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Role of diffusion in crystallization of hard-sphere colloids
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Vital for a variety of industries, colloids also serve as an excellent model to probe phase transitions at
the individual particle level. Despite extensive studies, origins of the glass transition in hard-sphere colloids
discovered about 30 y ago remain elusive. Results of our numerical simulations and asymptotic analysis suggest
that cessation of long-time particle diffusivity does not suppress crystallization of a metastable liquid-phase
hard-sphere colloid. Once a crystallite forms, its growth is then controlled by the particle diffusion in the
depletion zone surrounding the crystallite. Using simulations, we evaluate the solid-liquid interface mobility
from data on colloidal crystallization in terrestrial and microgravity experiments and demonstrate that there is
no drastic difference between the respective mobility values. The insight into the effect of vanishing particle
mobility and particle sedimentation on crystallization of colloids will help engineer colloidal materials with
controllable structure.
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I. INTRODUCTION

Understanding the dynamics of phase transitions at the in-
dividual particle level is a long-standing challenge in physics.
Colloids serve as an excellent model for direct real-space
observation of these phenomena at the individual particle level
[1–5]. In addition, colloids are vital for a variety of industries,
from 3D printing to photonics and electronics and to chemi-
cals and pharmaceuticals. However, our current understanding
of microstructural evolution and phase transformation in col-
loids is still elusive. The following findings on hard-sphere
colloids illustrate this point.

Molecular-dynamics simulations predict that the phase
behavior of hard spheres, the simplest model of matter
with a crystallization transition, is solely determined by the
particle volume fraction [1–5]: a liquid phase for particle
volume fraction ϕ up to the freezing point ϕfr ≈ 0.49, a
crystalline phase for ϕ from the melting point ϕm ≈ 0.54
up to ϕ0 = √

2π/6 ≈ 0.74, and coexisting liquid and crys-
talline phases for ϕfr < ϕ < ϕm. These freezing and melting
points are well reproduced by experiments on model col-
loids like dispersions of micrometer-sized sterically stabilized
polymethylmethacrylate (PMMA) particles in hydrocarbon
solvents [1–5]. Unexpectedly, seminal experiments by Pusey
and van Megen in the mid-1980s [6,7] revealed that ho-
mogeneous crystallization of a monodisperse suspension for
ϕ > 0.57−0.58 did not occur for months. The point ϕg ≈
0.57−0.58 was identified as the glass transition and attributed
to the cessation of the particle long-time diffusion. How-
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ever, the glassy structure was not observed in large-scale
molecular-dynamics simulations of hard spheres [8,9]. Sur-
prisingly, experiments in the Space Shuttle in 1995 and 1998
revealed that shear-melted hard-sphere suspensions with ϕ ∼
0.59−0.63 > ϕg crystallized in microgravity within several

days [10,11]. These samples survived reentry and remained
crystalline on Earth. But, once shear melted on Earth, they did
not crystallize again [10,11]. Despite extensive studies, ori-
gins of the glass transition in colloidal suspensions routinely
observed in terrestrial experiments but not in microgravity
remain unexplained [12–19].

The main goal of the presented numerical simulations and
asymptotic analysis is to demonstrate that cessation of the
particle long-time diffusion does not arrest crystallization of
a metastable liquid-phase hard-sphere colloid. We then use
numerical simulations to evaluate the solid-liquid interface
mobility from the data on colloidal crystallization in terres-
trial and microgravity experiments. It is found that there is
no drastic difference between their values. Summarizing the
known information about colloidal crystallization in terrestrial
and microgravity experiments allows us to suggest that grav-
itational sedimentation of particles within the diffusion zone
around a crystallite hinders crystallization of colloids when
the particle volume fraction is greater than ϕg ∼ 0.57−0.58.

II. MODEL FORMULATION

Experiments reveal that homogeneous crystallization of
hard-sphere colloids can be divided into four stages [20–24].
The first (induction), involves formation of crystal precursors
containing a few hundred to a few thousand particles. While
displaying some features of the orientational order, they do not
show long-range translational order. The crystalline periodic-
ity appears in the second stage (conversion) during which the
precursors convert into true crystallites and begin to grow. The
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FIG. 1. Particle chemical potential in units kBT in the liquid μl

and μs solid phase vs volume fraction ϕ in this phase; solid and
dashed curves show stable and metastable branches. Inset (see text)
shows Dc,l, Dc,s in units D0 vs volume fraction ϕ.

gap between the formation and conversion of precursors into
crystallites tends to disappear in dense suspensions which are
in the fully crystalline state above the melting point [22]. The
number of crystallites and the sample crystallinity show their
strongest increase in the third stage (main crystallization). In
the fourth (ripening), coarsening dominates as larger crystals
grow while the smaller ones disappear.

We consider the second and third stages of crystallization
of hard-sphere colloids where the particle diffusion trans-
port plays the major role. The diffusion mechanism of the
crystallite growth in hard-sphere colloids is confirmed by
observation of a thin depletion zone surrounding a growing
crystallite. It was first recorded in Refs. [25,26] and later con-
firmed in other experiments (see reviews in Refs. [1,4,5,27–
30]). Modeling of diffusion processes accompanied by a
liquid-solid transition requires equations for the chemical po-
tentials and diffusion transport of colloidal particles in the
liquid and solid phases. We use results of molecular-dynamics
(MD) simulations of hard spheres [31,32] to express the
chemical potential, kBTμl (ϕl ) and kBTμs(ϕs), and the os-
motic pressure, kBT�l (ϕl )/Vp and the kBT�s(ϕs)/Vp, in the
liquid and solid phases as a function of the volume fraction
in the colloid, ϕl and ϕs (> ϕc = 0.475 ) (Fig. 1); here Vp is
the particle volume, kB and T are the Boltzmann constant and
absolute temperature, liquid and solid phases are, respectively,
denoted by a subscript l and s, and dμs/dϕs = 0 at ϕs = ϕc.
Equations of Refs. [31,32] were recently confirmed [33].

