k2

1

(n1 + n2)2 + k2
1

,

h1 =
2n0k1

(n0 + n1)2 + k2
1

, h2 =
�2n2k1

(n1 + n2)2 + k2
1

,

C = 2(g1g2 � h1h2), D = 2(g1h2 + g2h1),

p2 = e�1 cos(�2), p12 = p2 + g1t2 � h1u2,

q2 = e�1 sin(�2), q12 = q2 + h1t2 + g1u2,

t2 = e��1 (g2 cos(�2) + h2 sin(�2)),

t12 = t2 + g1p2 � h1q2,

u2 = e��1 (h2 cos(�2) � g2 sin(�2)),

u12 = u2 + h1p2 + g1q2,

and h is the metal film thickness, �l is the wavelength of the
incident radiation, n0 is the refractive index of air, n1 and k1
are the metal refractive index and the extinction coefficient,
respectively, and n2 is the refractive index of the substrate.
Figure 20 shows a schematic of the laser energy absorption.
The incident energy E0 is perpendicular to the film surface.
One part of the energy, R(h), is reflected at the film surface,
and the rest of the energy, denoted by E1, penetrates the surface.
Then, a part of the laser energy, denoted by E2, is transmitted
through the metal. Hence the energy absorbed by the metal
film is

A = E0 [1 � T (h)] [1 � R(h)]. (A3)

The expressions for R and T given in Eqs. (A1) and (A2) can
be approximated by simpler functions, as it is done by Trice
et al.,20

T2(h) = e�↵ah, R2(h) = r0

⇣
1 � e�arh

⌘
, (A4)

where ↵a = 4⇡k1/�l, and r0 and ar can be found by fitting T2
and R2 to Eqs. (A1) and (A2). Figure 21 shows the comparison
of the reflectance and transmittance given by Eqs. (A1), (A2),
and (A4). The parameters used here are �l = 248 nm,35 n0 =
1, n1 = 1.7167, k1 = 2.3067, n2 = 1.591 57,43 r0 = 0.4594, and
a�1

r = 8 nm.
In Sec. II A for simplicity we use Eqs. (A4) for computing

the absorption of the laser energy by a metal film.

APPENDIX B: THE TEMPERATURE SOLUTION
OF THE REDUCED MODEL IN THE LIMIT
OF SMALL FILM THICKNESS

The solution to the reduced temperature model given in
Sec. II A 1 contains integrals that pose numerical difficulties
for small film thicknesses. Here we give the expressions that
can be used for computing the temperature of the metal film,
T ⇤m, and the gradient of the temperature with respect to the film
thickness, @T ⇤m/@h, to alleviate those difficulties. In the limit
of small film thickness, T ⇤m and @T ⇤m/@h can be expanded using
asymptotic series as

FIG. 21. The comparison of the reflectance and transmittance given by Eqs. (A1), (A2), and (A4).
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where

S⇤ (h! 0, t) = ↵a

"
1 �

✓↵a

2
+ arr0

◆
h +

1
6

⇣
↵2

a + 3↵aarr0 + 3a2
r r0

⌘
h2 + · · ·

#
, as h! 0. (B3)

Hence, the integrals in Eqs. (23) and (25) are convergent as h! 0. In our simulations, we use the expression given here for small
film thicknesses, since the direct evaluation of the integrals in Eqs. (23) and (25) is numerically difficult.

APPENDIX C: ANALYTICAL TEMPERATURE
SOLUTION

Here we provide the details of the analytical temperature
solution in the fluid-substrate domain specified in Sec. II A 2.
Note that in order to simplify the presentation, we change the
notation for the domain boundaries compared to Sec. II A
and denote the bottom of the substrate as y = 0, the fluid-
substrate interface as y = a, and the fluid-air interface as
y = b. The temperature in the fluid, Tm, and the temperature in
the substrate, Ts, satisfy the diffusion equation

@Ts

@t
= Ds

@2Ts

@y2
in 0 < y < a, (C1)

@Tm

@t
= Dm

@2Tm

@y2
+ S (y, t) in a < y < b, (C2)

where

Ds =
ks

⇢sCeffs
, Dm =

km

⇢mCeffm
,

along with the boundary conditions

Ts = T0 at y = 0, (C3)

Ts = Tm at y = a, (C4)

ks
@Ts

@y
= km

@Tm

@y
at y = a, (C5)

km
@Tm

@y
= 0 at y = b. (C6)

