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We study the stability of a viscous incompressible fluid ring on a partially wetting
substrate within the framework of long-wave theory. We discuss the conditions under
which a static equilibrium of the ring is possible in the presence of contact angle
hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried
out by using a slip model to account for the contact line divergence. The LSA
provides specific predictions regarding the evolution of unstable modes. In order to
describe the evolution of the ring for longer times, a quasi-static approximation is
implemented. This approach assumes a quasi-static evolution and takes into account
the concomitant variation of the instantaneous growth rates of the modes responsible
for either collapse of the ring into a single central drop or breakup into a number
of droplets along the ring periphery. We compare the results of the LSA and the
quasi-static model approach with those obtained from nonlinear numerical simulations
using a complementary disjoining pressure model. We find remarkably good agreement
between the predictions of the two models regarding the expected number of drops
forming during the breakup process.
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1. Introduction
Stability of thin films, drops and other liquid structures on solid substrates is

important in fluid mechanics. The problem is challenging since it involves modelling
free surface flows with fluid domains which may topologically split or merge
depending on the instability of the contact lines, where liquid, gas and solid meet.
The configurations resulting from these instabilities are characterized by multiple
spatial scales, ranging from the one typical of the fluid bulk all of the way down
to the microscopic one relevant in the vicinity of the contact lines. From the
applications point of view, the unstable evolutions and their final fluid configurations
are becoming more and more important particularly in the fields of microfluidics and
nanofluidics (Stone, Stroock & Ajdari 2004; Squires & Quake 2005; Baroud, Gallaire
& Dangla 2010). The fundamental mechanisms involved in the fluid evolution must be
considered in order to understand the formation of drop patterns after eventual breakup
of the initial fluid configuration.

† Email address for correspondence: aggonzal@exa.unicen.edu.ar

mailto:aggonzal@exa.unicen.edu.ar


Stability of a liquid ring on a substrate 247

In order to illustrate the complexity of these problems, note first that even the
simplest geometry of uniform fluid films lead to interesting and still unresolved
questions particularly at the nanometric scale. The instability development in this
configuration is due to destabilizing liquid/solid interaction forces which may lead to
so-called spinodal breakup, or to homogeneous or heterogeneous nucleation; see Bonn
et al. (2009) and Craster & Matar (2009) for recent reviews. Another simple fluid
geometry, a rivulet/filament, has also been studied in the literature. Starting from the
pioneering paper by Davis (1980), where only marginal stability was considered, a
number of extensions ensued (Sekimoto, Oguma & Kawasaki 1987; Langbein 1990;
Roy & Schwartz 1999; King, Münch & Wagner 2006; Yang & Homsy 2006; González
et al. 2007; Diez, González & Kondic 2009; Beltrame et al. 2011; Diez, González &
Kondic 2012).

These theoretical studies consider infinitely long filaments and, thus, ignore end
effects which are inevitably present in the straight finite length filaments present in
the experiments. One can also study the breakup of finite length structures without
dealing with boundary effects by changing the geometry, i.e. by considering a ring
instead of a straight filament. When the width of a ring is small compared with its
mean radius, the straight filament problem is recovered, since the additional curvature
can now be neglected. However, when the width is comparable to the radius, the
curvature becomes an essential aspect of the problem, and its implications are studied
in the present work. A similar approach to eliminate boundary effects was considered
by Worthington (1879) in connection with the contemporary works of Plateau (1849)
and Rayleigh (1879), which dealt with the instability of an infinitely long cylinder in
air. Worthington (1879) studied the breakup of a mercury ring falling down from a
cast, and therefore not supported by a substrate. Recently, similar experiments using
a millimetric water torus immersed in silicone oil were performed by Pairam &
Fernández-Nieves (2009).