The nondimensional chemical potential, μl,s, and osmotic
pressure, �l,s, in the colloid liquid and solid phases, respec-
tively denoted by a subscript l and s, are expressed in terms of
the compressibility factor Zl,s(ϕ) computed in Refs. [31,32]:

μl,s(ϕl,s ) =
∫

Zl,s(ϕl,s)

ϕl,s
dϕl,s + Zl,s(ϕl,s ) + cl,s,

�l,s(ϕl,s ) = ϕl,sZl,s(ϕl,s), (1)

dμl,s

dϕl,s
= 1

ϕl,s

d�l,s

dϕl,s
,

where the indices l and s denote the liquid and solid phase
and cl,s are some constants of integration. The liquid phase
Zl(ϕl ) with its two derivatives are continuous at ϕfr; Zs(ϕs)
is taken for the hexagonal close-packed crystal [32]; alter-
natively face-centered cubic could be used here. However,
the difference of about 0.2% between coefficients for com-
pressibility factors of these two phases is not so significant to
modify considerably the presented results. We note that Zs(ϕs)
has singular points at the maximum volume fraction ϕ0 and
at ϕc = 0.4753, where dμs/dϕs = 0 [32]. As the chemical
potentials at the freezing and melting points are equal, we find
cs − cl = 135.7439.

We consider the initial formation of crystallites when
diffusion zones around different crystallites do not overlap
and each crystallite grows independently. Similar in spirit to
Refs. [27–29], we use the classical model for the crystal-
lite growth that combines diffusion equations for the particle
transport in the liquid and solid phases coupled with the parti-
cle flux balance and thermodynamic relations at the crystallite
surface. We use the classical Wilson-Frenkel law [34,35] to
model the motion of the solid-liquid interface as it was well
confirmed by experiments on various colloids [3,4,28]. In this
case, the model for the growth of a spherical crystallite in a
metastable liquid-phase suspension with the particle volume
fraction ϕout combines the diffusion equations for the volume
fraction of particles in the liquid ϕl and solid ϕs phases:

∂ϕl

∂t
= 1

r2

∂

∂r

[
r2Dc,l (ϕl )

∂ϕl

∂r

]
for R(t) � r

with ϕl → ϕout at r → ∞, (2)

∂ϕs

∂t
= 1

r2

∂

∂r

[
r2Dc,s(ϕs)

∂ϕs

∂r

]
for 0 � r � R(t)

with
∂ϕs

∂r
→ 0 and r → 0 (3)

In these equations, the spatial coordinate r and the crystal-
lite radius R are scaled by the particle radius a and the time
by a2/D0, where D0 = kBT/6πηf a is the Stokes-Einstein dif-
fusion coefficient of a sphere in the solvent with viscosity ηf

at absolute temperature T; kB is the Boltzmann constant; Dc,l

and Dc,s are the collective (or mutual) diffusion coefficients of
particles in the liquid and solid phases, respectively.

Following irreversible thermodynamics (e.g., Ref. [36]),
the collective (or mutual) diffusion coefficients in the liquid
and solid phases are D0Dc,l and D0Dc,s (inset in Fig. 1),
respectively, where

Dc,l = ML(ϕl )dμl/dϕl, Dc,s = ML(ϕs)dμs/dϕs

ML = (1 − ϕl/ϕg)ζL , Ms = (1 − ϕl/ϕb)ζS . (4)

The power-law expressions for concentration dependence
of the particle long-time self-diffusivity, ML with ϕg = 0.57,
ζL = 2.6, and short-time self-diffusivity, Ms with ϕb = 0.72,
ζS = 1.56, in the liquid phase are taken from Refs. [37,38]. A
power law for concentration dependence of the self-diffusivity
with the very similar coefficients was also extracted from MD
simulations [17]. The same dependence is used in Eq. (4) for
the solid phase as there exist no measurements. Ratios ML/Ms

equal to 0.051 at ϕs = ϕc and 0.035 at ϕl = ϕfr are consistent,

054607-2



ROLE OF DIFFUSION IN CRYSTALLIZATION … PHYSICAL REVIEW E 104, 054607 (2021)

although smaller, with the value 0.098 proposed for the so-
called dynamic freezing transition; see Refs. [39,40].

The boundary conditions for Eqs. (2) and (3) at the moving
solid-liquid interface R(t) include the particle flux balance,
where ϕsR and ϕlR are, respectively, the particle volume frac-
tions at the solid and liquid sides of the interface

(ϕsR − ϕlR )
dR

dt
= Dc,l (ϕlR )

∂ϕl

∂r

∣∣∣∣
r=R

− Dc,s(ϕsR )
∂ϕs

∂r

∣∣∣∣
r=R

,

(5)
the pressure balance at the crystallite surface

�s(ϕsR ) = �l (ϕlR ) + �/R, (6)

and the Wilson-Frenkel law for the velocity of the solid-liquid
interface scaled as D0vR/a :

dR

dt
= vR with vR = v∞J with J = 1 − eF,

F = μs(ϕsR ) − μl (ϕlR ) + �/(ϕsRR) (7)

Here the surface tension averaged over all interface orien-
tations is taken as 3�kBT/8πa2 with � = 0.15 [24], F is a
change in the Gibbs energy per particle in units of kBT when it
jumps from the liquid to the solid side of the interface, and v∞
is referred to as the solid-liquid interface mobility (or kinetic
prefactor).

The appearance of the exponential factor J in Eq. (7) is
captured by molecular-dynamics simulations which, however,
do not provide reliable data on v∞ due to a small number
of particles used. The Wilson-Frenkel law considers that the
transient ordering of particles at the solid-liquid interface is
governed by the translational diffusion of particles in the
supercooled liquid. It is currently hypothesized [3–5,27–29]
that v∞ = αm(ϕlR )/2, where α/2 accounts for a difference
in the particle diffusivity in the transition region between the
solid and liquid phases and in the bulk liquid, and m stands for
either the particle long-time, ML, or short-time, Ms, diffusivity
in the bulk liquid. We note that α is the only free parameter
in our model. Previous theories [27–29] ignore the strong
concentration dependence of the particle transport by taking
Dc,l and Dc,s as the constants in Eqs. (2) and (3) and simplified
Eqs. (6) and (7) by ignoring variations in the composition
of the solid-liquid interface. A conservative finite-volume
method with an adaptive mesh used to solve Eqs. (2)–(7) is
described in the Appendix.

