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On efficient asymptotic modelling of thin films
on thermally conductive substrates
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We consider a free-surface thin film placed on a thermally conductive substrate and
exposed to an external heat source in a set-up where the heat absorption depends on the
local film thickness. Our focus is on modelling film evolution while the film is molten.
The evolution of the film modifies local heat flow, which in turn may influence the film
surface evolution through thermal variation of the film’s material properties. Thermal
conductivity of the substrate plays an important role in determining the heat flow and
the temperature field in the evolving film and in the substrate itself. In order to reach a
tractable formulation, we use asymptotic analysis to develop a novel thermal model that is
accurate, computationally efficient, and that accounts for the heat flow in both the in-plane
and out-of-plane directions. We apply this model to metal films of nanoscale thickness
exposed to heating and melting by laser pulses, a set-up commonly used for self and
directed assembly of various metal geometries via dewetting while the films are in the
liquid phase. We find that thermal effects play an important role, and in particular that
the inclusion of temperature dependence in the metal viscosity modifies the time scale
of the evolution significantly. On the other hand, in the considered set-up the Marangoni
(thermocapillary) effect turns out to be insignificant.

Key words: thin films, lubrication theory, nonlinear instability

1. Introduction

The dynamics of thin liquid films is a topic of extensive interest with a number of
applications ranging from biomedical (Chen 2016; Li & Chu 2016) to electronic coatings
and nanotechnology (Zhang 2010). The inclusion of thermal effects in thin film dynamics,
relevant for many applications, is a mathematically challenging problem. To develop a
realistic model one must consider multiple factors, such as the heat supply mechanism(s),
possible dependence of material parameters on temperature, heat loss mechanisms and
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phase changes. When the liquid of interest is placed upon a thermally conductive
substrate one must also account for the heat flow within the substrate as well as the
interaction between the liquid and the substrate. Numerous models have been developed
to address these complications using continuum theory, which in general describes both
the thermodynamics and fluid dynamics in terms of partial differential equations (PDEs),
derived from first principles. In situations where there is a small aspect ratio (ratio of
typical film thickness to typical lateral length scale of interest) long-wave theory (LWT)
may be used, which effectively enables the fluid dynamics problem to be reduced to a
fourth-order PDE for film thickness. LWT has already proved very valuable in a variety of
settings such as liquid crystals, paint coatings, tear films, nanotechnology and many others
(see Craster & Matar (2009) for a comprehensive review). Due to the variety of length and
time scales present, the applicability of LWT to the problem of heat conduction in a thin
liquid film is not always clear cut. Of the issues outlined above we highlight the following
in this work: (i) the influence of temperature on film evolution; (ii) heating/cooling
mechanisms; and (iii) the application of LWT to heat conduction.

Various thermal effects that may influence the evolution of the film thickness have
been considered in prior work. For an isothermal nanoscale film the primary dewetting
mechanism is liquid–solid interaction, often modelled by a disjoining pressure (see
Israelachvili (1992) for an extended review). For non-isothermal films, gradients in
temperature may give rise to surface tension gradients (thermocapillary or Marangoni
effects), which develop when heating from below (Scriven & Sternling 1964) and can
destabilize the film. The work of Shklyaev, Alabuzhev & Khenner (2012) finds novel
stability thresholds between monotonic and oscillatory instabilities (in both cases, in the
linear regime the instability grows as eωt with growth rate ω, and positive real part,
Re(ω) > 0; but the imaginary part Im(ω) is zero in the former case and non-zero in the
latter) that also account for heat losses from the free surface of the film (referred to here
as radiative heat losses). In that work, the film is heated from below via a constant heat
flux from a substrate of much lower thermal conductivity. Batson et al. (2019) perform a
stability analysis similar to that of Shklyaev et al. (2012), but model the substrate explicitly
rather than as a simple boundary condition. They solve a full heat equation for the substrate
temperature, and find that oscillatory instabilities arise primarily due to thermal coupling
between the film and the substrate. A number of other works have considered the coupling
between the evolution of film and substrate temperatures. Saeki, Fukui & Matsuoka (2011),
for example, consider a film/substrate system heated by a laser and find that the rate of
change of film reflectivity R with thickness h, dR/dh, may promote either stability or
instability of the film depending on the sign of dR/dh. The magnitude of the incident
laser energy was earlier shown to influence film thickness evolution by Oron (2000), who
showed in particular that increasing the laser energy can partially inhibit film instability.

Another important effect that may influence film evolution is the dependence of material
parameters, such as density, thermal conductivity, surface tension, heat capacity and
viscosity, on temperature. These relationships are often assumed to be linear, although
a strongly nonlinear Arrhenius-type dependence of viscosity on temperature may exist.
Oron, Davis & Bankoff (1997) formulated a thin film model in which viscosity variation
is included, and in later work Seric, Afkhami & Kondic (2018) found that film evolution
is strongly affected by the inclusion of temperature-dependent viscosity. If temperature
variations are sufficiently large, the film may undergo a phase change (liquefaction or
solidification). This has been considered using a variety of approaches, for example Trice
et al. (2007) use a latent heat model to describe such phase change whereas others, such
as Seric et al. (2018), assume phase change to be instantaneous.
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Modelling of heat losses in a liquid film often focuses on the boundary effects, since
viscous dissipation can usually be ignored. Radiative heat losses from the liquid to the
surrounding medium are typically modelled by a Robin type boundary condition (Oron
2000; Atena & Khenner 2009; Saeki et al. 2011; Shklyaev et al. 2012; Saeki, Fukui
& Matsuoka 2013) whereas the heat loss/gain from the film to the substrate has been
modelled variously by (i) a constant temperature (Oron & Peles 1998; Oron 2000; Saeki
et al. 2011), (ii) constant flux (Atena & Khenner 2009; Shklyaev et al. 2012) or (iii)
continuity of temperatures and fluxes, known as perfect thermal contact (Trice et al.
2007; Saeki et al. 2011; Dong & Kondic 2016; Seric et al. 2018). The choice of boundary
conditions plays an important role when formulating and solving equations to describe the
heat flow.

In many cases an asymptotic approach may be adopted, giving rise to simplified
leading-order temperature equation(s). The work of Saeki et al. (2011), for example,
includes both radiative heat losses and heat transfer at the liquid–solid interface, and
gives rise to a depth-averaged (z-direction) equation for film temperature, which retains
parametric z dependence even when radiative heat losses are ignored. In later work, Saeki
et al. (2013) developed similar leading-order equations for film temperature when the film
is optically transparent. In this case the film temperature dependence on z is slaved to the
inclusion of radiative heat losses. Trice et al. (2007), on the other hand, conclude that using
a z-independent film temperature model is sufficient when radiative heat losses can be
neglected and film-to-substrate heat losses are dominant (e.g. when there is a high thermal
conductivity ratio between the film and substrate). These previous works demonstrate that
boundary conditions play an integral role in the asymptotic formulation of a model and
may facilitate simple models that eliminate z-dependence (e.g. Shklyaev et al. 2012).

Due to the small aspect ratio of the film, a commonly used ‘reduced’ model for heat
conduction is one that neglects in-plane diffusion altogether (Trice et al. 2007; Dong &
Kondic 2016; Seric et al. 2018). This model, which we refer to here as (1D), is much
simpler than a model that includes full heat diffusion and is typically justified by arguing
that in-plane diffusion occurs on a much longer time scale than that of out-of-plane
diffusion. Alternative simplified models have also been proposed. The work of Shklyaev
et al. (2012), for example, uses LWT to derive evolution equations for heat conduction
that differ significantly from the one-dimensional (1-D) model of Dong & Kondic (2016)
(and from the asymptotic model considered in this paper). Atena & Khenner (2009) also
derive leading-order temperature equations that do not rely on the 1-D approximation.
More recent work by Seric et al. (2018) briefly compares predictions from (1D) with
those using a full thermal diffusion model, and suggests that (1D) performs poorly by
comparison, though the analysis is far from complete. Despite the extensive literature, the
scenarios for which thermal diffusion model (1D) is valid remain unclear. A key objective
of the present paper is to present a thermal model for thin film flow that includes in-plane
heat conduction at reasonable computational complexity and to compare with both (1D)
and with the full heat diffusion model (which serves as a benchmark).

In this paper, we consider films placed upon a thermally conductive substrate and
heated by a laser. Heat generation by a laser source is complicated to model and requires
in general that one accounts for the optical properties of the film, such as reflectivity,
transmittance, and absorption. These properties may depend on refractive indices of the
air, film and substrate, as well as the respective extinction coefficients. Again, various
modelling approaches have been taken in the literature: we note for example that Saeki
et al. (2011, 2013) present a detailed model for laser energy that involves complicated
expressions for the optical properties; whereas Trice et al. (2007) propose a simpler
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approach (to be discussed later) in which these properties are approximated. An important
application of laser heating is pulsed laser-induced dewetting (PLiD) of metal films. The
mechanism by which liquid metals evolve into assemblies of droplets has been explored
via experiments (Henley, Carey & Silva 2005), simulations (Dong & Kondic 2016; Seric
et al. 2018) and theory (Trice et al. 2007) with applications ranging from nanowire growth
(Kim et al. 2009; Ross 2010; Shirato et al. 2011), to plasmonics (Halas et al. 2011)
and photovoltaics (Atwater & Polman 2010); see also Hughes, Menumerov & Neretina
(2017) and Makarov et al. (2016) for recent application-centred reviews, and Ruffino &
Grimaldi (2019) and Kondic et al. (2020) for reviews focusing on molten metal film
instabilities. Of late, PLiD has been used to organize nanoparticles into patterns of droplets
via Rayleigh–Plateau-type instabilities (Favazza, Kalyanaraman & Sureshkumar 2006a;
McKeown et al. 2012; Ruffino et al. 2012), induced by exposing metal films/filaments upon
(typically) Si/SiO2 substrates to laser irradiation, effectively liquefying the film for tens of
nanoseconds. The liquefied film breaks up into droplet patterns, which then resolidify,
freezing the patterns in place. Thermal effects are found to be highly relevant, influencing
the stability, evolution and final (solidified) configurations of molten metal films (see for
example, Trice et al. 2007). A number of experimental studies have considered metallic
systems such as Co (Favazza et al. 2006a,b,c; Trice et al. 2007), Ag (Krishna et al.
2010), Au (Yadavali, Khenner & Kalyanaraman 2013), Ni (Fowlkes et al. 2012) as well
as multi-metal systems (Fowlkes, Wu & Rack 2010). The large variety of experimental
work that has been done on nanoscale metal films calls for a firm theoretical foundation,
which can both explain existing results and suggest new approaches.

The focus of the present paper is development of a consistent, asymptotically valid,
mathematical model that accounts for (i) heat absorption that is influenced by the local
value of (time-dependent) film thickness; (ii) in-plane and out-of-plane heat diffusion in
a tractable manner; (iii) self-consistent coupling of the heat flow and film evolution; and
(iv) thermal variation of material properties, in particular of surface tension and viscosity.
LWT is used to reduce modelling of the film evolution to a fourth-order PDE for the film
thickness and to develop an asymptotic model for heat conduction. We consider a set-up
where the primary heat loss mechanism is through the substrate rather than the liquid–air
interface, and the thermal conductivity of the film is much higher than of the substrate,
as appropriate for metal films on SiO2 substrates. We will show that the proposed model
(called asymptotic model (A) in what follows) produces accurate results, while avoiding
the shortcomings of models that ignore coupling of fluid dynamics and thermal transport
and producing results with a reasonable computational effort. It should be emphasized
that the use of a more complex model (called full (F) model below) is orders of magnitude
more computationally expensive (even for small computational domains, the computing
time is measured in days on a modern computational workstation (in a serial mode)).
Our asymptotic model provides essentially indistinguishable results at a fraction of the
computational cost.