The inclusion of a supporting substrate has been considered by McGraw et al.
(2010) for the case of micrometric glassy polystyrene toroids placed on silicon wafers
in an atmosphere saturated with toluene. Morphological wetting transitions for ring
shaped liquids on lyophobic substrates has been studied by Schafle et al. (2010). The
geometry of a torus has also been observed in connection with evaporation processes
of picolitre drops (Conway, Korns & Fisch 1997; Park & Moon 2006) as well as in
the context of molten metals on nanometric scale (Kondic et al. 2009). For sufficiently
narrow rings, the breakup can be analysed within the straight filament theory (Wu
et al. 2010, 2011). However, the scenario can become more complex for flat and wide
rings, where the thin film instability can compete with the azimuthal breakup.

In order to fully understand the mechanisms in play, it is desirable to be able to
make some progress via analytical methods. Even when long-wave theory is used to
simplify the Navier–Stokes equations, the resulting problem is still very complex. For
example, the contact angle hysteresis must inevitably be included in the problem in
order for a static axisymmetric solution to exist. This fact is due to the presence
of azimuthal curvature, which induces different capillary pressures at the inner and
outer radii. Moreover, lack of translational symmetry removes the possibility of a
travelling wave solution, that is steady in a moving frame of reference. However, to
our knowledge, there is no straightforward method to introduce the required hysteretic
effect within the framework of commonly used models based on fluid–solid interaction
via disjoining pressure (de Gennes 1985; Bonn et al. 2009). Nevertheless, some efforts
have been recently done by implementing efficient numerical methods that simply
change the local contact angle according to the variation of the thickness there (Koh
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et al. 2009). Additional progress can be reached by considering instead a slip-based
model combined with contact angle hysteresis. Such an approach was applied to a
straight filament placed across an inclined plane, the configuration in which existence
of a static base solution also requires contact angle hysteresis (Hocking & Miksis
1993). For this configuration of a straight filament on an incline, we were able to
successfully compare the results of a slip model including hysteresis with physical
experiments, and explain the main features of the instability development (Diez et al.
2012). In the present paper, we follow a similar approach for the ring problem, which
leads to an additional set of issues, such as the competition between the closure of
the central hole and the breakup into multiple drops. The model we develop in this
paper yields a precise set of predictions regarding this and other questions with and
without gravitational effects. We note that since we will not be concerned here with
the dynamics of a system far from equilibrium, the slip model as implemented here
does not require inclusion of a relationship between the contact line velocity and the
contact angle itself.

The outline of the paper is as follows. First, we present the formulation of the
problem within the long-wave approximation introducing the boundary conditions and
the main elements needed to perform the stability analysis of the static solutions
using a slip model (§ 2). Then, we study the static (base) solutions by considering
the contact angle hysteresis with and without gravity effects. We discuss in detail the
conditions that need to be satisfied for the existence of static solutions (§ 3). Then,
in § 4 we perform a linear stability analysis (LSA) by employing a pseudo-spectral
method based on an appropriately selected basis of Chebyshev functions. We obtain
the marginal stability conditions and study the dependence of the dispersion relations
on the parameters of the problem. In § 5 we concentrate on the predictions of the
LSA regarding ring breakup and expected number of drops that form as a consequence.
Then, we extend the LSA of a static ring to study the instabilities expected for a
converging ring by using a quasi-static approximation (§ 6). Finally, the results are
compared with those obtained by using a disjoining pressure model to account for
solid/fluid interaction forces (§ 7).