The crucial feature of our formulation is that we include the
facts that (i) increasing the volume fraction reduces and even-
tually arrests the particle diffusion, and (ii) the composition of
a growing crystallite changes with size. Previous approaches
sidestepped these major features of colloids.

A. Crystallite dynamics

Equations (6) and (7) specify the interface volume fraction
of the liquid ϕlR and solid ϕsR phases as a function of the
crystallite size R and F. A general requirement for mechanical
stability of the suspension liquid and solid phases implies that
their osmotic pressure and the compressibility factor in Eq. (1)
should increase monotonically with the particle volume frac-
tion: d�l/dϕlR > 0, d�s/dϕsR > 0, dZs/dϕsR > 0.

FIG. 2. Values of ϕlR=∞, ϕsR=∞ and −F∞ = μl (ϕlR=∞ ) −
μs(ϕsR=∞) computed from Eqs. (8) for the flat interface, 1/R =
0, are shown vs the nondimensional osmotic pressure � =
�l (ϕlR=∞) − �s(ϕsR=∞).

To examine the variation of ϕlR and ϕsR in the plane of R
and F, we begin with a flat solid-liquid interface when 1/R =
0. The asymptotic solution of Eqs. (6) and (7) for a sufficiently
large R can be presented as

ϕlR ≈ ϕlR=∞ + al∞/R,

ϕsR ≈ ϕsR=∞ + as∞/R, and

F ≈ F∞ + f∞/R,

where ϕlR=∞ and ϕsR=∞ are given by the following equations
for a flat solid-liquid interface:

�s(ϕsR=∞) = �l (ϕlR=∞) and F∞ = μs(ϕsR=∞)−μl (ϕlR=∞),
(8)

with al∞, as∞, and f∞ related to one another as

as∞
d�s

dϕsR

∣∣∣∣
ϕsR=∞

= al∞
d�l

dϕlR

∣∣∣∣
ϕlR=∞

+ � and

f∞ = as∞
ϕsR=∞

d�s

dϕsR

∣∣∣∣
ϕsR=∞

− al∞
ϕlR=∞

d�l

dϕlR

∣∣∣∣
ϕlR=∞

+ �

ϕsR=∞
.

The values ϕlR=∞, ϕsR=∞, and F∞ computed for the flat
interface, 1/R = 0, are shown in Fig. 2.

The equilibrium F∞ = 0 represents the melting and freez-
ing points ϕsR=∞ = ϕm and ϕlR=∞ = ϕfr. Since the osmotic
pressure in both suspension phases rises monotonically with
the particle volume fraction and �l (ϕfr ) = �s(ϕm ), there ex-
ist only two cases: ϕsR=∞ < ϕm and ϕlR=∞ < ϕfr or ϕsR=∞ >

ϕm and ϕlR=∞ > ϕfr. The derivatives of F∞ with respect to
ϕlR=∞ and ϕsR=∞ are negative as ϕlR∞ < ϕsR∞ while the
derivative dϕlR∞/dϕsR∞ is positive:

dF∞
dϕlR∞

= −
(

1

ϕlR∞
− 1

ϕsR∞

)
d�l

dϕlR∞
,

dF∞
dϕsR∞

= −
(

1

ϕlR∞
− 1

ϕsR∞

)
d�s

dϕsR∞
and

d�l

dϕlR∞

dϕlR∞
dϕsR∞

= d�s

dϕsR∞
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Accordingly, a flat crystallite would be stable for ϕlR=∞ =
ϕfr, ϕsR=∞ = ϕm when F∞ = 0; would grow for ϕsR=∞ > ϕm,
ϕlR=∞ > ϕfr when F∞ < 0; and would melt for ϕsR=∞ < ϕm,
ϕlR=∞ < ϕfr when F∞ > 0.

We now consider the variation of ϕlR and ϕsR in the plane
of R and F. For F = 0, they define the radius of a critical
crystallite Rcr as a function of its composition ϕsRcr and the
composition of the surrounding liquid ϕlRcr . For a fixed value
of ϕlR equal to ϕlR=∞, Eqs. (6) and (7) provide ϕsR and F as
functions of R and ϕlR=∞. The derivatives of ϕsR and F with
respect to R are

d�s

dϕsR

∂ϕsR

∂R
= − �

R2
< 0 and

∂F

∂ϕsR
= 1

ϕ2
sR

(
�l + �s + 2ϕ2

sR
dZs

dϕsR

)
> 0.

With R decreasing, magnitudes of ϕsR and F monotonically
rise along the curve in the plane of R and F from their values
ϕsR∞ and F∞ at R → ∞. The variation of the sign of F along
this curve depends on the sign of its value F∞ which is deter-
mined by ϕlR=∞ or ϕsR=∞. As F∞ is positive for ϕlR=∞ < ϕfr,
F remains positive along the entire curve. Therefore, crystal-
lites would melt in the liquid of the composition ϕlR=∞ if their
composition and size lie on this curve. As F∞ is negative for
ϕlR=∞ > ϕfr, F increases remaining negative for R greater
than Rcr, crosses zero at the value of Rcr, and then remains
positive for R < Rcr. Thus, crystallites whose composition
and size lie on this curve would melt in the metastable liquid
of the composition ϕlR=∞ for R < Rcr and grow for R > Rcr;
ϕsR is accordingly greater than ϕsRcr for the former and smaller
for the latter.

Similarly, Eqs. (6) and (7) provide ϕlR and F as functions
of R for a fixed value of ϕsR equal to ϕsR=∞. The derivatives
of ϕlR and F with respect to R are

d�l

dϕlR

∂ϕlR

∂R
= �

R2
> 0 and

∂F

∂ϕlR
= −

(
1

ϕlR
+ 1

ϕsR

)
d�l

dϕlR
< 0.

The presented analysis demonstrates that crystallites of any
size would melt in the stable liquid-phase composition of ϕl <

ϕfr. Similarly, metastable crystallites of composition ϕs < ϕm

would melt for any size. If ϕs > ϕm and ϕl > ϕfr, a crystallite
would grow in a metastable liquid if its size were greater than
Rcr but melt if it were smaller.