The rest of the paper is organized as follows. In § 2, we formulate a general mathematical
model by introducing appropriate scales, the corresponding dimensionless system, and
relevant dimensionless parameter groups. We present three different models of heat
conduction: a full diffusion model (F), a 1-D diffusion model (1D) and an asymptotic
model (A); and we summarize the derivation of the thin film evolution equation (the
fluid mechanical model always used), accomplished using LWT and accounting for the
possibility of temperature dependence of material parameters. Section 3 contains our
main results. In § 3.1, we perform linear stability analysis (LSA) on the film evolution
equation to understand the circumstances under which disturbances to the liquid film lead
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Modelling of thin films on thermally conductive substrates

Laser

z = h(x,t)

z y

x

z = 0

x =
 N

π

x =
 –N

π
Film

Substrate

Si

z = –Hs

Figure 1. Three-dimensional schematic of the film, substrate and laser system. In dimensionless units the
mean film thickness is equal to 1, the substrate thickness is given by Hs and the domain width is 2Nπ (both
N = 1 and N = 20 will be used in simulations). The model is presented in three dimensions but for simplicity
simulations will be performed only in two dimensions.

to instabilities, and to predict the manner of film breakup. In § 3.2, we summarize the
conditions under which our simulations are carried out, and in § 3.3, we display results
comparing the three models for heat conduction. In § 3.4, we restrict attention to the
asymptotic model for heat conduction and study how temperature dependence of both
viscosity and surface tension influence the results. We find that temperature dependence
of the viscosity has the most significant effect on the instability development, while
temperature-induced variation of surface tension plays only a minor role. Furthermore, in
the physically relevant regime, allowing viscosity to vary with temperature produces films
that dewet fully in the liquid phase, while if viscosity is fixed at its melting temperature
value the dewetting occurs much closer to the solidification time, which may result in only
partial drop formation. We conclude in § 4 with a brief summary and discussion.

2. Model formulation

Consider a molten metal film (assumed initially solid) of characteristic lateral length
scale L, and (nanoscale) thickness H, heated by a laser, and in contact with a thermally
conductive solid substrate of finite thickness, which itself rests upon a much thicker Si
slab. The basic set-up is sketched in figure 1. Here, we consider the substrate to be thin,
and comparable in size to the film thickness, H. We define the aspect ratio of the film to
be ε = H/L � 1.

In the following, we refer to the in-plane coordinates as x, y and the out-of-plane
coordinate as z. For completeness, we present the governing equations for a 3-D system,
though the results presented in this paper will be for the 2-D case in which all quantities
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are independent of y. We define L, H, U, εU, ts, Tmelt, μf U/(ε2L) and γf (where μf and
γf are the viscosity and surface tension of the film at melting temperature, Tmelt) to be
the in-plane length scale, out-of-plane length scale, in-plane velocity scale, out-of-plane
velocity scale, time scale, temperature scale, pressure scale and surface tension scale,
respectively (the values of the material parameters used are given in table 1). Similar
to Gonzalez et al. (2013), we set ts = 3μf L/(ε3γf ), which can be interpreted as a viscous
time scale. The in-plane velocity scale is fixed as U = ε3γf /(3μf ) so that ts = L/U. The
length scale is fixed as L = λm/(2π), where λm is the most unstable wavelength obtained
from LSA with surface tension and viscosity fixed as γf and μf , respectively (see § A.2 for
details). We treat the film as an incompressible Newtonian fluid and assume that viscosity
is independent of z. The resultant dimensionless system then comprises the following fluid
equations, which hold on 0 < z < h,

ε2Re (∂tu + u · ∇u) = −∂xp + ε2∇2 · (M∇2u) + M∂2
z u + ε2∂yM∂xv, (2.1)

ε2Re (∂tv + u · ∇v) = −∂yp + ε2∇2 · (M∇2v) + M∂2
z v + ε2∂xM∂yu, (2.2)

ε4Re (∂tw + u · ∇w) = −∂zp + ε4∇2 · (M∇2w) + ε2M∂2
z w + ε2∇2M · ∂z(u, v),

(2.3)

∇ · u = 0, (2.4)

the following equations of heat conduction,

ε2Pef ∂tTf = ε2∇2
2 Tf + ∂2

z Tf + ε2Q, for z ∈ (0, h) , (2.5)

Pes∂tTs = ε2∇2
2 Ts + ∂2

z Ts, for z ∈ (−Hs, 0) , (2.6)

and boundary conditions,

w = ∂th + u∂xh + v∂yh, on z = h, (2.7)

[n · T · n] = 3γ (∇ · n) − 3Π(h), on z = h, (2.8)

ε [n · T · t1] = −3∂xγ, on z = h, (2.9)

ε [n · T · t2] = −3∂yγ, on z = h, (2.10)

n · ∇Tf = 0, on z = h, (2.11)

∂zTf = Kε2∂zTs, Tf = Ts, on z = 0, (2.12)

u = 0, on z = 0, (2.13)

∂zTs = Bi (Ts − Ta) , on z = −Hs, (2.14)

∂xTf = ∂xTs = 0, on x = ±Nπ, (2.15)

∂yTf = ∂yTs = 0, on y = ±Nπ. (2.16)

Here, the fluid velocity is given by u = (u, v, w), pressure by p and film and substrate
temperatures by Tf and Ts, respectively. Subscripts f and s stand for film and substrate,
respectively, unless otherwise stated and 0 = (0, 0, 0). We refer to the gradient operator
as ∇ = (∂x, ∂y, ∂z), its in-plane counterpart as ∇2 = (∂x, ∂y, 0) and the in-plane Laplacian
operator as ∇2

2 (defined by ∇2
2 u = ∂2

x u + ∂2
y u for a given scalar function u). Equations

(2.1)–(2.6) are the Navier–Stokes (NS) equations representing conservation of mass
and momentum for the film, together with thermal energy conservation in both
film (0 < z < h) and substrate (−Hs < z < 0) domains, both of lateral extent 2Nπ,
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Modelling of thin films on thermally conductive substrates

−Nπ < x, y < Nπ (for simulations we use either N = 1 or N = 20, but N can be any
positive integer). The unit vector n denotes the outward normal to the film’s free surface,
z = h. The equations above introduce the following dimensionless parameters:

Re = ρf UL
μf

, M = μ

μf
, K = ks

kf
ε−2,

Pef = (ρc)f UL

kf
, Pes = (ρc)s UεH

ks
, Bi = αH

ks
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.17)

which are the Reynolds number, dimensionless viscosity, (scaled) thermal conductivity
ratio, Péclet numbers and Biot number, respectively. We assume ε2Re � 1; the remaining
quantities in (2.17) are assumed O(1). For further discussion of the choice of scales
and parameter values, see table 1, § 2.1.3, and § A.1 later. The definitions of the laser
source term Q and the disjoining pressure Π(h) are given in the discussion below. The
material parameters (ρ, c, k)f ,s represent the density, specific heat capacity and thermal
conductivity of the film and substrate, respectively. We assume that the substrate is
optically transparent and does not absorb laser energy.

In experiments a Si substrate is often used (Henley et al. 2005; Wu et al. 2011; Yadavali
et al. 2013) on top of which a native layer of oxide, usually SiO2, 3–4 nm in thickness,
typically exists (though an additional oxide layer, typically about 100 nm thick, may also
be deposited). Below the oxide in either case is Si, which has a much higher thermal
conductivity, and can therefore be assumed isothermal relative to the SiO2. Consistently,
we consider the (SiO2) substrate to be positioned on top of a thick layer of much higher
conductivity, assumed to be at constant ambient temperature, Ta. We model the heat loss
from the top (SiO2) substrate to the thick Si layer below via a Newton law of cooling at
z = −Hs (2.14) with Biot number, Bi (related to the dimensional heat transfer coefficient,
α). The value of Bi was chosen so that the film melts and solidifies on a time scale
comparable to the film evolution (although the value Bi = 2 × 10−3 is presented, the range
7 × 10−4–7 × 10−3 was considered). We assume the following form of the heat source, Q
in (2.5), representing the external volumetric heating due to the laser at normal incidence
(see Trice et al. 2007; Seric et al. 2018),

Q = F(t)[1 − R(h)] exp [−αf (h − z)],

F(t) = C exp[−(t − tp)2/(2σ 2)],

C = E0αf L2
√

2πσ tsHkf Tmelt
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.18)

where C is a constant (assumed O(1)) proportional to the amount of incident energy,
E0, applied from the laser onto the film, α−1

f is the (scaled) absorption length for laser
radiation in the film and F(t) captures the temporal power variation of the laser, taken to be
a Gaussian pulse centred at tp and of width defined by σ = tp/(2

√
2 ln 2). Similar to prior

work by a number of authors (Oron 2000; Trice et al. 2007; Saeki et al. 2011, 2013; Dong &
Kondic 2016; Seric et al. 2018) the transmittance of laser source heating is modelled via the
Bouguer–Beer–Lambert law (see, e.g. Howell, Siegel & Menguc 2010), which in (2.18) is
presented as a spatially dependent source term, exp(−αf (h − z)). In general the reflectivity
of the film, R(h), on a transparent substrate, can be determined by solving Maxwell’s
equations with the appropriate boundary conditions (Heavens 1955). The resultant form is
quite cumbersome to work with, however, and instead we approximate R(h) by the simple
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Parameter Notation Value Unit

Viscosity at melting temperature μf (1) 4.3 × 10−3 Pa s
Surface tension at melting temperature γf (1) 1.303 J m−2

Vertical length scale H 10 nm
Horizontal length scale L = λm/(2π) 40.58 nm
Time scale ts = 3Lμf /(ε

3γf ) 26.86 ns
Temperature scale/melting temperature Tmelt 1358 K
Film density ρf (1) 8000 kg m−3

SiO2 density ρs (1) 2200 kg m−3

Film specific heat capacity cf (1) 495 J kg−1 K−1

SiO2 specific heat capacity cs (1) 937 J kg−1 K−1

Film heat conductivity kf (1) 340 W m−1 K−1

SiO2 heat conductivity ks (1) 1.4 W m−1 K−1

Film absorption length α−1
f H (1) 11.09 nm

Temperature coefficient of surface tension γT (1) −0.23 × 10−3 J m−2 K−1

Hamaker constant AH (2) 1.75 × 10−17 J
Reflective coefficient r0 (1) 0.3655 1
Film reflective length α−1

r H (1) 12.0 nm
Laser energy density E0 (3) 300 J m−2

Gaussian pulse peak time tpts (3) 15 ns
Equilibrium film thickness h∗H 1 nm
Mean film thickness h0H 10 nm
SiO2 thickness HsH 10 nm
Room temperature TaTmelt 300 K
SiO2 heat transfer coefficient α 3.0 × 105 W m−2 K−1

Characteristic velocity U 1.504 m s−1

Activation energy E 30.5 kJ mol−1

Non-dimensional numbers Expression

Aspect ratio ε 0.246 H/L
Reynolds number Re 0.114 ρf UL/μf
Film Péclet number Pef 7.14 × 10−4 (ρc)f UL/kf
Substrate Péclet number Pes 5.46 × 10−3 (ρc)sUεH/ks
Biot number Bi 2.14 × 10−3 αH/ks
Marangoni number Ma 0.360 3γT Tmelt/(2γf )

Thermal conductivity ratio K 0.068 ks/(ε
2kf )

Range of dimensionless viscosity M 0.028 − 1 μ/μf

Table 1. Parameters used for liquid Cu film and SiO2 substrate. References: (1) Dong & Kondic (2016),
(2) Gonzalez et al. (2013), (3) McKeown et al. (2012).

functional form (Seric et al. 2018)

R(h) = r0 (1 − exp (−αrh)) , (2.19)

where r0 and αr are dimensionless fitting parameters, determined by a least-squares fit of
the approximate R(h) to the full expression for reflectivity.