2. Model
We begin by presenting the model used to describe the time evolution of a liquid

ring on a substrate. Figure 1 shows the geometry of the problem and introduces some
of the relevant variables, such as radii and contact angles at the inner and outer edges
of the ring. The flow description is performed within the framework of the long-wave
theory for thin films with free surfaces. This approach assumes that all slopes are
small, and since we shall consider below the same length scales in the out-of-plane
and in-plane direction the corresponding Reynolds number must be o(1) or smaller.
Modelling dynamics in this context requires some regularizing scheme to deal with
the so-called ‘contact line singularity’, which manifests itself as an infinite stress at
the line where the three phases, liquid, gas and solid, meet. Numerous approaches to
overcome this difficulty exist, as reviewed recently by Bonn et al. (2009) and Craster
& Matar (2009). In this work we mostly concentrate on a slip model (Dussan V 1976;
Greenspan 1978) where the no-slip boundary condition at the fluid–solid interface
is relaxed. Thus, instead of having vanishing horizontal velocities at the substrate,
i.e. vx = vy = 0 at z= 0, we use the Navier boundary condition

vx,y|z=0 = `3
∂vx,y

∂z
(2.1)
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FIGURE 1. (Colour online) Sketch of a fluid ring.

to allow the fluid to slip on the substrate, where ` is a prescribed slip length.
The above condition is in dimensional variables, but from now on we will use it
in dimensionless form by employing the scales as described below. Therefore, the
fluid thickness, h, obeys the following dimensionless fourth-order nonlinear partial
differential equation (see e.g. Hocking 1990; Hocking & Miksis 1993)

∂h

∂t
+∇ · [h2(h+ `)∇∇2h

]− G∇ ·
[
h2(h+ `)∇h

]= 0, (2.2)

where the scale for h, `, and in-plane coordinates is L, while that for time t is
T = 3µL/γ . Here, γ is the surface tension and µ the viscosity. The constant G is
given by

G= L
√
ρg

γ
, (2.3)

where g is the gravity and ρ the density. If gravity is not considered, G = 0 and the
length L can be given by any relevant geometrical property of the problem. On the
other hand, when gravity is considered, the natural scale is L= a, where a=√γ /(ρg)
is the capillary length and, consequently, G= 1.

Owing to the symmetry of the problem, it is natural to select polar coordinates
(r, ϕ) for the in-plane variables. At the inner and outer contact lines, we impose the
boundary conditions of zero fluid thickness

h(R1(ϕ, t), t)= 0, h(R2(ϕ, t), t)= 0, (2.4)

and prescribed contact angles (see e.g. Davis 1980)

n̂ ·∇h
∣∣

r=R1
= tan θ1, n̂ ·∇h

∣∣
r=R2
=− tan θ2, (2.5)

where n̂ is the outward in-plane normal to the contact line, and R1, R2 (>R1) are
the radial positions of the contact lines. Initially, R1 = r1 and R2 = r2 at t = 0 for
0 6 ϕ < 2π, i.e. both contact lines are circular.

A key feature of this problem is that a static solution requires two different contact
angles, that is, θ1 and θ2, at R1 and R2, respectively, as also discussed recently
by Chugunov, Schulz & Akhatov (2011). Therefore, we must consider contact angle
hysteresis to support a static ring on a homogeneous substrate. The hysteresis of the
contact angle may be described by advancing and a receding static angles, θadv and
θrcd, respectively, as also considered by Hocking & Miksis (1993). When one places a
ring on a substrate, both contact lines relax until equilibrium is reached for some θ1

and θ2 satisfying θ2 6 θadv and θ1 > θrcd.
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Consistently with our goal of studying the ring stability, we will consider a basic
static solution, h0(r, ϕ), perturbed by h1(r, ϕ, t), as

h(r, ϕ, t)= h0(r, ϕ)+ εh1(r, ϕ, t), (2.6)

where ε � 1. By replacing this expression into (2.2), and retaining only the terms up
to order ε, we have the equilibrium equation

∇ ·
[
h2

0(h0 + `)∇
(∇2 − G

)
h0

]= 0, (2.7)

where the perturbation satisfies

∂h1

∂t
+L1h1 = 0, (2.8)

and we define

L1h1 =∇ ·
[
h2

0(h0 + `)∇
(∇2 − G

)
h1

]+∇ · [h0h1(3h0 + 2`)∇
(∇2 − G

)
h0

]
. (2.9)

Since we are interested in the stability of an axisymmetric ring, we will restrict the
discussion to such rings satisfying h0(r, ϕ) = h0(r) in the following section. The LSA
of these solutions is then carried out in § 4.