Figure 3 shows the composition at the solid-liquid inter-
face, ϕsR and ϕlR, as a function of R and J = 1 − eF computed
using the chemical potentials given by Eq. (1). Empty re-
gions on the left-hand side of these diagrams represent the
J, R values for which Eqs. (6) and (7) do not have a solu-
tion. A crystallite would grow if J > 0 (F < 0) and melt for
J < 0 (F > 0). The radius of a stable (J = F = 0) crystallite
is Rcr = �/(ϕsRcr 
μcr ), where 
μcr = μl (ϕlRcr ) − μs(ϕsRcr )
and �s(ϕsRcr ) = �l (ϕlRcr ) + �/Rcr. Consistent with results of
the analysis presented above, a crystallite would remain stable
in a metastable liquid, ϕl (> ϕfr ), only if its size is Rcr; larger
crystallites would grow but smaller melt. If ϕl < ϕfr, crystal-
lites of any size would melt. Similarly, a crystallite, ϕs(> ϕm ),

FIG. 3. Contour plots of constant volume fractions in (a) liquid
phase ϕlR, (b) solid phase ϕsR, and (c) volume fraction jump ϕsR −
ϕlR vs J = 1 − eF. Curves for the points ϕfr (dashed light) ϕm (dashed
dark) are also plotted in panels (a) and (b). The cross in panel (a)
shows the size of the critical nucleus measured in Ref. [41]. The cross
in panel (b) shows the size of the smallest precritical nuclei measured
in Ref. [42].

remains stable if its size is Rcr; larger crystallites would grow,
but smaller melt. If ϕs < ϕm, metastable crystallites of any
size would melt.

We note that direct imaging was used to study crystalliza-
tion of suspensions of fluorescence spherical PMMA particles
at single-particle resolution [41,42]. By measuring the time
evolution of many crystallites, the authors of Ref. [41] plotted
the differrence between the probabilities with which crystal-
lites grow or shrink as a function of the crystallite radius
scaled by the particle radius for a suspension with the par-
ticle volume fraction of 0.47. This difference was found to
vanish for the nucleus size of Rcr/a ∼ 6. As it can be seen
in Fig. 3(a), this point agrees well with the point at which
J = 0 and ϕlR = 0.47. The authors of Ref. [42] imaged the
birth, life, and death of a subcritical nucleus containing in a
crystallizing colloid with the particle volume fraction of 0.51.
The smallest precritical nuclei were observed to have a radius
of R/a ∼ 20. By measuring the interparticle spacing, they
estimated the average particle volume fraction of precritical
nuclei to be ϕsR ∼ 0.5. The point representing the smallest
precritical nuclei in Fig. 3(b) is close to the boundary of the
empty region at ϕsR ∼ 0.5. This is consistent with the fact
that there are no precritical crystallites in the empty regions
in Fig. 3. We point out that Eqs. (6) and (7) taken to compute
diagrams in Fig. 3 do not include any fitting parameters.

B. Asymptotic model

The asymptotic analysis of the diffusion model is con-
ducted for a sufficiently thin diffusion zone around a
crystallite. The main emphasis is to consider the case when
the particle diffusion coefficient in the liquid phase van-
ishes at a certain particle volume fraction ϕg. Note that this
analysis does not assume the same particle diffusion coeffi-
cients in the solid and liquid phases. Moreover, the power-law
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concentration dependence of the diffusion coefficient in the
liquid phase given by Eq. (4) is only used to compare the
asymptotic expressions with numerical simulations.

In the spirit of Ref. [27], the diffusion equations, Eqs. (2)
and (3), can be approximated as quasisteady in a frame of
reference moving with the interface s = r − R(t):

vR
dϕl

ds
+ d

ds

[
Dc,l (ϕl )

dϕl

ds

]
≈ 0 for s > 0 with ϕl|s=0 = ϕlR,

vR
dϕs

ds
+ d

ds

[
Dc,s(ϕs)

dϕs

ds

]
≈ 0 for s < 0 with ϕs|s=0 = ϕsR.

Integrating these equations and using Eq. (5) for the inter-
facial condition at s = 0, we find that the flux of particles j
in this moving reference frame does not change across the
solid-liquid interface:

j = vRϕl + Dc,l (ϕl )
dϕl

ds
for s > 0, (9)

j = vRϕs + Dc,s(ϕs)
dϕs

ds
for s < 0. (10)

Equation (9) shows that ϕl would monotonically increase
or decrease from the value ϕlR across the diffusion zone in the
liquid phase, depending on the sign of j − vRϕl. According
to the boundary condition in Eq. (2), the particle diffusion
flux in the liquid phase should vanish far away from the
solid-liquid interface, s → ∞. If ϕout < ϕg, Dc,l (ϕl ) does not
vanish at ϕout [see Eq. (2)], so that this boundary condition
requires j = vRϕout. However, if ϕout > ϕg, Dc,l (ϕl ) vanishes
at ϕl = ϕg, and we then have j = vRϕg. Integration of Eq. (9)
yields Eq. (11),∫ ϕl

ϕlR

Dc,l (ϕl )

j − vRϕl
dϕl = s with j = vRϕout for ϕout < ϕg and

j = vRϕg for ϕout > ϕg. (11)

According to Eq. (10), ϕs would monotonically increase
or decrease from the value ϕsR, depending on the sign of
j − vRϕs. Therefore, the boundary condition in Eq. (3), that
the diffusion flux in the solid phase should go to zero at
s → −R(t), can be met only if ϕs = ϕsR with ϕsR = ϕout at
ϕout < ϕg and ϕsR = ϕg at ϕout > ϕg. Equation (12) below
summarizes this outcome:

ϕs = ϕsR with ϕsR = ϕout for ϕout < ϕg and

ϕsR = ϕg at ϕout > ϕg. (12)

Taking ϕsR from Eq. (12), we can calculate ϕlR and vR from
Eqs. (6) and (7) for a given R. As Eq. (12) shows, the results
strongly depend on whether ϕout is smaller or greater than ϕg,

for which the particle long-time diffusivity in the liquid phase,
Eq. (2), vanishes.