Equations (2.7)–(2.11) are boundary conditions on the free surface, z = h(x, y, t),
with unit normal n = ∇(z − εh)/|∇(z − εh)| and tangent vectors t1 and t2 given by

t1 = (1, 0, ε∂xh)/
√

1 + ε2(∂xh)2 and t2 = (0, 1, ε∂yh)/

√
1 + ε2(∂yh)2. The kinematic

boundary condition is given by (2.7); (2.8), (2.9) and (2.10) are the dynamic boundary
conditions, representing a balance of stress between the liquid and air phases, where T is
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Modelling of thin films on thermally conductive substrates

the Newtonian stress tensor, γ is the surface tension, and Π(h) is the disjoining pressure
representing liquid–solid interaction. Many forms of Π(h) are used in the literature (for
more information regarding the microscopic nature of the disjoining pressure, we refer the
reader to Israelachvili (1992).); we take

Π(h) = K
[(

h∗
h

)n

−
(

h∗
h

)m]
, K = AHL

6πεγf h3∗H3 , (2.20a,b)

with equilibrium thickness h∗, exponents n > m > 1 (we use (n, m) = (3, 2) since these
values were shown by Gonzalez et al. (2013) to be appropriate for liquid metals), and
Hamaker constant AH . We assume that the radiative heat loss from the film to the air is
small compared to the heat conduction from the film to the substrate. As a consequence, we
neglect heat loss through the liquid–air interface and apply (2.11), an insulating boundary
condition. Furthermore, we model the (assumed) primary heat loss mechanism through
the interface between the film and the substrate at z = 0 by perfect thermal contact via
(2.12). At z = 0, we also assume no slip and no penetration of fluid via (2.13). Finally, we
assume that the film and substrate are thermally insulated at the lateral ends, x = ±Nπ
and y = ±Nπ.

We will now proceed to simplify the full model as outlined above. We begin in § 2.1
with a discussion of the various models for heat conduction, and derive a leading-order
asymptotic model that (we will show) compares well with the full heat conduction model.
In § 2.2, we discuss the long-wave approximation for thin films and the inclusion of
thermal effects in the resultant thin film equation.

2.1. Thermal modelling
In what follows, we present three different models for the inclusion of thermal effects
(the fluid dynamics in all cases will be described by the long-wave model, see § 2.2).
In § 2.1.1, we give a ‘full’ model for heat conduction, denoted (F), which includes both
in-plane and out-of-plane heat diffusion, but omits both viscous dissipation and thermal
advection. As discussed in § 1, a number of previous works have utilized a much simpler
model that neglects lateral heat diffusion (e.g. Trice et al. 2007; Dong & Kondic 2016;
Seric et al. 2018). Although the exact relevance of such lateral (in-plane) heat transfer has
not yet been carefully analysed, prior work by Seric et al. (2018) suggests that it may be
important. To study and quantify the possible significance, in § 2.1.2 we describe such a
‘one-dimensional’ model for heat conduction, denoted (1D). Finally, in § 2.1.3 we apply
LWT to (F) to develop an ‘asymptotic’ model for heat conduction, (A). This model utilizes
key assumptions on the non-dimensional parameters introduced in (2.17) to arrive at a
system that is simpler than (F), but unlike (1D) retains lateral heat diffusion. These three
models will be compared in § 3.3.

2.1.1. Full model
In order to compare models of heat conduction, we must first declare a model that serves as
a benchmark. We refer to (2.5), (2.6), (2.11), (2.12) and (2.14)–(2.16) (despite the presence
of terms that may appear asymptotically small with respect to ε in comparison to other
terms), as the full model (F) for heat conduction.

2.1.2. One-dimensional model
Here, we display the model obtained by neglecting in-plane heat conduction in (F),
assuming that the term ε2∇2

2 Tf may be neglected compared with ∂2
z Tf in (2.5) but retaining
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R.H. Allaire, L.J. Cummings and L. Kondic

all other terms. Equation (2.11) is replaced by ∂zTf = 0 since n = (0, 0, 1) + O(ε2). This
yields the following 1-D model (1D) for heat conduction:

ε2Pef ∂tTf = ∂2
z Tf + ε2Q, for z ∈ (0, h) , (2.21)

Pes∂tTs = ∂2
z Ts, for z ∈ (−Hs, 0) , (2.22)

∂zTf = 0, on z = h, (2.23)

∂zTf = Kε2∂zTs, on z = 0, (2.24)

Tf = Ts, on z = 0, (2.25)

∂zTs = Bi (Ts − Ta) , on z = −Hs, (2.26)

∂xTf = 0, on x = ±Nπ, (2.27)

∂yTf = 0, on y = ±Nπ, (2.28)

where Q is given by (2.18). We note that, although the substrate temperature Ts only
diffuses in the out-of-plane direction, z, it is still functionally dependent on the in-plane
coordinates x, y, due to (2.25) and the dependence of film temperature Tf on x, y (via
dependence on film height h). It follows from (2.25), (2.27) and (2.28) that ∂xTs = 0 at
x = ±Nπ, and ∂yTs = 0 at y = ±Nπ automatically. For the rest of the paper, we refer to
(2.21)–(2.28) as the (1D) model.

2.1.3. Asymptotic model
Next, we formulate a model of intermediate complexity by carrying out further asymptotic
analysis. To do so, we first make a number of assumptions about the non-dimensional
parameters defined in (2.17) and provide estimates of time scales based on the parameters
given in table 1:

(i) Pef = O(1). The term ε2Pef = [(ρc)f H2/kf ]/ts = tDf /ts appearing in (2.5) is a ratio
of two time scales: tDf , the time scale of diffusion of heat in the film, and ts, the time
scale of film evolution. Thus, we assume tDf � ts; heat diffuses rapidly through the
film, before any significant film evolution can occur. In our set-up, tDf ≈ 1.17 ps,
whereas ts ≈ 26.86 ns;

(ii) Pes = O(1). Similar to (i) the Péclet number for the solid layer can be written as a
ratio of time scales, Pes = [(ρc)sH2/ks]/ts = tDs/ts, where tDs is the time scale of
out-of-plane thermal diffusion in the substrate. We assume that this diffusion occurs
on a time scale comparable to that of film evolution. Here, tDs ≈ 0.147 ns. Although
this is small relative to ts, this assumption ensures that the time derivative is retained
in (2.22), which is numerically convenient and has a negligible effect on results;

(iii) Bi = O(1). The Biot number Bi = (H/ks)/(1/α) can be interpreted as the ratio of
internal thermal resistance due to diffusion, H/ks, and external thermal resistance,
1/α, due to convection away from the boundary z = −Hs. We assume these internal
and external thermal resistances are comparable;

(iv) K = ks/(ε
2kf ) = O(1); the film has much higher thermal conductivity than the

substrate;
(v) Hs = O(1), indicating that the substrate thickness is comparable in size to the film

thickness. Hence the substrate is also thin.

The difference in length scales in the problem motivates the idea that in-plane and
out-of-plane diffusion can occur on different time scales. As a consequence of the thin
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Modelling of thin films on thermally conductive substrates

substrate assumption, (v), the in-plane diffusion is much slower than that of out-of-plane
diffusion. The ratio of the film evolution time scale to that of diffusion is therefore much
smaller for in-plane diffusion than out of plane. Consequently, in-plane diffusion can be
neglected in the substrate (cf. Seric et al. 2018).

To obtain an asymptotically valid model we assume the following expansions:

Tf = T(0)
f + ε2T(1)

f + · · · , Ts = T(0)
s + ε2T(1)

s + · · · , (2.29a,b)

so that, on substituting in (2.5), (2.6), (2.11), (2.12), (2.14), (2.15) and using assumptions
(i)–(v) listed above, the leading-order model is given by

∂2
z T(0)

f = 0, for z ∈ (0, h), (2.30)

Pes∂tT(0)
s = ∂2

z T(0)
s , for z ∈ (−Hs, 0), (2.31)

∂zT
(0)
f = 0, on z = h, (2.32)

∂zT
(0)
f = 0, on z = 0, (2.33)

T(0)
f = T(0)

s , on z = 0, (2.34)

∂zT(0)
s = Bi(T(0)

s − Ta), on z = −Hs, (2.35)

∂xT(0)
f = 0, on x = ±Nπ, (2.36)

∂yT(0)
f = 0, on y = ±Nπ. (2.37)

Equations (2.30)–(2.33) result in a leading-order film temperature that is independent of
z but still unknown, T(0)

f = T(0)
f (x, y, t). We must therefore proceed to next order in the

asymptotic expansion to obtain a closed model for the leading-order film temperature.
Collecting terms at next order in (2.5) yields

Pef ∂tT
(0)
f = ∇2

2 T(0)
f + ∂2

z T(1)
f + F(t)[1 − R(h)] exp[−αf (h − z)], (2.38)

while the boundary conditions (2.11) and (2.12) at the same order are

∂zT
(1)
f = ∇2h · ∇2T(0)

f , on z = h, (2.39)

∂zT
(1)
f = K∂zT(0)

s , on z = 0. (2.40)

Since T(0)
f is independent of z, we can integrate (2.38) from z = 0 to z = h. Doing so, and

applying the boundary conditions (2.39) and (2.40), gives the following evolution equation
for leading-order film temperature:

h Pef ∂tTf = ∇2 · (
h∇2Tf

) − K (∂zTs) |z=0 + hQ̄, (2.41)

for x, y ∈ (−Nπ, Nπ), where Q̄ = h−1 ∫ h
0 F(t)[1 − R(h)] exp[−αf (h − z)] dz is the

averaged heat source and the superscripts on Tf , Ts are dropped for convenience, since
now only leading-order quantities are considered. Here, ∇2 · (h∇2Tf ) in (2.41) describes
the lateral heat diffusion, while the terms K∂zTs and hQ̄ represent the heat lost from the
film due to contact with the substrate and the generation of heat in the film due to the laser
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R.H. Allaire, L.J. Cummings and L. Kondic

source, respectively. The final asymptotic model for heat conduction is (2.41) in the film,
together with

Pes∂tTs = ∂2
z Ts, for z ∈ (−Hs, 0) , (2.42)

Tf = Ts, on z = 0, (2.43)

∂zTs = Bi (Ts − Ta) , on z = −Hs, (2.44)

∂xTf = 0, on x = ±Nπ, (2.45)

∂yTf = 0, on y = ±Nπ. (2.46)

We note that, even though lateral diffusion is neglected in (2.42), the substrate temperature
Ts remains a function of x, y and z, the in-plane variation entering through the boundary
condition (2.43). By the same reasoning as in the previous section, the lateral end
insulating conditions on Ts, (2.15) and (2.16), are satisfied vacuously.

In summary, we have formulated an asymptotic model for heat conduction that exploits
the natural geometry of the problem as well as the relative sizes of material parameters
(assumptions (i)–(v)). This model, denoted (A), has advantages over both (F) and (1D).
By integrating over the z-direction, a closed model is obtained for a leading-order
temperature profile that is independent of z, simplifying the problem significantly. As a
consequence, (A) is considerably less computationally demanding than (F). Solving (F)
for the temperature profile throughout the evolving film is cumbersome since the domain
is deformable (see the appendix for details): model (A) eliminates this complication since
film temperature depends only on the in-plane direction(s) and time. Model (A) is also (as
we will see) substantially more accurate and faster to compute than (1D).