3. Static base solution and hysteretic effects
In order to obtain a static solution, we need to solve (2.7). Considering the boundary

conditions at the contact lines at fixed radii r1 and r2 (see (2.4)),

h0(r1)= 0, h0(r2)= 0, (3.1)

and assuming that both ∇∇2h0 and ∇h0 are finite there, we have

∇
[(∇2 − G

)
h0

]= 0. (3.2)

Upon integration we have (∇2 − G
)

h0 = p, (3.3)

where p is a constant representing the pressure inside the ring. Since h0 = h0(r), (3.3)
becomes

d2h0

dr2
+ 1

r

dh0

dr
− Gh0 + p= 0. (3.4)

Integration of (3.4) requires to consider separately the cases with (G = 1) and without
(G= 0) gravity.

3.1. Steady solution without gravity (G= 0)
For G= 0, we find from (3.4)

h0(r)=−pr2

4
+ c1 ln r + c2, (3.5)

where c1 and c2 are constants. By applying the boundary conditions (3.1),

c1 = p
(
r2

2 − r2
1

)
/1 (3.6)

c2 =−p
(
r2

2 ln r1 − r2
1 ln r2

)
/1, (3.7)
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FIGURE 2. (Colour online) Radial thickness profiles for r1 = 1, r2 = 3 and several values of
θ2 without gravity effects (G= 0).

where 1 = 4 ln(r2/r1). To obtain the pressure, p, we must impose the contact angle
conditions. By setting dh0/dr =− tan θ2 at r = r2, we have

p=−4r2 ln(r2/r1) tan θ2/11, (3.8)

where

11 = r2
2 − r2

1 − 2r2
2 ln(r2/r1). (3.9)

Then, the contact angle, θ1, at r = r1 is automatically given by

tan θ1 =−
(

r212

r111

)
tan θ2 (3.10)

where

12 = r2
2 − r2

1 − 2r2
1 ln(r2/r1). (3.11)

Note that when one contact angle is given, for instance θ2, the other is determined
by (3.10). Thus, for given values of r1, r2 and θ2 the steady solution is completely
determined. However, since θ1 and θ2 are only limited by the hysteresis range
[θrcd, θadv], we actually have a family of solutions. We note that the volume of the
ring is given by

V = πr2

(
r2

2 − r2
1

)2 − (r4
2 − r4

1

)
ln(r2/r1)

211
tan θ2. (3.12)

Figure 2 shows typical thickness profiles for r1 = 1, r2 = 3 and several values
of θ2. The asymmetry is more pronounced as θ2 increases, and the position of
maximum thickness moves towards r1. Consistently with our previous works (Diez
et al. 2009, 2012; González et al. 2007), we keep factors such as tan θ2 without
approximating tan θ2 ≈ θ2 although strictly speaking long-wave theory is valid only for
small contact angles. Independently of the implementation of the long-wave theory,
one expects some influence of the underlying approximation on the results for larger
contact angles considered.



252 A. G. González, J. A. Diez and L. Kondic

20

30

40

0.5 1.0 1.5

0.5

1.0

1.5

0.2 0.4 0.6 0.8

50 2.0

00 2.0 1.0

(a) (b)

FIGURE 3. (Colour online) (a) Values of θ1 and θ2 leading to a static ring for a hysteresis
interval (θrcd, θadv) = (25◦, 40◦) without gravity effects (G = 0). (b) Maximum value of the
aspect ratio of the ring, ψ0,max, due to hysteresis.