Numerical simulations presented below confirm that
Eqs. (11) and (12) capture the asymptotic limit of relatively
thin diffusion zones in the liquid and solid phases. As can
be seen from Eqs. (11) and (12), cessation of long-time dif-
fusivity above ϕg does not arrest the diffusion growth of a
crystallite for ϕout > ϕg. We note that MD simulations [17]
also show that hard-sphere colloids of very low polydispersity
could crystallize well beyond ϕg.

Equations (11) and (12) demonstrate clearly that once a
crystallite forms, its growth is then controlled by the particle

diffusion in the depletion zone surrounding the crystallite,
where ϕl is well below ϕg. We note again that this predic-
tion is consistent with the appearance of a thin depletion
zone surrounding a growing crystallite, first observed in
Refs. [25,26] and later confirmed by other experiments re-
viewed in Refs. [1,4,5,27–30]. When ϕout > ϕg, Eqs. (11)
and (12) define the finite thickness of the depletion zone
for ϕl → ϕg as δg ≈ 1

ζLvR
( dμl

dϕl
)ϕg (1 − ϕlR/ϕg)ζL , whereas s ∼

−Dc.l (ϕout )ln(ϕout − ϕl )/vR → ∞ for ϕl → ϕout < ϕg. Since
ϕsR is known in both cases, the values of ϕlR, F, and vR can
then be calculated from Eq. (6) for a given R. For a sufficiently
large crystallite radius, the asymptotic values ϕlR=∞ and F∞
from Eq. (8) for a flat solid-liquid interface (Fig. 2) can be
taken in Eq. (7) for computing vR. In this case, the crystallite
growth rate is specified by the Wilson-Frenkel law for a flat
solid-liquid interface and determined by the liquid composi-
tion ϕout.

Replacement of the diffusion coefficient Dc,l (ϕl ) in
Eq. (11) with its average value provides an estimate for the
thickness of the depletion zone:

δavg = Dc,l,avg

vR
with Dc,l,avg = ∫ϕ∗

ϕlR
Dc,l (ϕl )dϕl

ϕout − ϕlR
, (13)

with ϕ∗ = ϕout or ϕg depending on the value ϕout and yields
the following asymptotic expression for the particle distribu-
tion across the depletion zone:

ϕl = ϕout + (ϕlR − ϕout )exp

(
− r − R

δavg

)
for ϕout < ϕg.

(14)
For a sufficiently large crystallite radius, we can use the

asymptotic value ϕlR=∞ for ϕlR in Eq. (13) that is shown in
Fig. 2. Neglecting the concentration dependence of Dc,l (ϕl ) in
Eq. (14) yields the expression obtained in Ref. [27].

III. RESULTS AND DISCUSSION

We consider the growth of a crystallite formed in a
metastable liquid-phase suspension within the fully crystalline
state above the melting point. Simulations are conducted by
taking the experimental data [22,43,44] listed in Table I: dif-
fusion coefficient D0, particle radius a, suspension volume
fraction ϕout, and the initial crystallite size R and compo-
sition ϕsR. We use them to compute ϕlR from the pressure
balance, Eq. (6), and estimate the initial thickness of the
depletion zone, δ0 = Rout − R from the mass balance ϕsRR3 +
ϕlR(R3

out − R3) = ϕoutR3
out.

Plots in Fig. 4 shows variation of the volume fraction ϕ

in the solid and liquid phases for a growing crystallite com-
puted with the initial conditions from Table I, Ref. [22], for a
suspension with ϕout = 0.568 that is slightly smaller than ϕg.
Simulations presented in Fig. 4(a) are conducted using diffu-
sion coefficients Dc,l and Dc,s given by Eq. (4) with α = 1 and
m = Ms in the expression for v∞ in Eq. (7). These plots show
that the depletion zone in the liquid phase exhibits a sharp
transition of ϕ to ϕout. In the central part of the crystallite,
r � R, ϕ remains at the initial value as Eq. (2) yields zero for

the particle diffusivity. Plots in Fig. 4(b) illustrate the impor-
tance of including concentration dependence of the diffusion
coefficients given by Eq. (4). They are obtained using the same
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TABLE I. Data from experiments in Refs. [22,43,44]; suspension composition ϕout, particle radius a, Stokes-Einstein diffusion coefficient
D0, τ = a2/D0, L and ϕsR are the size and composition of crystallites formed at the early stage of crystallization, nondimensional crystallite
radius R = L/2a, the liquid composition ϕlR computed from Eq. (6) for those ϕsR and R, and the radius of depletion zone Rout computed
from the particle balance.

ϕout a, nm D0, μm2/s L/2, μm ϕsR τ, s R ϕlR Rout Ref.

0.552 300 0.37 4.14 0.569 0.243 13.8 0.511 15.5 [43]
0.553 200 0.85 3.58 0.611 0.047 17.9 0.549 44.6 [44]
0.557 3.72 0.611 18.6 0.549 36.8
0.561 3.70 0.620 18.5 0.558 50.8
0.565 3.90 0.623 19.5 0.561 48.6
0.559 424 0.17 7.84 0.581 1.058 18.5 0.521 21.5 [22]
0.568 7.17 0.607 16.9 0.545 23.5

initial conditions as in Fig. 4(a) but with Dc,l = Dc,s = 1.
Compared to Fig. 4(a), it yields a much wider depletion zone
in the liquid phase, a smooth transition of the particle volume
fraction to ϕout, and a gradually decreasing particle volume
fraction in the crystallite due to nonvanishing diffusivity. Plots
in Fig. 4(c) show that with increasing time ϕsR, ϕlR, dR/dt,
and accordingly the log-log plot of R(t) approach their asymp-
totic values given by Eqs. (11) and (12).