A number of other authors have developed reduced models for heat transfer within films,
which we now briefly highlight and contrast with our model (A). The models presented
by Dong & Kondic (2016), Seric et al. (2018) and Trice et al. (2007) ignore in-plane
diffusion in the substrate, similar to (2.42). Furthermore, all use a Dirichlet boundary
condition at the bottom of the substrate rather than the Newton law of cooling used
here (2.44). Shklyaev et al. (2012) arrive at a leading-order temperature equation through
arguments similar to ours above. Their model also retains the in-plane diffusion term,
∇2 · (h∇2Tf ) in (2.41), but considers radiative heat losses through the liquid–air interface
to be dominant rather than the heat loss through the substrate. One important difference
between our model (A) and that of Shklyaev et al. (2012) is that in (A) volumetric heating
is considered, which depends on the local value of the film thickness. This fully couples
the fluid and thermal problems, whereas the heating mode considered by Shklyaev et al.
(2012) (heating from the substrate below) does not depend directly on the film thickness.
Atena & Khenner (2009) also assume such volumetric heating but consider the case where
the internal heat generation is promoted to leading order so that z-dependence is retained
in the film temperature, leading to a more computationally demanding formulation.

2.2. Free-surface evolution
Each of our heat conduction models couples to the film evolution problem, which must be
solved simultaneously. Here we briefly summarize the long-wave approximation that we
utilize in all our simulations, which effectively reduces the NS equations to a fourth-order
PDE for film thickness, h. To retain maximum generality and reasonable tractability,
we allow both viscosity and surface tension (which appears in boundary conditions
(2.8)–(2.10)) to vary with temperature but treat material density, specific heat and thermal
conductivity as fixed at their respective values at melting temperature. We present forms
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Modelling of thin films on thermally conductive substrates

for both surface tension and viscosity that utilize the average free-surface temperature,
defined for our purposes by

T̄ = 1

(2Nπ)2

∫ Nπ

−Nπ

∫ Nπ

−Nπ

(Tf |z=h) dx dy. (2.47)

We assume that surface tension depends linearly on temperature in the following sense:

γ = 1 + 2Ma
3

(T̄ − 1) + ε2 2Ma
3

ΔT + O(ε4) = Γ + ε2 2Ma
3

ΔT + O(ε4), (2.48)

where Ma is the Marangoni number, given by Ma = (3γTTmelt)/(2γf ), where γT =
(γf /Tmelt) dγ /dT̄|T̄=1 is the change in surface tension with temperature when the film
(on average) is at melting temperature, T̄ = 1 (the factors of 2/3 are used for later
convenience); and ΔT is given by

ΔT = Tf |z=h − T̄. (2.49)

Since T̄ depends only on time, (2.48) can be interpreted as defining a surface tension
that varies in time (at leading order) due to variations in the average temperature, and
in space (at higher order), due to spatial variations in temperature. This asymptotic form
of γ proposed in (2.48) provides a consistent balance in the normal and tangential stress
balances presented below. The temperature dependence of the dimensionless viscosity,
M = μ/μf , is modelled by an Arrhenius-type relationship, which we take as

M(t) = exp
(

E
RTmelt

(
1
T̄

− 1
))

, (2.50)

where R = 8.314 J K−1 mol−1 is the universal gas constant and E is the activation energy
(Gale & Totemeier 2004).

To leading order in ε2 the normal and tangential stress balances (2.8)–(2.10) are

p = −3Γ ∇2
2 h − 3Π(h), on z = h, (2.51)

M∂z(u, v) = 2Ma∇2 (ΔT) , on z = h. (2.52)

To obtain an evolution equation for film thickness, we express conservation of mass in the
form

∂th + ∇2 · (hū) = 0, (2.53)

where ū is the film-averaged (in-plane) velocity, ū = h−1 ∫ h
0 (u, v) dz. To determine u and

v, we expand pressure and velocity fields in (2.1)–(2.3) to leading order in ε, assume Γ

is O(1) and apply the boundary conditions (2.51) and (2.52), together with the kinematic
condition (2.7), to obtain the leading-order velocity profile,

(u, v) = 1
M

[(
z2

2
− zh

)
∇2p + 2zMa∇2 (ΔT)

]
, (2.54)

and z-independent pressure, p. Equation (2.51), therefore, gives the pressure throughout
the layer and ∇2p is found by taking the gradient of (2.51). After plugging (2.54) into
(2.53) we then arrive at the thin film equation,

∂th + ∇2 ·
[

1
M(h3∇2(Γ ∇2

2 h + Π(h)) + h2Ma∇2(ΔT))

]
= 0. (2.55)

Following the time derivative term in (2.55), the terms (from left to right) represent
the capillary, disjoining pressure and Marangoni terms, respectively. In general, (2.55)
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describes the evolution of a nanoscale thin film and is applicable for any of our three
thermal models (A), (F) or (1D) by using ΔT (2.49) and T̄ (2.47) from the appropriate
model.

Equation (2.55) is already sufficiently general to incorporate in-plane variation of
viscosity. For model (A), this may be accomplished by using T(0)

f in place of T̄ in (2.50).
This is an additional advantage of (A) that is not immediately shared by (F) or (1D)
(including spatial dependence of viscosity is more complex with these models due to the
dependence of temperature on z, as discussed further in the next section).

Although the choice of scales made at the start of § 2 is standard in the long-wave
approximation (e.g. Oron et al. 1997), the introduction of heat conduction adds significant
complications, and it is important to check for consistency. For example, to retain surface
tension to leading order in (2.55), the velocity scale must be such that Γ = O(1). This
leads to the specific choice of time scale ts, which may be slower than the (nanoseconds)
duration of the Gaussian pulse. Further discussion of the choice of scales is provided in
§ A.1. We note that as a consequence of our chosen scalings, it would be asymptotically
consistent to replace (2.41) and (2.42) by their quasi-steady analogues; however, solving
the resulting boundary value problems is numerically more complicated (and does not
affect results), hence we retain these time derivatives in the formulation.

3. Results

For simplicity, we limit our considerations to two spatial dimensions, eliminating
y-dependence, so that the film’s free surface is at z = h(x, t). In § 3.1, we perform LSA,
which provides a framework for describing instability growth and motivates our choice
of initial film profile(s). Section 3.2 outlines the set-up of the simulations, including the
initial conditions and numerical procedures. Sections 3.3 and 3.4 show simulation results
for both film and thermal evolution. In § 3.3, we compare the thermal models. In § 3.4, we
(almost) exclusively use (A) to solve for heat conduction and allow the surface tension and
viscosity to vary with temperature. For what follows, we define the spatially averaged film
temperature,

Tavg = 1
2Nπ

∫ Nπ

−Nπ

1
h

∫ h

0
Tf dz dx, (3.1)

where the film temperature Tf is found using model (1D), (F) or (A) (leading-order
temperature for (A)) (for model (A) this is exactly the 2-D free-surface average given
by (2.47). For models (F) and (1D) it is the average temperature of the entire film). The
parameters used are as given in table 1, except where specified otherwise.

3.1. Linear stability analysis
To provide insight into the mechanism by which films dewet, we carry out LSA. Consider
a uniform film of height h0, perturbed as follows:

h(x, t) = h0 (1 + δ exp(ikx + βt)) , (3.2)

where k is the wavenumber, β is the growth rate and δ � 1 is the amplitude. A
more complete analysis could also incorporate independent perturbations to temperature
profiles, as was done by Shklyaev et al. (2012); for simplicity we do not take this approach.
We also neglect, for now, the influence of thermal gradients on film instability by setting
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Ma = 0 in (2.55). LSA then provides the following dispersion relation:

β(k) = 1
Mh3

0k2(2 − Γ k2). (3.3)

From (3.3), it is immediately apparent that viscosity sets the time scale of the perturbation
growth/decay. The stability of the film, on the other hand, is controlled by the surface
tension. For our purposes we only consider perturbations that grow (β > 0 when k2 <

2/Γ ). The wavenumber km corresponding to maximum growth is found from (3.3) by
setting ∂β/∂k = 0. The wavelength of maximum growth Λm and the maximum growth
rate βm = β(km) can then be written in the simple form

Λm = 2π
√

Γ , βm ≡ h3
0

ΓM . (3.4a,b)

Since increasing temperature decreases Γ and M (see (2.48) and (2.50)), higher
temperatures will lead to smaller Λm and larger βm. In what follows next, Λm will be
used to define simulation geometries. We note that Λm and L are related when Γ = 1 via
Λm = λm/L = 2π, where the expression for λm is given in § A.2.

3.2. Simulation set-up
Here we describe the details of the simulations. The numerical solution of (2.55) is
obtained using an approach adapted from Diez & Kondic (2002) with uniform grid size,
Δx = h∗ (h∗ is defined in (2.20a,b) and is fixed for all simulations as h∗ = 0.1), which
is sufficient to ensure accuracy. Models (F), (1D) and (A) are all solved using central
difference spatial discretization. Model (F) utilizes a mapping onto a rectangle to account
for the moving boundary (this is not needed for models (1D) and (A) due to lack of
in-plane diffusion and lack of z-dependence, respectively); see § C.1 in appendix for
details. For (1D), temporal discretization is performed using the Crank–Nicolson scheme,
while for (A) an implicit–explicit scheme is used (see § C.2). Model (F) is solved using
an alternating direction implicit (ADI) method, treating mixed derivative terms explicitly.
Adaptive time stepping is used to ensure a tolerance of 10−3 maximum allowable relative
error in temperature and film thickness. Note that the time-stepping tolerance criteria must
be satisfied for both film and heat evolution equations in order to proceed with a successful
iteration (a point to which we return later). No-flux boundary conditions ∂xh = ∂3

x h = 0
are imposed at x = ±Nπ (hū = 0 from (2.53)). The domain length, 2Nπ = NΛm(Γ = 1),
is now set by fixing N = 1 or N = 20. For N = 1, the initial film profile is set to represent
a small perturbation to a uniform film thickness,

h(x, 0) = h0

(
1 − δ cos

(
2πx
Λm

))
, (3.5)

where δ = 0.01. We refer to the corresponding simulations as those with domain length
Λm. For N = 20 the following initial film profile is imposed:

h(x, 0) = h0

[
1 + δ

40∑
i=1

Ai (cos (2πx/λi) + sin (2πx/λi))

]
, (3.6)

where the amplitudes Ai are randomly chosen in [−1, 1] and λi = 2Λm/i. Similarly, we
refer to simulations that use (3.6) as those with domain length 20Λm. For both values of N,
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the film and substrate are each initially set to the ambient temperature,

T(0)
f (x, 0) = Tf (x, z, 0) = Ts(x, z, 0) = Ta. (3.7)

The numerical solutions for Tf and Ts are found first, with the film static, since the film is
initially solid (Ta < 1). Once the film is melted (we define this shortly), the solutions for h,
Tf , Ts are then iterated successively. The flow of the numerical algorithm is as follows:

(i) Film solid and static.
(a) Update Tf .
(b) Update Ts.
(c) Repeat the previous 2 steps until melted.

(ii) Film melted.
(a) Set Γ,M, ΔT . Update h(x, t).
(b) Update Tf .
(c) Update Ts.
(d) Repeat the previous 3 steps until re-solidification.

(iii) End.