Often, it is more convenient to characterize ring geometry by its mean radius, rm,
and the aspect ratio, ψ0, respectively defined as

rm = (r1 + r2)/2, 0< rm <∞ (3.13a)
ψ0 = w/rm, 0<ψ0 < 2 (3.13b)

where w= r2 − r1 is the ring width. The substitution

r1 = rm(1− ψ0/2), r2 = rm(1+ ψ0/2), (3.14)

allows us to write (3.10) as

tan θ1 = F(ψ0) tan θ2 (3.15)

where

F(ψ0)= (ψ0 + 2)
[
(ψ0 − 2)2 tanh−1(ψ0/2)− 2ψ0

]
(ψ0 − 2)

[
(ψ0 + 2)2 tanh−1(ψ0/2)− 2ψ0

] . (3.16)

We note that the dependence on the mean radius, rm, has disappeared, so that only ψ0

determines relation between the contact angles.
In the limit of a straight filament (rm→∞ and ψ0→ 0 with w = ψ0rm = const.),

due to the mirror symmetry with respect to the filament axis, we have equal contact
angles at both contact lines, i.e. θ1 = θ2 = θ0, where θ0 = (θrcd + θadv)/2. Hysteresis is
not needed to achieve a static filament, consistently with the fact that F(0)= 1.

For ψ0 6= 0 (i.e. for finite rm), we expect θ2 < θ0 < θ1. Thus, both contact angles
must be in the intervals θ2 ∈ [θrcd, θ0] and θ1 ∈ [θ0, θadv]. However, more strict bounds
can be established since θ1 and θ2 are related by (3.15). In fact, assuming that the
inner contact line advances and the outer one recedes, we find that

tan θ0 6 tan θ1,min = F(ψ0) tan θrcd 6 tan θ1,max = F(ψ0) tan θ0 6 tan θadv, (3.17)

while the range of θ2 is defined by

tan θrcd 6 tan θ2,min = tan θ0/F(ψ0)6 tan θ2,max = tan θadv/F(ψ0)6 tan θ0. (3.18)

Figure 3(a) shows the allowed values of θ1 and θ2 for which a ring is stationary. As
an example, we use θadv = 40◦ and θrcd = 25◦, with allowed values of θ1 and θ2 inside
the hatched areas. Note that allowed values of θ1 and θ2 are not necessarily symmetric
with respect to θ0 due to the relationship specified by (3.15).
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FIGURE 4. (Colour online) Reduced volume, V/r3
m, for a static ring without gravity effects

(G= 0) as the aspect ratio, ψ0 = w/rm, is varied for two hysteresis ranges. Allowed values are
enclosed by the four curve segments, along which θ2 takes the extreme values permitted by
the hysteresis range and (3.17).

In order to determine the maximum possible value of the aspect ratio, ψ0,max, one
considers the extreme case where θ2 = θrcd and θ1 = θadv. Then, from (3.15) we have
that ψ0,max defined by ηF(ψ0,max) = 1, where η = tan θrcd/ tan θadv (see figure 3b). We
obtain ψ0,max = 0 at η = 1 since this limiting case implies no hysteresis and then no
static solution exists. The limit η = 0 corresponds to θrcd = 0, so that only wide rings
with (ψ0,max . 2) are allowed static solutions.

In terms of ψ0 and rm, the ring volume in (3.12) can be written as

V = r3
mf (ψ0) tan θ2 = r3

mπψ0(ψ0 + 2)

(
ψ2

0 + 4
)

tanh−1(ψ0/2)− 2ψ0

2 (ψ0 + 2)2 tanh−1(ψ0/2)− 4ψ0
tan θ2. (3.19)