Plots in Fig. 5 show the variation of the volume fraction
ϕ in the liquid phase (r > R) computed with the initial
conditions from Table I, Refs. [22] and [43]. Simulations are
conducted with diffusion coefficients Dc,l and Dc,s given by
Eq. (4). The length across the depletion zone is expressed in
units of δavg calculated from Eq. (13) using simulation results.
Plots in Fig. 5(a) demonstrate that decreasing ϕout leads to a
smoother transition between the depletion zone and the far-
field volume fraction. Plots in Fig. 5(b) show that expressions
(11) and (12) capture well the particle distribution in the liq-
uid phase. However, Eq. (14) that neglects the concentration
dependence of Dc,l gives very different results. Instead of

FIG. 4. (a), (b): Volume fraction ϕ in solid and liquid phases.
Crystallite forms at t = 0 (blue) and grows to the right, t = 2000
(red) and 4000 (yellow); initial conditions from Table I, Ref. [22],:
ϕout = 0.568, R = 16.9, ϕsR = 0.607, ϕlR = 0.545, Rout = 23.5,
α = 1, and m = Ms in the expression for v∞ in Eq. (7). Dashed
lines show positions of the solid-liquid interface. (a) Dc,l and Dc,s

given by Eq. (4). (b) Dc,l = Dc,s = 1. (c) Dc,l and Dc,s given by
Eq. (4). Time variation of ϕsR (top solid curve), ϕlR (bottom solid
curve); dR/dt, R; dashed lines show asymptotic predictions.

providing a compact, well-defined depletion zone with ϕ tran-
sitioning abruptly to ϕout, it yields an extended depletion zone
with ϕ approaching ϕout asymptotically. It therefore cannot be
used to estimate the onset of ripening.

Simulations reveal that the strong concentration depen-
dence of the particle transport defined by Eq. (4) is a crucial
factor governing the crystallite growth. Specifically, the deple-
tion zone in the liquid phase remains thin and is characterized
by a sharp transition of ϕl to ϕout. This prediction is con-
sistent with experiments on shear-melted suspensions with
ϕout > ϕm, whereas a depletion zone growing approximately
as

√
t was observed for ϕout < ϕm [30]. It is also found that

ϕsR and ϕlR defined by Eqs. (6) and (7) gradually decrease
with time as was observed in Refs. [23,43,44] for suspensions
characterized by ϕout > ϕm.

Simulations show that the crystallite growth rate rises
gradually to a plateau value which represents the asymptotic
limit of relatively thin diffusion zones in the liquid and solid
phases near the solid-liquid interface when Dc,l/vR 	 R and
Dc,s/vR 	 R.

A. Solid-liquid interface mobility

We use simulations to evaluate v∞ in the Wilson-Frenkel
law from the experimental data obtained in terrestrial
[22,44,45] and microgravity [43] experiments on

FIG. 5. Simulations with Dc,l and Dc,s given by Eq. (4). Variation
of volume fraction ϕ in the liquid phase (r > R) computed for the
initial conditions from Table I, Refs. [22] and [43]: ϕout = 0.568,
R = 16.9, ϕsR = 0.607, ϕlR = 0.545, Rout = 23.5; ϕout = 0.559,
R = 18.5, ϕsR = 0.581, ϕlR = 0.521, Rout = 21.5; ϕout = 0.552,
R = 13.8, ϕsR = 0.569, ϕlR = 0.511, and Rout = 15.5. Curves are
plotted at t = 105; δavg is the scale along the horizontal axis cal-
culated from Eq. (13) from simulation results. (a) Arrow shows
decreasing volume fractions ϕout. (b) Numerical simulations (solid
blue curve), asymptotic predictions by Eqs. (11) and (12) (dashed
curve 1) and Eq. (14) (dashed curve 2).
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FIG. 6. Computation of solid-liquid interface mobility in the
Wilson-Frenkel law from experiments. (a) Curve 1 and crosses show
Lc and crystallize sizes from Ref. [44] for ϕout = 0.565; curve 2
shows crystallize growth computed with fitted α for m equal to
Ms; (b) α computed by taking Ms (hollow symbols) and ML (solid
symbols) for m; diamonds [22], circles [44], squares [43]. (c) v∞
computed for both options; crosses shows measurements in Ref. [45].

crystallization of metastable suspensions for ϕout within
the range [ϕm, ϕg] (Fig. 6). Unfortunately, crystallization
kinetics for ϕout > ϕg in microgravity was not recorded
[10,11]. In experiments [22,43–45], the ripening stage
of crystallization started much earlier compared to the
crystallite growth entering the constant velocity regime
given by asymptotic equations (11) and (12). As our
model considers the growth of a single crystallite, we
use it only over a limited period of time, ti, from the early
stage of crystallization, set as t = 0 in simulations, up to
the onset of ripening in an experiment. Specifically, we
consider that the crystallite diameter 2aR computed at this
instance becomes equal to the separation between centers
of neighboring crystallites Lc = 1/N1/3

c , where Nc is the
measured number density of crystallites 2aR(ti ) =
1/[Nc(ti )]1/3. The calculated value of ti decreases
monotonically with increasing α. We use it as a self-consistent

way to tune α by requiring ti be equal to the onset of ripening
in an experiment. Initial conditions for these simulations
are taken from data [22,43,44] in Table I. We note that this
approach ignores the presence of a depletion zone surrounding
a crystallite. To estimate its influence, the computed crystallite
size was augmented by the thickness of the depletion zone.
As the depletion zone sharpness reduces with decreasing ϕout,
we define it as the region where a difference between the
local volume fraction and ϕout is greater than 4%. Adding
the depletion zone thickness is found to change α by about
5%. The contribution of changing the criterion for finding the
depletion zone thickness is of a similar order. We note that the
instants at which the crystallization and ripening stages started
are given explicitly only in Ref. [22]; for other experiments
we estimate them in the manner consistent with [22].

As an example, plots in Fig. 6(a) show data on Lc and crys-
tallite sizes from Ref. [44] and the crystallite growth computed
for the fitted α. Figure 6(b) presents α found with the use of
ML and Ms for m in the expression for v∞ in Eq. (7). While
there appears to be a nearly constant offset between the values
of α obtained for ML and Ms, the values of v∞ computed using
either option for m nearly overlap in Fig. 6(c). This overlap of
data on v∞, recalling that α in Fig. 6(b) varies substantially
with the suspension volume fraction, does not support the
hypothesis [3–5,27–29] for strong correlation between v∞ and
either the particle long- or short-time diffusivity in the bulk
suspension. In contrast, it indicates that the particle mobility
in the transition region between the solid and liquid phases
is substantially greater than its long-term mobility in the bulk
liquid, but substantially lower than its short-time mobility.