Once the film is melted, both film evolution and heat conduction are solved at every time
step (although the numerical algorithm allows for a less frequent numerical solution of the
temperature equation relative to that of h). The film evolution is coupled to the temperature
profile through the material parameters Γ (surface tension) and M (viscosity), and
the Marangoni term ΔT in (2.55). The film is allowed to evolve (flow) only when the
temperature is everywhere greater than the melting temperature: it then evolves according
to (2.55). Subsequently, as the laser heat source decays, the film temperature eventually
drops below the melting point and the film re-solidifies. All simulations shown in this
paper are ended when the average temperature decreases to solidification temperature,
Tavg = 1. In what follows, we will be using the liquid lifetime (LL), defined as the time
interval during which the average film temperature is above melting (Tavg > 1).

3.3. Model comparison with fixed parameters
We now compare models (F), (1D) and (A) holding the material parameters fixed. As a
basic check, we first consider a stationary flat film (h = h0), with material parameters fixed
at the values corresponding to the melting temperature (Γ = 1,M = 1). For such a film,
there is no in-plane heat conduction: the temperature Tf is a function of time t only; and
models (F), (1D) and (A) all agree.

Figure 2(a) plots average film temperature against h0 and time, showing that temperature
depends on film thickness in a non-monotonic manner. Figure 2(b) plots the change of
temperature with film thickness, ∂Tf /∂h, evaluated at h = 1 (this value of h will be used
in later simulations), as a function of time. For early times (t < 2.95), ∂Tf /∂h < 0, so
that a decrease in film thickness corresponds to an increase in temperature (thinner film is
hotter). For later times ∂Tf /∂h > 0 so that a decrease in film thickness leads to a decrease
in temperature (thinner film is colder). This non-monotonic behaviour of ∂Tf /∂h in time is
due to the changing balance between the heating from the source and the heat loss through
the substrate (see appendix D for more details).

We next consider evolving films, with the initial film profile given by (3.5). Figure 3(a)
shows the evolution using model (F), though the behaviour is also representative of (A) and
(1D). Melting temperature is reached at t ≈ 0.54; by time t = 3.32 the liquid film begins
to evolve appreciably; at t = 4.52 significant film evolution has occurred and the film first

915 A133-16

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
08

.5
0.

14
7.

41
, o

n 
31

 M
ar

 2
02

1 
at

 1
4:

23
:0

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.157


Modelling of thin films on thermally conductive substrates

2.0

1.8

Tem
perature

1.6

1.4

1.2

1.0

0.8

0.6

0.4

1.5

1.0

0.5

0 1 2
t

h

t
3 4 0 2 4 6

–0.2

∂
T/

∂
h(
h 

= 
1)

0

0.2

(b)(a)

Figure 2. (a) Contour plots of average film temperature for a static flat film. (b) Rate of change of temperature
with film thickness, ∂Tf /∂h as a function of time for h = 1. At early times (t < 2.95) ∂Tf /∂h < 0 and later
(t > 2.95) ∂Tf /∂h > 0.
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Figure 3. (a) Evolution of film thickness when material parameters are fixed and h(x, 0) is given by (3.5), at
a few representative time points. (b) Average film temperature (see (3.1)) and midpoint film thickness h(0, t)
for the film profiles given in (a). Deviation between the models appears after the film dewets. The material
parameters are set to their melting temperature values, Γ = 1 and M = 1.

reaches the equilibrium film thickness; and at t = 6.50 the film has fully dewetted. Figure
3(b) shows average film temperatures using models (F), (1D) and (A), as well as the film
height at the midpoint x = 0. The average film temperatures are in good agreement before
dewetting, but afterwards model (1D) begins to deviate significantly from models (F) and
(A), which show excellent agreement for the entirety of the simulation. The cooling rate,
dTavg/dt, is faster for (1D) than for (F) and (A) since heat cannot diffuse laterally through
the film in (1D). This, in turn, produces a film that solidifies sooner (this will be discussed
further in § 3.4). Despite this difference, the midpoint film height h(x = 0), shown here
for (F), is similar for all models (see also figure 3a).

We next discuss the spatial variation of temperature. Figure 4 shows free-surface
temperatures (a–d) and film midpoint temperatures (at x = 0; e–h) at the times displayed
in figure 3(a). Since the film thins at its midpoint as t increases (see figure 3b), the film
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Figure 4. (a–d): Free surface (z = h) temperature profiles, Tf |z=h and (e–h) midpoint (x = 0) temperature
corresponding to times (a,e) t = 0.54, (b, f ) t = 3.32, (a,g) t = 4.52 and (d,h) t = 6.50. Here, Γ = 1, M = 1
and the overlapping curves correspond to models (F) and (A). Note the difference in vertical axis scales between
panels (a–h). Colour code: (F) (red), (A) (green dashed), (1D) (blue).

domain (z > 0) shrinks from (e–h). The lateral spatial variation of temperature is seen to be
much weaker for models (F) and (A) than for model (1D) (see (a–d)), due to the inclusion
of lateral heat diffusion in (F) and (A); and the substrate/film midpoint temperatures are
lower for (1D) than for (F)/(A) in panels (f –h). In particular, we find that the temperature
predictions of models (F) and (A) differ by at most 0.01%, whereas (F) and (1D) differ by
as much as 30 %. For model (1D), the temperature is initially higher at the film midpoint
(x = 0) than at the edges, a situation that is reversed at later times (e.g. figure 4b). Using
model (1D), therefore, may lead to overestimated temperature gradients, such as in Trice
et al. (2007), which may significantly alter the evolution of the film.

To emphasize the lateral temperature variation for all models, figure 5 plots the
difference between the free-surface temperatures at the thinnest (x = 0) and thickest
(x = ±π) parts of the film. Consistent with figure 4(a), this temperature difference for
model (1D) is much larger than for models (F) and (A). All models show the same trend:
initially the thinnest part of the film is hottest, but ultimately the thickest parts are hottest.
We attribute this change of behaviour, which occurs relatively early in the film evolution,
to the combination of lateral diffusion and the heat loss through the substrate (see (2.33)).

To conclude this section, we summarize our main findings. We have compared models
(F), (1D) and (A) and found that (A) provides a much better approximation to (F) than
does (1D). After dewetting, the film cools more rapidly with model (1D) than with (A)
and (F) due to the neglect of in-plane thermal diffusion. Consequently, the average film
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Figure 5. (a) Difference between free-surface temperatures at the thickest part of the film (x = ±π) and the
thinnest part (x = 0) for models (F) (red), (A) (green) and (1D) (blue). (b) Zoom-in of results for models (F)
and (A) from (a) to illustrate behaviour more clearly. The black dashed line represents the horizontal axis where
T(x = π) = T(x = 0).

temperatures in model (1D) vary significantly from those predicted by models (F) and
(A). From a computational point of view, since the film temperature is independent of z
in model (A), it is significantly more computationally efficient than (F) and even more
efficient than (1D). For illustration, we note that for a 255 × 200 computational grid in x
and z, the simulation times for a typical run reported in this section are 73.4, 1.3, 4.8 hours
for models (F), (A) and (1D) respectively, on a reasonably fast workstation.

3.4. Variation of material parameters
In this section, we consider the effect of varying surface tension and viscosity with
temperature (see (2.48) and (2.50)) and consider the influence of the Marangoni effect,
by comparing film evolution with Ma = 0 and Ma /= 0. In the previous section (as well
as in additional tests, not reported here for brevity), we have demonstrated that model (A)
provides a good approximation to the full model (F) with considerably less computational
effort, and so henceforth, we will focus on exploring the differences between models (A)
and (1D). In this section, domain lengths of Λm and 20Λm are simulated, beginning with
the former (domain length of Λm may be assumed until otherwise stated).

We focus first on the case where both surface tension and viscosity depend on average
temperature and are therefore time dependent, Γ (t),M(t), but we ignore the Marangoni
effect (set Ma = 0 in (2.55)). In the subsequent text, any reference to time-dependent
surface tension or viscosity, Γ (t),M(t), refers solely to time dependence through the
average temperature. Figure 6(a) shows the film thickness profiles and figure 6(b) shows
the free-surface temperature profiles, Tf |z=h, at the thin (�) and thicker (�) parts of the
film. We observe that model predictions differ only after dewetting (B) and therefore the
film thickness profiles in (1D) and (A) remain nearly identical. After dewetting, the two
models exhibit marked differences in the temperature profiles. The large difference in
cooling rates between (A) and (1D) is consistent with figure 3(b). For (1D) this leads
to the thin part of the film � being significantly colder than the thicker parts � and the
difference is exacerbated by the retention of heat in the thick part of the film.
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Figure 6. (a) Film thickness profiles (simulated with (F), but representative of (A) and (1D) also) for times
A (melting), B (dewetting), C (1D) re-solidification and D (A) re-solidification. The markers in (a) represent
x = 0 (�) and x = π (�). (b) Free-surface temperature at � and � for (A) and (1D). The temperature profiles
agree until the film dewets (B). Then, (1D) temperatures vary significantly at � and �, whereas (A) produces
similar temperatures at both locations. Surface tension and viscosity vary in time, but the Marangoni effect is
not included (Ma = 0).
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Figure 7. Average film temperatures using models (A) and (1D) for Ma = 0 and Ma /= 0, and using Γ (t) and
M(t). Points A–D correspond to those of figure 6(a). Near t = 0.54 (A), the film melts in both models. The
models begin to deviate around t = 1.72 (B) when dewetting occurs; from this point until solidification (which
for Ma = 0 occurs at C for (1D), D for (A); the times for the Ma /= 0 cases are similar) the temperature in
model (1D) is lower than that in (A). The LLs are LL ≈ 4.73 (1D) and LL ≈ 5.94 (A).

Figure 7 shows the average film temperatures for models (A) and (1D) with Γ (t),M(t)
as considered in figure 6, for both Ma = 0 and Ma /= 0. The Marangoni effect seems to
have only a very minor influence on Tavg for both models. Furthermore, the rapid cooling
seen in model (1D) leads to a significantly shorter LL (LL = 4.73) than that predicted by
model (A) (LL = 5.94).
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Figure 8. (a) Midpoint film thickness, h(0, t), for the cases: surface tension and viscosity fixed, Γ = 1,M =
1, with no Marangoni effect, Ma = 0 (red, solid line); surface tension and viscosity fixed with Marangoni effect,
Ma /= 0 (black, dash-dotted line); surface tension varies in time, Γ (t), with viscosity fixed and no Marangoni
(green, dashed line); viscosity varies in time, M(t), surface tension fixed and no Marangoni (blue, dot-dashed
line). In all cases, model (A) was used to calculate temperature. (b) Growth rate, β as a function of wavenumber,
k, using (3.3) with Γ = 1 and M = 1 and no Marangoni effect, Ma = 0. The blue, green and red dots represent
maximum growth rate extracted from the corresponding simulations in (a).

Figure 8 compares the results obtained with(out) temperature variation of material
properties. From figure 8(a), we immediately conclude that the Marangoni effect is very
weak, and will be ignored henceforth (Ma = 0 for the remaining results). The weak
Marangoni effect is, at least in part, due to the high thermal conductivity of the film,
which sets the thermal time scale and gives rise to the very weak spatial variations in
interfacial temperatures seen in figure 4. The second observation is that allowing surface
tension to depend on time, Γ = Γ (t), has a small but measurable effect on the results.
With this dependence included, the film instability appears to develop faster than in the
constant-Γ case (compare the green dashed curve with the red solid curve in figure 8a).
The third observation is that the time dependence of viscosity has by far the largest effect
on the film instability development, leading to much faster dewetting.