Therefore, a consequence of the contact angle hysteresis is that for a given volume, V ,
and mean radius, rm, there is a range of possible ring widths which lead to a static
solution. In fact, by using (3.19) we can transform the hatched region in figure 3(a)
for θ1 or θ2 into another region for the reduced volume, V/r3

m. Figure 4 shows this
region, bound by the curves along which θ2 takes the extreme values permitted by the
hysteresis range and (3.17). Note that the same curves would have been obtained if
θ1 were used as a parameter. Thus, for a given volume, V , deposited in the form of
a ring with average radius equal to rm, one can find a range of ψ0 inside the region
where static solutions are possible. Which solution (or ψ0) is chosen by the system
is determined by the initial condition. The two sets of values for θadv, θrcd used in
figure 4 illustrate the fact that the region where static solutions are possible depends
on the hysteresis range, with its size increasing strongly as the hysteresis becomes
more pronounced. Note also that as θrcd approaches θadv, both the maximum possible
reduced volume, (V/r3

m)max, and the aspect ratio, ψ0,max, diminish. Interestingly, if θrcd

is very small compared with θadv, figure 4(b) shows that (V/r3
m)max is not the absolute

maximum of the reduced volume; instead this maximum is achieved at a smaller ψ0.

3.2. Steady solution with gravity (G= 1)

When gravitational effects are taken into account, the solution h0(r) of (3.4) for G= 1
is given by

h0(r)= c1I0(r)+ c2K0(r)+ p, (3.20)
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FIGURE 5. (Colour online) Radial thickness profiles for r1 = 1 and θ2 = 30◦ and r2 = 3, 5, 10
with and without gravity.

where I0 and K0 are the zeroth-order modified Bessel functions of the first and second
kind, respectively. Analogously to the G = 0 case, the boundary conditions are that
h0 = 0 at r = r1 and r = r2. These conditions lead to

c1 = p [K0(r1)− K0(r2)] /1, (3.21)
c2 = p [I0(r2)− I0(r1)] /1, (3.22)

where

1= I0(r2)K0(r1)− I0(r1)K0(r2). (3.23)

The pressure p is obtained by imposing the contact angle at the outer contact line:
dh0/dr =− tan θ2 at r = r2. Thus, we obtain

p= 1

11 +12
tan θ2, (3.24)

where

11 = I1(r2) [K0(r1)− K0(r2)] , (3.25)
12 = K1(r2) [I0(r1)− I0(r2)] , (3.26)

and I1 and K1 are the first-order modified Bessel functions of the first and second kind,
respectively. The solution gives the contact angle θ1 at r = r1 as

tan θ1 =−
(

I1(r1)

I1(r2)
11 + K1(r1)

K1(r2)
12

)
tan θ2

11 +12
(3.27)

and the corresponding ring volume is

V = π [p (r2
2 − r2

1

)− 2c1 (r1I1(r1)− r2I1(r2)) +2c2 (r1K1(r1)− r2K1(r2))] . (3.28)

Figure 5 compares the thickness profiles for a ring with r1 = 1 and θ2 = 30◦ and
three values of r2 with and without gravity. We observe that gravity flattens and
symmetrizes this profile, so that the volume required for this ring is smaller for given
r1, r2 and θ2 when gravity is considered. The effect of gravity is more pronounced as
the drop width, w, increases for given r1. The profile also becomes more symmetric
since the maximum thickness occurs closer to rm compared with the G= 0 case.
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FIGURE 6. (Colour online) (a) Values of θ1 and θ2 leading to a static ring solution for
a hysteresis interval (θrcd, θadv) = (25◦, 40◦) with gravity effects (G = 1) and rm = 10; see
figure 3(a) for the G = 0 case (the results for G = 0 are independent of rm). (b) Reduced
volume as a function of the aspect ratio for G= 1 with the same parameters as in figure 4(a).

The additional influence of gravity shows when the substitution specified by (3.14)
is applied to (3.27). In contrast to the G= 0 case, we obtain not only a function of ψ0,
but also of rm. Similarly, the reduced volume, V/r3

m, depends now on both variables,
instead only on ψ0. This additional dependence introduces some qualitative and
quantitative differences compared with the G = 0 case. As expected, these differences
are minor for rm small, rm . 1 say, but they become considerable for larger rm. As
an example, figure 6(a) shows the diagram of possible contact angles for the same
hysteresis range and rm = 10 as in figure 3(a) for G = 0. The regions now extend up
to a much larger ψ0 (ψ0,max = 1.894), so that wider static rings are possible due to the
flattening effect of gravity.