The computed values of v∞ presented in
Fig. 6(c) are consistent with direct measurements of v∞
in Ref. [45]. Taking experimental data [46] on colloidal
crystallization assisted by an electric field, we estimate
v∞ ∼ 0.1μm/s at ϕout = 0.145 that lies within the range of
data in Fig. 6(c). The largest value for v∞ in Fig. 6(c) is
found in microgravity [43]. However, its deviation compares
to the differences between the data computed for terrestrial
experiments [22,44,45].

We note that the range of values of v∞ presented in
Fig. 6(c) is by several orders of magnitude smaller than the
range of data for the speed of diffusionless crystal growth in
charged colloidal systems measured under deep supercooling
[19]. Experimental data [18,19] and results of MD simulations
for hard-sphere [17], soft [18], and charged [19] colloidal sus-
pensions demonstrate that the fast diffusionless crystallization
of dense colloids is associated with cooperative displacements
of colloidal particles, each less than a particle diameter, and
that it proceeds without the macroscopic particle diffusion in
the noncrystalline phase. In contrast, the range of values of v∞
seen in Fig. 6(c) is consistent with the diffusion mechanism
for the crystallite growth considered in the proposed model;
see Eqs. (2)–(7).

B. Gravity effect

We now summarize what is known about the gravity in-
fluence on colloidal crystallization. Colloids with the volume
fraction greater than ϕg ∼ 0.57−0.58 crystalize in micrograv-
ity [10,11], but not on the Earth [3–7]. Nevertheless, there
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is no drastic difference between the data in Fig. 6(c) on the
solid-liquid interface mobility in microgravity and terrestrial
experiments. Next, terrestrial experiments [20,23,24] reveal a
similarity in the behavior of low-symmetry crystal precursors
which form in shear-melted suspensions at particle volume
factions below and above ϕg, but do not grow if the volume
fraction is larger than ϕg. We demonstrate that cessation of
the particle long-time diffusivity above ϕg does not arrest
the crystallite growth. By taking all these findings together,
it is tempting to speculate that gravitational sedimentation of
particles within the diffusion zone around a crystallite hinders
its growth in colloids with the volume fraction greater than
0.57−0.58. However, the important question of what precise
mechanism gravity affects particle movements requires fur-
ther investigation.

IV. CONCLUSIONS

We consider the initial stage of crystallization of dense
hard-sphere colloids in a setup such that diffusion zones
around different crystallites do not overlap, and each crys-
tallite grows independently. We use the classical model for
the crystallite growth that combines diffusion equations for
the particle transport in the liquid and solid phases, coupled
with the particle flux balance and thermodynamic relations
at the crystallite surface. The Wilson-Frenkel law is used to
compute the motion of the solid-liquid interface. The crucial
feature of our formulation is that we include the facts that
(i) increasing the volume fraction reduces and eventually
arrests the particle diffusion, and (ii) the composition of a
growing crystallite changes with size. Previous approaches
sidestepped these major features of colloids.

Numerical simulations are used to evaluate the velocity
of the solid-liquid interface from the data obtained in ter-

restrial and microgravity experiments on crystallization of
metastable suspensions. The reported estimates demonstrate
that the mobility of colloidal particles in the transition region
between the solid and liquid phases is substantially larger than
the long-term mobility in the bulk liquid, but substantially
lower than the short-time mobility. This range of data for the
solid-liquid interface velocity is consistent with the diffusion
mechanism for the crystallite growth considered in our model.
The presented results suggest that cessation of the particle
long-time diffusion above certain volume fraction does not
suppress the crystallite growth in hard-sphere colloids. Once
a crystallite forms, its growth is then controlled by the particle
diffusion in the depletion zone surrounding the crystallite.

We also demonstrate that there is no drastic difference
between the data on the solid-liquid interface mobility in mi-
crogravity and on Earth. It is conceivable that even a very slow
gravitational sedimentation of particles in dense colloids can
arrest colloidal crystallization by redirecting the particle trans-
port. The insight into the effect of vanishing particle mobility
and particle sedimentation on crystallization of colloids will
help engineer colloidal materials with controllable structure.
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APPENDIX: NUMERICAL METHOD

A conservative finite-volume method with an adaptive mesh is used to solve Eqs. (2) and (3) with the boundary conditions
Eqs. (5)–(7) at the moving solid-liquid interface. We form a nonequispaced partition of N + 1 points denoted by ri, i =
0, 1, . . . , N with the point Mj at the moving solid-liquid interface at the instant tj such that rMj = Rj ≡ R(tj). The cell average

volume fraction ϕ̄i and the flux Qi = [r2Dc(ϕ)∂ϕ/∂r]i in the grid point ri are defined as

ϕ̄i = 1

Vi

∫ ri+1

ri

r2ϕdr with Vi = r3
i+1 − r3

i

3
and ϕ̄i(t) = ϕ(ri+1/2, t) + O(
r2) with ri+1/2 = ri+1 + ri

2

Qi = r2
i

[
ri+1/2 − ri

ri+1/2 − ri−1/2
Dc(ϕ̄i ) + ri − ri−1/2

ri+1/2 − ri−1/2
Dc(ϕ̄i−1)

]
ϕ̄i − ϕ̄i−1

ri+1/2 − ri−1/2
+ O(
r2),

where ϕi, Dc are either ϕli, Dc,l or ϕsi, Dc,s, depending on the suspension phase where the point ri is evaluated. With these
expressions, the diffusion equations (2) and (3) away from the points rMj and rMj−1 can be presented as

∂ϕ̄i

∂t
= fi

Vi
with fi = Qi+1 − Qi for 0 � i � Mj − 2 & Mj + 1 � i � N − 1 and Q0 = QN ≡ 0.