We now revisit the predictions of LSA and compare them to simulation results. Figure
8(b) plots the dispersion curve according to (3.3), for the constant parameter case Γ = 1
and M = 1 (with Ma = 0). To estimate the maximum growth rate, βm, in our numerical
simulations, we assume the film perturbation grows exponentially at early times, consistent
with LSA: h = h0(1 + δ exp(ikmx + βmt)), where km is the corresponding wavenumber
(although in practice perturbations of many different wavenumbers exist, the one usually
most apparent in the unstable regime is km). We then perform a best linear fit of
ln((h(0, t) − h0)/(δh0)) vs t for early times. The red, green and blue dots correspond to
growth rates βm extracted from the corresponding colour-coded simulations in figure 8(a).
The film with parameters fixed (red) grows at the rate predicted by LSA, whereas the film
with time-dependent surface tension (green) grows at a slightly faster rate. The growth
rate in the time-dependent viscosity case (blue) is similar to the time-dependent surface
tension case, despite the much faster instability development in figure 8(a). This indicates
the relevance of the nonlinear part of instability growth.
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Figure 9. Comparison of free-surface evolution h(x, t) when (a) viscosity is fixed at the melting value,M = 1,
and (b) viscosity varies in time according to average temperature, M(t) (see (2.50)). In both cases, surface
tension is fixed at the melting value Γ = 1, and all times plotted are prior to film re-solidification. In this
and in the figures that follow, Ma = 0. In (a) we find that re-solidification happens before dewetting (note the
vertical axis scale), while the converse is true for (b), indicating the importance of variable viscosity. The times
are as follows: t = 0 (red), t = 1.47 (blue), t = 1.75 (orange), t = 1.88 (black dashed), t = 1.92 (light blue),
t = 2.21 (green).

To highlight further the significance of time-dependent viscosity, figure 9 compares
film evolution for the constant (a) and variable (b) viscosity cases. The difference in
film evolution is significant, with much larger instability growth rate for time-dependent
viscosity.

To summarize, we have simulated and compared the results with and without the
Marangoni effect, with and without time-varying surface tension, and with and without
time-varying viscosity. We have found that allowing either surface tension or viscosity to
depend on time through the average temperature speeds up the dewetting mechanism. In
particular, varying viscosity has the strongest impact on the film dynamics.

For completeness we also consider the possible variation of viscosity with x. For model
(A), since T(0)

f (x, t) is a function only of the in-plane spatial variable x (and time t), we

may replace T̄ in the definition of M (2.50) by T(0)
f , so that viscosity, which we denote in

this case by M(x, t), depends on both space and time, namely

M(x, t) = exp

(
E

RTmelt

(
1

T(0)
f (x, t)

− 1

))
. (3.8)

For model (1D), on the other hand, the calculated film temperature Tf (x, z, t) depends
on both spatial coordinates x and z, so obtaining an analogous model for M(x, t) requires
some additional assumptions. We use the free-surface temperature Tf |z=h, so that viscosity
takes the form

M(x, t) = exp

(
E

RTmelt

(
1(

Tf |z=h
) − 1

))
. (3.9)
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Figure 10. Average film temperatures with model (A): Γ = 1,M = 1 (red solid line); Γ (t),M = 1 (green
dashed line); Γ = 1,M(t) (cyan dash-dotted line); Γ = 1, spatio-temporally varying viscosity M(x, t) (blue
dashed double-dotted line). Average film temperatures with model (1D): Γ = 1,M(t), (magenta dash-dotted
line) and Γ = 1,M(x, t), (black dash-dotted line). In all cases, the domain length is Λm from LSA. Point
A marks the film dewetting time for the time-varying viscosity M(t) case. Inset: zoomed-in image of
solidification point for the model (A) cases. Here, including M(t) or M(x, t) leads to a slightly longer LL
than the constant viscosity (M = 1) cases. Contrast with model (1D) where variable viscosity produces a LL
that differs significantly from the rest. Simulations are marked 1–6 and placed near the curves as a guide.
Simulations 1–4 were simulated with (A) and 5–6 with (1D).

The film thickness profiles produced in these M(x, t) cases (both (1D) and (A)) are
similar to the M(t) cases shown above and are thus omitted from the main text for
brevity (an example is shown in appendix B). Figure 10 plots the average film temperature
profiles for each of the models; we observe that the temperatures agree up until point A,
at which the film dewets for variable viscosity. The inset shows that, with model (A), the
variable viscosity cases (M(t),M(x, t)) lead to a slightly longer LL than if viscosity is
constant, M = 1. This may be important considering that the films dewet much nearer the
resolidification time when M = 1. This difference, however, is always small relative to
that between models (A) and (1D). When viscosity varies with time and/or space, model
(1D) predicts LLs that are far shorter. Furthermore, for both models the results for M(x, t)
and M(t) are identical. This is, we believe, due to the film temperatures not deviating
far from the respective average temperatures (even for model (1D) where x-variation of
temperature is much larger than for (A), the temperature deviates from the average by
at most 30 %, which appears to be insufficient to cause significant differences between
results for M(t) and M(x, t)). We conclude, therefore, that to simulate cases where film
dewetting occurs much faster than resolidification, the dependence of viscosity on average
temperature is the most important effect to include.

To emphasize the importance of accurately modelling the film viscosity, we present
simulation results for domains of length 20Λm, with films subjected to initial random
perturbations according to (3.6). Figure 11 plots film thickness for (a) M = 1 and
(b) M(t), both using model (A) with Γ = 1 and Ma = 0. We again see that films with
time-dependent viscosity (figure 11b) dewet much faster than those with constant viscosity
(figure 11a). The black curve represents the solidification time of (a) (nearly the same as
that for (b)) and hence represents the final configurations of both simulations. The main
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Figure 11. Evolution of films subject to initial random perturbations for (a) constant viscosity, M = 1, and
(b) time-dependent viscosity, M(t). Colour code: red t = 0; blue t = 1.66; green t = 2.30; orange t = 3.31;
black t = 6.47 (re-solidification time for (a)). The domain length was taken to be 20Λm and all simulations
were done using model (A) with Γ = 1. The h-axis is plotted on a log scale to emphasize satellite droplet
formation.

finding is that the M = 1 case does not fully dewet, whereas the M(t) case does. This
difference in dewetting time scales is consistent with the earlier results for domains of
length Λm, except that there the film was completely dewetted at solidification for both
cases. We note slight coarsening in figure 11(a,b) with some droplets merging, leading to
fewer than 20 resultant (primary) droplets. The film height evolution for model (1D), cases
M(t),M(x, t), and model (A) case M(x, t) is identical to figure 11(b). In appendix B we
show a case where models (1D) and (A) lead to diverging results (for a different choice of
parameters). We omit the temperature profiles here as the short LL for (1D) and identical
M(t) and M(x, t) results are consistent with the results on domain length Λm.

To summarize the results on long domains of length 20Λm, we have found that including
the time dependence of viscosity permits the films to fully dewet in the span of the LL
whereas keeping viscosity fixed at the melting temperature value (M = 1) produces films
that dewet only partially during the liquid phase. Any effects due to spatial variation of
viscosity appear to be irrelevant here. Finally, the LL is much shorter for model (1D) than
model (A), as expected.

4. Conclusions

To conclude, we have formulated three models for heat conduction in nanoscale thin films
on thermally conductive substrates: a full model (F) that accounts for heat conduction in
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all directions in both film and substrate; an asymptotically reduced model (A) that exploits
a disparity in length scales in both film and substrate to derive an equation governing
in-plane diffusion of heat within the film coupled to out-of-plane heat diffusion in the
substrate; and a 1-D model (1D) that simply neglects any in-plane diffusion in both film
and substrate. In all cases, a thin film model is used to describe the associated fluid
dynamics. The main finding is that including in-plane diffusion in the thermal modelling
influences strongly the film evolution. In particular, neglecting in-plane diffusion is found
to amplify (artificially) in-plane thermal gradients and expedite film cooling. We have
found that model (A) is significantly more accurate than (1D) while being considerably
more computationally efficient than (F). We have also found that when material parameters
are allowed to vary in time through the average film temperature, model (A) produces LLs
significantly longer than those of model (1D), due to the absence of lateral heat conduction
in (1D). Therefore model (A) combines both accuracy and efficiency.

With regard to the individual (dimensionless) material parameters that arise in our
models, Ma (Marangoni number), Γ (surface tension parameter) and M (film viscosity),
we find that the variation of viscosity with time has the greatest effect on model outcomes.
By including time-dependent viscosity, films exposed to laser heating (on both small and
large domains) fully dewet while in the molten state. In contrast, when viscosity is held
constant, dewetting occurs much later in the cooling process, which may result in partial
droplet formation only. This suggests strongly that time-dependent viscosity is needed
to represent accurately experiment-like behaviour. Using a spatio-temporally varying
viscosity, M(x, t), produces essentially identical results to the case where viscosity
depends only on time. Introducing time dependence of the surface tension (Γ (t)) has a
larger effect on the film instability growth rate (increasing it) than does the Marangoni
effect (Ma /= 0), though the effect is always small, and insignificant when compared to the
variation of viscosity with time. The Marangoni effect was found to be negligible in all
cases considered.

Although model (A) is found to be useful in the current setting, its validity relies on a
number of underlying assumptions. Therefore, its applicability to other problems must be
carefully verified prior to use. In this study we have considered the time and space variation
of only selected physical parameters (surface tension and viscosity) through temperature,
and have not considered how temperature dependence of other material parameters,
such as thermal conductivity and density, may influence the results. Furthermore, all
simulations presented here are restricted to the two-dimensional geometry: much more
significant computational benefit of model (A) is expected in three spatial dimensions.
Extending our model and simulations to three dimensions is one of the directions of our
future work.
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Appendix A. Scalings and parameter values

A.1. Discussion of the choice of scales
The choice of scales has important implications for the derivation of both the thin film
equation (2.55) and the thermal model (A) (2.41)–(2.46). The choice of time scale is
typically based on the fluid flow, L/U. From the perspective of the thermal model,
however, the pulsed laser heating duration is of the order of nanoseconds. With the time
scale choice L/U, L and U should be chosen consistent with such a thermal time scale,
while still retaining surface tension effects in the fluid flow model, known to be important.
Therefore, we choose U = ε3γm/(3μm) and scale L on the (inverse) wavenumber of
maximum growth km = 2π/λm as L = k−1

m (from § 3.1) so that surface tension effects
and disjoining pressure are retained to leading order. The tradeoff is that the aspect ratio ε,
consistent with the data (table 1), is rather large, 0.246. However, the time scale is then of
the order of nanoseconds, as desired, and we consider this acceptable in order to develop
a consistent model.

For the materials in question, the values of Pef , Pes,K and Bi are small despite the
O(1) assumption (table 1). This is primarily a consequence of the size of ε, which is
directly related to the dependence of L on λm. Given this observation, we briefly consider
the limit of small Pef , Pes,K and Bi. Firstly, in the limit Pef → 0, (2.41) would reduce
to a quasi-steady (no time derivative) equation governing temperature Tf (x, y, t) in the
film. The resultant equation is computationally more difficult to solve (and leads to only
negligible differences), so we do not adopt this approach. Secondly, in the limit Pes → 0,
the solution to (2.42) would be linear in z. The numerical solutions given in figure 4
display substrate temperatures that deviate from linear behaviour in z. We consider this the
motivation for retaining Pes in (2.42) (which leads to better agreement between models
(A) and (F)). In the limit K → 0, film temperature no longer depends directly on substrate
temperature (although the substrate temperature still depends on the film temperature).
Since the primary heat loss mechanism is considered to be through the film–substrate
interface, we retain K in (2.41). If the primary heat loss mechanism is elsewhere, it
may be possible to drop the term containing K in (2.41). Finally, in the limit Bi → 0,
(2.44) becomes an insulating boundary condition, which in turn leads to much higher
substrate/film temperatures. In the case where SiO2 sits on a native layer of Si, it is
expected that there is some heat transfer. Therefore, we retain Bi in (2.44).