The source term, S(y, t), is given by Eq. (15). The solution
to the above equations can be written compactly in terms of
Green’s functions as given in Eqs. (27) and (28), where

Gi,j (y, t; ⇠, ⌧) =
1X

n=1

e��
2
n (t�⌧) 1

Nn

kj

↵j
 i,n (y) j,n (⇠), (C7)

Nn =
ks

Ds

⌅ a

0
 2

1,nd⇠ +
km

Dm

⌅ b

a
 2

2,nd⇠. (C8)

Here i ,n and �n are eigenfunctions and eigenvalues computed
using separation of variables, and

 i,n = Ai,n�i,n(y) + Bi,n⇥i,n(y) in yi < y < yi+1, (C9)

�i,n(y) = sin
 
�np
↵i

y
!
, (C10)

⇥i,n = cos
 
�np
↵i

y
!
, (C11)

where y0 = 0, y1 = a, and y2 = b. In order to simplify the
notation, let

� =
a�npDs

, ⌘ =
b�npDm

, K = ks

km

s
Dm

Ds
. (C12)

The eigenfunctions  i ,n satisfy the boundary conditions in
Eqs. (C3)–(C6). Hence, it follows

 1,n = 0 at y = 0

! B1,n = 0, A1,n = 1 without loss of generality, (C13)

 1,n =  2,n at y = a

! sin � = A2,n sin
✓a

b
⌘
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b
⌘
◆
, (C14)
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◆
, (C15)

@ 2

@y
= 0 at y = b

! A2,n cos ⌘ � B2,n sin ⌘ = 0. (C16)

We can solve for the coefficients A2,n and B2,n using Eqs. (C14)
and (C15),

A2,n =
1
�


� sin � sin

✓a
b
⌘
◆
�K cos � cos

✓a
b
⌘
◆�

, (C17)
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⌘
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, (C18)
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� = � sin2

✓a
b
⌘
◆
� cos2

✓a
b
⌘
◆
= �1. (C19)
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FIG. 22. Convergence of the analytical solution with increased substrate depth for film thickness of (a) h0 = 10 nm and (b) h0 = 20 nm.

In order to have a solution, we require vanishing determinant
of the system of Eqs. (C14)–(C16),

����������
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a
b⌘
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⇣
a
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⌘

0 � cos ⌘ � sin ⌘

����������
= 0.

The equation above leads to the following equation for the
eigenvalues, �n:

tan
a�npDs

tan
 
�npDm

(b � a)
!
= K, (C20)

which can be solved numerically.
Figure 22 shows the average temperature in the metal as

a function of time for different substrate thicknesses. We see
that the solution converges as the substrate thickness increases.
Hence, for a substrate thick enough, the solution is equivalent
to the one obtained in the setup involving a semi-infinite sub-
strate. This result is used in Sec. II A to justify comparing
the temperature obtained using the reduced model and semi-
infinite substrate, with the one obtained by using the complete
model and finite substrate thickness.

APPENDIX D: NEWTON’S LAW OF COOLING

We show that replacing the continuity of temperature
boundary condition at the fluid-substrate interface with New-
ton’s law of cooling yields an equivalent solution as long as
the heat transfer coefficient is large enough.

We replace the boundary condition (C4) by

� ks
@Ts

@y
= ↵ (Ts � Tm) at y = a (D1)

(the notation is the same as in Appendix C). Then, the eigen-
functions of the same form as given in Eq. (C9) satisfy the
boundary conditions (C3), (C5), (C6), and (D1). Hence, it
follows

 1,n = 0 at y = 0

! B1,n = 1, A1,n = 1 without loss of generality, (D2)
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From Eqs. (D3) and (D4), we can solve for the coefficients
A2,n and B2,n,
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The condition for existence of a solution is vanishing determi-
nant as follows:
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The equation satisfied by the eigenvalues �n is now
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which can be solved numerically.
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FIG. 23. Convergence of the analytical solution with increased ↵ for film thickness of (a) h0 = 10 nm and (b) h0 = 20 nm.

Figure 23 shows the average temperature in the metal as a
function of time for different ↵. We see that the solution with
Newton’s cooling law converges to the solution with continu-
ity of temperature for large ↵. This result is used in Sec. II A to
justify comparing the reduced model that implements continu-
ity of temperature with the complete model that uses Newton’s
law of cooling.
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