For points i = Mj − 1 and i = Mj, expressions Eqs. (2), (3), and (5) are combined to yield

VMj−1
∂ϕ̄Mj−1

∂t
+ VMj

∂ϕ̄Mj

∂t
= QMj+1 − QMj−1 + (ϕlR − ϕsR )r2

Mj vR(ϕsR, ϕlR ) + O(
r2),
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where the volume fractions, ϕsR and ϕlR, in this expression, as well as in Eqs. (6) and (7) at the moving solid-liquid interface,
rMj = Rj, are expressed in terms of ϕ̄Mj−1 and ϕ̄Mj as

ϕsR = rMj − rMj−3/2

rMj−1/2 − rMj−3/2
ϕ̄Mj−1 + rMj−1/2 − rMj

rMj−1/2 − rMj−3/2
ϕ̄Mj−2 + O(
r2),

ϕlR = rMj+3/2 − rMj

rMj+3/2 − rMj+1/2
ϕ̄Mj + rMj−rMj+1/2

rMj+3/2 − rMj+1/2
ϕ̄Mj+1 + O(
r2)

�s

(
rMj − rMj−3/2

rMj−1/2 − rMj−3/2
ϕ̄Mj−1 + rMj−1/2 − rMj

rMj−1/2 − rMj−3/2
ϕ̄Mj−2

)

= �l

(
rMj+3/2 − rMj

rMj+3/2 − rMj+1/2
ϕ̄Mj + rMj−rMj+1/2

rMj+3/2 − rMj+1/2
ϕ̄Mj+1

)
+ �

Rj
+ O(
r2).

We apply three conditions to determine when to refine the grid by adding a point or to coarsen it by removing a point.
First, we enforce a maximum spatial step size, 
rMAX(r), which linearly scales between some minimum step size near the
interface, 
rmin, and some maximum step size, 
rmax, far away from the interface as 
rMAX(r) = 
rmax at |r − Rj| > δavg

and 
rMAX(r) = 
rmin + (
rmax − 
rmin )|r − Rj|/δavg at |r − Rj| < δavg. Secondly, it depends on the relative variation of the
volume fraction from point to point that is characterized by the following parameters:

εchg(i) = |ϕ̄i+1 − ϕ̄i|
ϕ̄i+1 − ϕ̄i

and εcurv(i) = 
ri

ρi
with ρi = (1 + ∂ϕ/∂r)3/2

|∂2ϕ/∂r2|
∣∣∣∣
r=ri

,

where ρi is the local curvature of the function ϕ vs r evaluated with a second-order accurate finite-difference scheme; εcurv(i) for
small 
ri is equal to the sagitta of a circular arc of length 
ri that is, the distance from the center of the arc to the center of its
base. Numerical tests show that the adaptive scheme performs best when a new point is added at the midpoint between points ri

and ri+1 if εcurv(i) > 
rmin or εchg(i) > 
ri, and the point ri is removed if εcurv(i) < 0.1
rmin or εchg(i) < 
r2
i . Points are added

or removed such that 
rmin < 
ri < 
rMAX(ri ).
When a point is added or removed, nearby values of volume fractions on the adjusted grid are calculated to maintain the

local mass balance. If a removed point ri is not adjacent to the interface, we set ˜̄ϕi−1 = (ϕ̄i−1Vi−1 + ϕ̄iVi)/Ṽi−1, where tilde
denotes values on the adjusted grid. When a point r̃i+1 = (ri + ri+1)/2 is added between ri and ri+1 so that ri and ri+1 become,
respectively, r̃i and r̃i+2, we set ˜̄ϕi = ˜̄ϕi+1 = ϕ̄i and ˜̄ϕi+2 = ϕ̄i+1 with the accuracy of O(
r2). When a new point is added near the
solid-liquid interface in the solid phase at r̃M−1 = (rM−1 + rM)/2 or the liquid phase at r̃M+1 = (rM + rM+1)/2, volume fractions
at this and next adjacent points on the adjusted grid, ˜̄ϕM−1, ˜̄ϕM−2 or ˜̄ϕM, ˜̄ϕM+1, are calculated to maintain the interface volume
fraction, ϕsR = ϕ̃sR or ϕlR = ϕ̃lR, and the local mass balance ϕ̄M−1VM−1 between rM−1 and rM or ϕ̄MVM between rM and rM+1,
respectively. The same requirements are applied when a point near the solid-liquid interface is removed in the solid or liquid
phase.

The following finite-difference scheme is developed to evolve the solution from time step tj to time step tj+1 = tj + 
t. First,
the forward Euler method is used to calculate Rj+1 and ϕ̄

j+1
i for 1 � i � Mj − 2 & Mj + 1 � i � N − 1:

Rj+1 = Rj + 
tvR
(
ϕ

j
sR, ϕ

j
lR

)
and ϕ̄

j+1
i = ϕ̄

j
i + 
t

f j
i

Vi
.

We then use the Newton-Raphson iterative method to compute ϕ̄
j+1
Mj−1 and ϕ̄

j+1
Mj from two coupled equations,

VMj−1

(
ϕ̄

j+1
Mj−1 − ϕ̄

j
Mj−1

) + VMj

(
ϕ̄

j+1
Mj − ϕ̄

j
Mj

) = 
t
[
Qj

Mj+1 − Qj
Mj−1 + (

ϕ
j
lR − ϕ

j
sR

)
r2
Mj vR

(
ϕ

j
sR, ϕ

j
lR

)]
,

�s

(
rMj − rMj−3/2

rMj−1/2 − rMj−3/2
ϕ̄

j+1
Mj−1 + rMj−1/2 − rMj

rMj−1/2 − rMj−3/2
ϕ̄

j+1
Mj−2

)
= �l

(
rMj+3/2 − rMj

rMj+3/2 − rMj+1/2
ϕ̄

j+1
Mj + rMj−rMj+1/2

rMj+3/2 − rMj+1/2
ϕ̄

j+1
Mj+1

)
+ �

Rj+1
,

We note that a much smaller time step is required during the early times of the numerical scheme (t < 40) than that
estimated from the Courant-Friedrichs-Lewy stability condition vR
t/
rmin ∼ 1. It is needed to suppress oscillations in the
volume fractions at the solid-liquid interface in early times. We therefore initially use an equipartitioned grid with grid spacing

rmin with 
t being 128th of the value given by this condition. For t > 40, we begin applying the additive mesh procedure and
relax 
t back to the estimated value.
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