Figure 6(b) shows that the range of the ring volumes leading to static solutions also
strongly differs from the corresponding G= 0 case (cf. figure 4a). We observe that the
effect of gravity is to increase the size of this region, similarly to the effect of larger
hysteresis for the G= 0 case.

4. Linear stability analysis: techniques and parametric dependence
We carry out the LSA of the static solutions by assuming that one contact angle is

given, namely θ2, and then θ1 is determined by (3.10) for G = 0 or (3.27) for G = 1.
We proceed by considering normal mode perturbations of the thickness as

h1(r, ϕ, t)= ĥ1(r) cos(nϕ)eω(n)t (4.1)

and, consequently, perturbations of the positions of the boundaries as

R1(ϕ, t)= r1 + ε ξ1 cos (nϕ) eω(n)t, (4.2)

R2(ϕ, t)= r2 + ε ξ2 cos (nϕ) eω(n)t. (4.3)

Alternative approaches towards introducing perturbations are possible, one could
perturb the contact angle instead of the contact line position for example, as it has
been considered in the literature, see the works by Davis (1980) and Langbein (1990)
and the recent overview by Diez et al. (2009). Here we concentrate only on the
perturbation type specified above. We note that the perturbations of the contact lines
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are performed for fixed angles θ1 and θ2, so that the perturbed profiles have also
contact angles within the hysteresis range.

Only integer values of n (to be called the ‘angular wavenumber’ in the rest of
this work) are physically meaningful. Since the perturbations are of the cosine type,
without loss of generality, we restrict to n > 0. After substituting the amplitudes h1(r),
ξ1 and ξ2 into (2.2), to the first order in ε we obtain the following eigenvalue problem

L̂1ĥ1 =−ωĥ1, (4.4)

where

L̂1ĥ1 = c4(r)ĥ1,rrrr + c3(r)ĥ1,rrr + c2(r)ĥ1,rr + c1(r)ĥ1,r + c0(r)ĥ1, (4.5)

and the coefficients ci(r) (i= 0, . . . , 4) are given by

c4(r)= H, (4.6a)
c3(r)= 2H/r + Hr, (4.6b)

c2(r)=−A+2 H + Hr/r (4.6c)

c1(r)= A−2 H/r − A1Hr, (4.6d)

c0(r)= 2 (n/r)2 Hr/r + A3H, (4.6e)

where

H = h2
0 (h0 + `) , (4.7a)

A1 = 1/r2 + (n/r)2+G, (4.7b)

A+2 = 1/r2 + 2 (n/r)2+G, (4.7c)

A−2 = 1/r2 + 2 (n/r)2−G, (4.7d)

A3 = (−4/r2 + (n/r)2+G) (n/r)2 . (4.7e)

Note that r = r1 and r = r2 are singular points of L̂ , since H = Hr = 0 and all
coefficients vanish there. As discussed below, our numerical scheme used to solve the
eigenvalue problem has a property that the operator is not computed at these points.

The linearized form of the boundary conditions (2.4) and (2.5) yields

ĥ1(r1)+ ξ1h0,r(r1)= 0, ξ1h0,rr(r1)+ ĥ1,r(r1)= 0, (4.8)

ĥ1(r2)+ ξ2h0,r(r2)= 0, −ξ2h0,rr(r2)− ĥ1,r(r2)= 0. (4.9)

From the known values of the derivatives of h0 at r = r1, r = r2, the unknown
amplitudes, ξ1 and ξ2, can be eliminated from these four equations, which are then
replaced by

ĥ1,r(r1)= h0,rr(r1)

h0,r(r1)
ĥ1(r1)= κ−ĥ1(r1), (4.10)

ĥ1,r(r2)= h0,rr(r2)

h0,r(r2)
ĥ1(r2)= κ+ĥ1(r2) (4.11)

where the constants κ+ and κ− are now given by

κ− =− p

tan θ1
− 1

r1
, κ+ = p

tan θ2
− 1

r2
. (4.12)
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It is worth noting that κ− and κ+ do not depend on either θ1 or θ2. This important fact
becomes obvious when the pressure, p, is replaced by the corresponding expressions
given in (3.8) and (3.10) for G= 0, or (3.24) and (3.27) for G= 1.