A.2. Wavelength of maximum growth
When the material parameters are fixed at melting temperature, Γ,M = 1, the
dimensional dispersion relation can be written as

β(k) = h2
0H2k2

3μf

(
P0 − γf Hh0k2

)
, (A1)

P0 = AH

6πh3∗H3

[
m

(
h∗
h0

)m

− n
(

h∗
h0

)n]
, (A2)

where (in this section only) β(k) is the dimensional growth rate and k the dimensional
wavenumber. The remaining parameters are given in table 1. The wavelength of maximum
growth, λm, can then be found by setting ∂β/∂k = 0 and written as

λm = 2π/

√
AH

12πγf h3∗H3h0

[
m

(
h∗
h0

)m

− n
(

h∗
h0

)n]
. (A3)
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Figure 12. Film thickness evolution for both the asymptotic model (a) and the 1-D model (b) for the
spatio-temporally varying viscosity case M(x, t). The y-axis is plotted on a log scale to emphasize satellite
droplet formation which is more prominent with (1D) than with (A). Here the Biot number is Bi = 5.71 × 10−3.
The times are: t = 0 (red), t = 1.47 (green), t = 1.84 (blue), t = 2.21 (magenta), t = 2.40 (orange dashed),
resolidification of (1D), t = 2.69 (black).

For the parameters used in this paper λm = 255 nm. For the entirety of the paper, this
value is used to define a base length scale L = λm/(2π).

Appendix B. Effect of spatially varying viscosity with a larger Biot number

Here we increase the Biot number to Bi = 5.71 × 10−3 (more than twice the value used in
the main text; see table 1). This leads to much earlier resolidification of the film (for (A)
resolidification occurs at t ≈ 2.8 whereas for (1D) t ≈ 2.7). We specifically focus on the
influence of model choice when the spatio-temporally varying viscosity is used, M(x, t).
Figure 12 shows the film evolution for both models (A) (a) and (1D) (b). The black solid
line represents the film profiles at the (1D) solidification time (model (A) predicts a larger
solidification time but the final solidified film configuration is nearly identical to the black
solid line in figure 12a). The times are given in the caption. The main finding is that for
sufficiently large α the decay of the satellite droplet that forms for both (A) and (1D) is
slower in (1D). Essentially, for (1D) the satellite droplet is cold relative to the thicker parts
of the film (recall the much more significant x-variation of temperature observed for (1D)).
Since the viscosity varies with space, the centre (x = 0) of the satellite droplet approaches
the precursor thickness more slowly than the surrounding area. In (A), the temperature
variation with x is less pronounced and so the satellite droplet has drained more than
its (1D) counterpart before reaching the final solidified configuration. In summary, these
results demonstrate that the choice of thermal model can influence the final resulting film
profiles.

Appendix C. Numerical schemes

C.1. Numerical solution of model (F)
To solve (2.5) numerically, along with corresponding boundary conditions in model (F),
we define the new variables (u, v, τ ) as

u = x, v = zh0

h
, τ = t, (C1a–c)
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z = h(x,t)

�x �x

�zs

�u

�v

x = –X/2

x = –Hs

x = X/2

(x,z) → (u,v)

v = z = 0

x = u = –X/2 x = u = X/2

z = h0 v = h0

Figure 13. Schematic of mapping used to transform the computational domain for (F). Here, the domain
width shown is X = 2π. Blue points represent the film domain and black points represent the substrate

domain.

which is a time-dependent mapping transforming the deformable domain, describing the
film, into a fixed rectangle (see figure 13).

This approach trades a simplified domain for an increase in complexity of the
thermal equation in the film. Equation (2.5) is transformed into the following differential
equation:

∂τ Tf = 1
Pef

∂2
u Tf + B(u, v)∂uvTf + A(u, v)∂2

v Tf + F(u, v)∂vTf + Q(h(u), v, τ ), (C2)

where

B(u, v) = − 1
Pef

(
2v∂uh

h

)
,

A(u, v) = 1
Pef

[(
v∂uh

h

)2

+ 1
ε2

(
h0

h

)2
]

,

F(u, v) = 1
Pef

(
vh∂2

u h
h2 − v(∂uh)2

h2

)
+ v∂τ h

h
,

Q(h(u), v, τ ) = F(t)
Pef

[1 − R(h)] exp
[−αf (h − hv/h0)

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C3)

are the coefficients, and subscripts u, v, τ denote partial derivatives. To solve (C2)
numerically, the ADI method is used, with the term containing B(u, v) treated explicitly.
A Crank–Nicolson scheme is used to solve (2.6), the heat equation in the substrate. We use
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a cell-centred grid system

ui = xi = x0 + Δx (i − 1/2) , i = 1, . . . , n, Δu = Δx = (xmax − x0)

n
,

zj = − (j − 1/2) Δzs, j = 1, . . . , ns, Δzs = Hs

ns
,

vj = h0 − (j − 1) Δv, j = 1, . . . , nf , Δv = h0

nf
,

Tk
i,j ≈

{
Tf (ui, vj, tk), 1 < j < nf ,

Ts(xi, zj, tk), nf + 1 < j < nf + ns,

hk
i ≈ h(ui, tk), Qk

i,j ≈ Q(ui, vj, tk).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C4)

The numerical system can be then written as

T∗
i,j − Tk

i,j

Δt
= D∗

i,j + Gk
i,j + Mk

i,j + 1
2

Qk+1/2
i,j ,

Tk+1
i,j − T∗

i,j

Δt
= D∗

i,j + Gk+1
i,j + 1

2
Qk+1/2

i,j ,

D∗
i,j =

⎧⎨
⎩

1
2 Pe−1

f δ2
uT∗

i,j, j ≤ nf ,

1
2ε2Pe−1

s δ2
x T∗

i,j, j ≥ nf + 1,

Gk
i,j =

⎧⎨
⎩

1
2 Ak

i,jδ
2
vTk

i,j + 1
2 Fk

i,jδvTk
i,j, j ≤ nf ,

1
2 Pe−1

s δ2
z Tk

i,j, j ≥ nf + 1,

Mk
i,j =

{
Bk

i,jδuvTk
i,j, j ≤ nf ,

0, j > nf ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C5)

where Tf (xi, zj, tk) ≈ Tk
i,j is a discretization of the film temperature, and T∗

i,j represents the
solution at an intermediate time step. In the interior grid, the spatial derivatives are given
by

δuTi,j = Ti+1,j − Ti−1,j

2Δu
, δvTi,j = Ti,j−1 − Ti,j+1

2Δv
,

δ2
x Ti,j = δ2

uTi,j = Ti+1,j − 2Ti,j + Ti−1,j

Δu2 ,

δuvTi,j = Ti+1,j−1 − Ti−1,j−1 − Ti+1,j+1 + Ti−1,j+1

4ΔuΔv
,

δ2
z Ti,j = Ti,j−1 − 2Ti,j + Ti,j+1

Δz2
s

, δ2
vTi,j = Ti,j+1 − 2Ti,j + Ti,j−1

Δv2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C6)

which are second-order central difference approximations and the source, Q, is
approximated by an average at times tk, and tk+1,

Qk+1/2
i,j = 1

2 (Qk+1
i,j + Qk

i,j). (C7)
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C.2. Numerical solution of model (A)
We use the same cell-centred grid as § C.1 except for zj

zj = − (j − 1) Δzs, j = 1, . . . , ns, Δzs = Hs

ns − 1/2
, (C8a,b)

so that a grid point exists on the liquid–solid interface (a Dirichlet boundary condition is
prescribed there). For simplicity, we let Tk

i ≈ Tf (xi, tk), Sk
i,j ≈ Ts(xi, zj, tk) and

Fk
i = 1

Pef

[
δ2

x Tk
i +

(
∂xh
h

)k

i
δxTk

i

]
,

Gk
i = − K

Pef hk
i
∂z (S)k

I ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C9)

where ∂z(S)k
I = ∂Ts/∂z|z=0(t = tk). To solve (2.41) and (2.42) we use a predictor–corrector

Runge–Kutta/Crank–Nicolson scheme. In the prediction phase, we use a forward-Euler
scheme to deal with Gk

i

Tk+1
i − Tk

i
Δt

= 1
2

[Fk+1
i + Fk

i ] + Gk
i + Q̄k+1/2

i , i = 1, . . . , n,

Sk+1
i,j − Sk

i,j

Δt
= 1

2
Pe−1

s [δ2
z Sk+1

i,j + δ2
z Sk

i,j], j = 2, . . . , ns, i = 1, . . . , n,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C10)

where Q̄k+1/2
i = (Q̄k

i + Q̄k+1
i )/2. We then correct this prediction by using a Runge–Kutta,

order-2, method on Gk
i using the prediction Ĝk

i

Tk+1
i − Tk

i
Δt

= 1
2

[Fk+1
i + Fk

i ] + 1
2
(Gk

i + Ĝk
i ) + Q̄k+1/2

i , i = 1, . . . , n,

Sk+1
i,j − Sk

i,j

Δt
= 1

2
Pe−1

s [δ2
z Sk+1

i,j + δ2
z Sk

i,j], j = 2, . . . , ns, i = 1, . . . , n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C11)

C.3. Numerical solution of model (1D)
The numerical scheme used for model (1D) is a simple Crank–Nicolson scheme

Tk+1
i,j − Tk

i,j

Δt
= 1

2
ε−2Pe−1

f (δ2
z Tk

i,j + δ2
z Tk+1

i,j ) + Qk+1/2
i,j , j = 1, . . . , nf ,

Tk+1
i,j − Tk

i,j

Δt
= 1

2
Pe−1

s (δ2
z Tk

i,j + δ2
z Tk+1

i,j ), j = nf + 1, . . . , nf + ns,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C12)

where i = 1, . . . , n and n, nf and ns are the same as in § C.1.
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Figure 14. (a) The Δt convergence for (F), (A) and (1D) in the stationary curved film case. All models use
O(Δt2) schemes. (b) The Δzs convergence for (F), (A) and (1D) in the stationary curved film case where h is
given by (3.5), but time independent. All models use O(Δz2

s ) schemes.

C.4. Convergence results
For what follows, we define the discrete L2 error, E(t), where

E2(t) =

n∑
i=1

⎛
⎝ nf∑

j=1

Δzi

∣∣∣Tcomp
i,j − Tbench

i,j

∣∣∣2 + Δzs

ns∑
j=1

∣∣∣Tcomp
i,j − Tbench

i,j

∣∣∣2

⎞
⎠

n∑
i=1

⎛
⎝ nf∑

j=1

Δzi

∣∣∣Tbench
i,j

∣∣∣2 + Δzs

ns∑
j=1

∣∣∣Tbench
i,j

∣∣∣2

⎞
⎠

, (C13)

and Tcomp
i,j is the computed temperature and Tbench

i,j is a benchmark solution which, for the
results presented next, we take to be the numerical solution on the finest grid since no
exact solution is known.

Figure 14 shows the quadratic convergence in �t (a) and �zs (b) for each thermal model.
Similarly, figure 15(a) shows quadratic �x convergence for (F) and (A), whereas figure
15(b) shows quadratic �v convergence for models (F) and (1D).

Appendix D. Variation of temperature with film thickness

In the case when the film is flat, its temperature is independent of the in-plane variables and
conservation of energy may be reduced to an expression for the average film temperature,
written as a simple balance of source heating and substrate cooling

∂tTavg = Pe−1
f

[−K
h

(∂zTs) |z=0 + Q̄
]

. (D1)

Figure 16 shows the variation of both (a) source heating (measured by Pe−1
f Q̄) and

(b) substrate cooling (measured by (hPef )
−1(∂zTf )|z=0) for three different film thicknesses,

h = 8, 10, 12 nm. Figure 16(c) gives the average film temperatures for each case. As seen
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Figure 15. (a) The Δx convergence for (F) and (A) in the stationary curved film case (note that (1D) has no
derivatives with respect to x). Each model uses a O(Δx2) scheme. (b) The Δv convergence for (F) and (1D) in
the stationary curved film case (note that Tf is independent of z for (A)). Each model uses a O(Δv2) scheme.
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Figure 16. (a) Average source, Q̄, (b) magnitude of film heat loss through the substrate, K(hPef )
−1∂zTs|z=0

and (c) average film temperature, all for flat films of h = 8 nm (blue, solid), h = 10 nm (red, dot-dashed) and
h = 12 nm (black, dashed).

in figure 16(a), thinner films retain more energy from the source and, in the absence of
cooling, should be hotter. Physically, thicker films reflect more energy and absorb less.
Although (to keep the presentation simple) we use Q̄ here rather than Q from (2.18), it
can be shown also that dQ/dh < 0 for all times. Figure 16(b) demonstrates that thinner
films also cool faster (through the substrate) than thicker ones. When these two effects are
combined, we arrive at average film temperatures that are non-monotonic in film thickness
h. In figure 16(c), thinner films are observed to be initially hotter over the early stages of
evolution, primarily due the magnitude of the laser heating, which is initially larger than
that of cooling. Over the later stages, the source decreases in strength sufficiently so that
the trend of cooling with film thickness is dominant and thinner films are colder. Note that
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this non-monotonic behaviour depends on the relative strengths of the heat source and the
cooling term and may change if different forms are used to describe these effects. The
explanation given above is the primary reason for the behaviour seen in figure 2(b).

REFERENCES

ATENA, A. & KHENNER, M. 2009 Thermocapillary effects in driven dewetting and self assembly of
pulsed-laser-irradiated metallic films. Phys. Rev. B 80, 075402.

ATWATER, H.A. & POLMAN, A. 2010 Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213.
BATSON, W., CUMMINGS, L.J., SHIROKOFF, D. & KONDIC, L. 2019 Oscillatory thermocapillary instability

of a film heated by a thick substrate. J. Fluid Mech. 872, 928–962.
CHEN, J. 2016 Thin film coatings and the biological interface. In Thin Film Coatings for Biomaterials and

Biomedical Applications (ed. Hans J. Griesser), pp. 143–164. Woodhead Publishing.
CRASTER, R.V. & MATAR, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131.
DIEZ, J. & KONDIC, L. 2002 Computing three-dimensional thin film flows including contact lines. J. Comput.

Phys. 183, 274–306.
DONG, N. & KONDIC, L. 2016 Instability of nanometric fluid films on a thermally conductive substrate. Phys.

Rev. Fluids 1, 063901.
FAVAZZA, C., KALYANARAMAN, R. & SURESHKUMAR, R. 2006a Robust nanopatterning by laser-induced

dewetting of metal nanofilms. Nanotechnology 17, 4229–4234.
FAVAZZA, C., TRICE, J., GANGOPADHYAY, A.K., GARCIA, H., SURESHKUMAR, R. & KALYANARAMAN,

R. 2006b Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater. 35, 1618–1620.
FAVAZZA, C., TRICE, J., KRISHNA, H. & KALYANARAMAN, R. 2006c Laser induced short- and long-range

orderings of Co nanoparticles on SiO2. Appl. Phys. Lett. 88, 153118.
FOWLKES, J.D., KONDIC, L., DIEZ, J.A., GONZALEZ, A.G., WU, Y., ROBERTS, N.A., MCCOLD, C.E. &

RACK, P.D. 2012 Parallel assembly of particles and wires on substrates by dictating instability evolution in
liquid metal films. Nanoscale 4, 7376–7382.

FOWLKES, J.D., WU, Y. & RACK, P.D. 2010 Directed assembly of bimetallic nanoparticles by
pulsed-laser-induced dewetting: a unique time and length scale regime. ACS Appl. Mater. Inter. 2,
2153–2161.

GALE, W.F. & TOTEMEIER, T.C. 2004 Smithells Metals Reference Book, 8th edn. Butterworth-Heinemann.
GONZALEZ, A.G., DIEZ, J.D., WU, Y., FOWLKES, J.D., RACK, P.D. & KONDIC, L. 2013 Instability of

liquid Cu films on a SiO2 substrate. Langmuir 13, 9378–9387.
HALAS, N.J., LAL, S., CHANG, W., LINK, S. & NORDLANDER, P. 2011 Plasmons in strongly coupled

metallic nanostructures. Chem. Rev. 111, 3913–3961.
HEAVENS, O.S. 1955 Optical Properties of Thin Solid Films, Dover Books on Physics and Mathematical

Physics. Dover Publications.
HENLEY, S.J., CAREY, J.D. & SILVA, S.R.P. 2005 Pulsed-laser-induced nanoscale island formation in thin

metal-on-oxide films. Phys. Rev. B 72, 195408.
HOWELL, J.R., SIEGEL, R. & MENGUC, M.P. 2010 Thermal Radiation Heat Transfer. CRC Press.
HUGHES, R.A., MENUMEROV, E. & NERETINA, S. 2017 When lithography meets self-assembly: a review of

recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces.
Nanotechnology 28, 282002.

ISRAELACHVILI, J.N. 1992 Intermolecular and Surface Forces, 2nd edn. Academic Press.
KIM, M.H., et al. 2009 Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9,

4138–4146.
KONDIC, L., GONZALEZ, A.G., DIEZ, J.A., FOWLKES, J.D. & RACK, P. 2020 Liquid-state dewetting of

pulsed-laser-heated nanoscale metal films and other geometries. Annu. Rev. Fluid Mech. 52, 235–262.
KRISHNA, H., SACHAN, R., STRADER, J., FAVAZZA, C., KHENNER, M. & KALYANARAMAN, R. 2010

Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21,
155601.

LI, P.H. & CHU, P.K. 2016 1 – Thin film deposition technologies and processing of biomaterials. In Thin
Film Coatings for Biomaterials and Biomedical Applications (ed. Hans J. Griesser), pp. 3–28. Woodhead
Publishing.

MAKAROV, S.V., MILICHKO, V.A., MUKHIN, I.S., SHISHKIN, I.I., ZUEV, D.A., MOZHAROV, A.M.,
KRASNOK, A.E. & BELOV, P.A. 2016 Controllable femtosecond laser-induced dewetting for plasmonic
applications. Laser Photonics Rev. 10, 91–99.

915 A133-33

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
08

.5
0.

14
7.

41
, o

n 
31

 M
ar

 2
02

1 
at

 1
4:

23
:0

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.157


R.H. Allaire, L.J. Cummings and L. Kondic

MCKEOWN, J.T., ROBERTS, N.A., FOWLKES, J.D., WU, Y., LAGRANGE, T., REED, B.W., CAMPBELL,
G.H. & RACK, P.D. 2012 Real-time observation of nanosecond liquid-phase assembly of nickel
nanoparticles via pulsed-laser heating. Langmuir 28, 17168–17175.

ORON, A. 2000 Nonlinear dynamics of irradiated thin volatile liquid films. Phys. Fluids 12, 29–41.
ORON, A., DAVIS, S.H. & BANKOFF, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys.

69, 931–980.
ORON, A. & PELES, Y. 1998 Stabilization of thin liquid films by internal heat generation. Phys. Fluids 10,

537–539.
ROSS, F.M. 2010 Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73,

114501.
RUFFINO, F. & GRIMALDI, M.G. 2019 Nanostructuration of thin metal films by pulsed laser irradiations: a

review. Nanomaterials 9, 1133.
RUFFINO, F., PUGLIARA, A., CARRIA, E., BONGIORNO, C., SPINELLA, C. & GRIMALDI, M.G.

2012 Formation of nanoparticles from laser irradiated Au thin film on SiO2/Si: elucidating the
Rayleigh-instability role. Mater. Lett. 84, 27–30.

SAEKI, F., FUKUI, S. & MATSUOKA, H. 2011 Optical interference effect on pattern formation in thin liquid
films on solid substrates induced by irradiative heating. Phys. Fluids 23, 112102.

SAEKI, F., FUKUI, S. & MATSUOKA, H. 2013 Thermocapillary instability of irradiated transparent liquid
films on absorbing solid substrates. Phys. Fluids 25, 062107.

SCRIVEN, L.E. & STERNLING, C.V. 1964 On cellular convection driven by surface-tension gradients: effects
of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321–340.

SERIC, I., AFKHAMI, S. & KONDIC, L. 2018 Influence of thermal effects on stability of nanoscale films and
filaments on thermally conductive substrates. Phys. Fluids 30, 012109.

SHIRATO, N., STRADER, J., KUMAR, A., VINCENT, A., ZHANG, P., KARAKOTI, A., NACCHIMUTHU, P.,
CHO, H.J., SEAL, S. & KALYANARAMAN, R., 2011 Thickness dependent self limiting 1-D tin oxide
nanowire arrays by nanosecond pulsed laser irradiation. Nanoscale 3, 1090–1101.

SHKLYAEV, S., ALABUZHEV, A.A. & KHENNER, M. 2012 Long-wave Marangoni convection in a thin film
heated from below. Phys. Rev. E 85, 016328.

TRICE, J., THOMAS, D., FAVAZZA, C., SURESHKUMAR, R. & KALYANARAMAN, R. 2007
Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys. Rev. B 75,
235439.

WU, Y., FOWLKES, J.D., ROBERTS, N.A., DIEZ, J.A., KONDIC, L., GONZÁLEZ, A.G. & RACK, P.D. 2011
Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered
nanoparticle arrays on SiO2. Langmuir 27, 13314–13323.

YADAVALI, S., KHENNER, M. & KALYANARAMAN, R. 2013 Pulsed laser dewetting of Au films: experiments
and modeling of nanoscale behavior. Mater. Res. 28, 1715–1723.

ZHANG, S. 2010 Nanostructured Thin Films and Coatings: Functional Properties. CRC Press.

915 A133-34

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
08

.5
0.

14
7.

41
, o

n 
31

 M
ar

 2
02

1 
at

 1
4:

23
:0

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.157

	1 Introduction
	2 Model formulation
	2.1 Thermal modelling
	2.1.1 Full model
	2.1.2 One-dimensional model
	2.1.3 Asymptotic model

	2.2 Free-surface evolution

	3 Results
	3.1 Linear stability analysis
	3.2 Simulation set-up
	3.3 Model comparison with fixed parameters
	3.4 Variation of material parameters

	4 Conclusions
	A Appendix A. Scalings and parameter values
	A.1 Discussion of the choice of scales
	A.2 Wavelength of maximum growth

	B Appendix B. Effect of spatially varying viscosity with a larger Biot number
	C Appendix C. Numerical schemes
	C.1 Numerical solution of model (F)
	C.2 Numerical solution of model (A)
	C.3 Numerical solution of model (1D)
	C.4 Convergence results

	D Appendix D. Variation of temperature with film thickness
	References