This completes the formulation of the eigenvalue problem whose solution gives
eigenvalues and eigenfunctions. Once this problem is solved, the values of the
eigenfunctions at the contact lines allow us to determine their displacements as

ξ1 =− ĥ1(r1)

h′0(r1)
=− ĥ1(r1)

tan θ1
, ξ2 =− ĥ1(r2)

h′0(r2)
= ĥ1(r2)

tan θ2
. (4.13)

Although the equation for ĥ1(r) is linear, it is fourth order and has variable
coefficients, and therefore its solution is not straightforward. Thus, the linear
eigenvalue problem must be solved numerically for a given value of n. This is
done by discretizing the eigenvalue problem (4.5) using a Chebyshev pseudo-spectral
approximation of the derivatives, subject to the boundary conditions given by (4.10)
and (4.11).

In order to use Chebyshev functions Ti(x) = cos(i arccos x), we express the domain
r1 6 r 6 r2 as

r(ζ )= rm

(
1+ ψ0

2
ζ

)
, (4.14)

where −1 6 ζ 6 1. The boundary conditions given by (4.10) and (4.11) are now more
compactly written as

g′(±1)= κ̂±g(±1), (4.15)

where g(ζ )= ĥ1(r) and κ̂± = κ±w/2. Thus, we rewrite (4.5) in terms of x as

L g= ĉ4(ζ )g
′′′′ + ĉ3(ζ )g

′′′ ++ĉ2(ζ )g
′′ + ĉ1(ζ )g

′ + ĉ0(ζ )g, (4.16)

where ĉi(ζ )= (2/w)i ci(r). We now look for a solution of the form

g(ζ )=
N∑

i=1

βiφi−1(ζ ), (4.17)

where φi(ζ ) is an orthogonal basis and βi are unknown spectral coefficients.
A most obvious idea is to take φi(ζ )= Ti(ζ ). However, this choice is not convenient

since the boundary conditions given by (4.15) are not satisfied by this basis, and
an iteration procedure is required for their fulfilment, see Hocking & Miksis (1993).
Moreover, this choice requires evaluating g(ζ ) and its derivatives at the contact lines
(ζ = ±1), which are singular points and divergence of high derivatives of g(ζ ) is
expected due to vanishing of the corresponding coefficients, see (4.6). Instead, we ask
whether there is a linear combination of Ti(ζ ) leading to a basis set φi(ζ ), such that
each base function individually satisfies the boundary conditions. The advantage of this
approach is that the points ζ = ±1 can be safely excluded from the calculation since
fulfilment of boundary conditions is guaranteed.

We consider a basis formed as a combination of Chebyshev functions as follows

φi(ζ )= Ti(ζ )+ aiTi+1(ζ )+ biTi+2(ζ ). (4.18)
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FIGURE 7. (Colour online) Dispersion relations with gravity effects (G = 1) ω1(n) > ω2(n)
for r1 = 1, r2 = 2, θ2 = 30◦ and ` = 10−3. The arrows indicate increasing values of N. Note
that only integer values of n have physical meaning.

By inserting φi(ζ ) into (4.15), we have two linear equations for the unknowns ai and
bi, [

(i+ 1)2+κ̂−] ai −
[
(i+ 2)2+κ̂−] bi = κ̂− + i2 (4.19a)[

(i+ 1)2−κ̂+] ai +
[
(i+ 2)2−κ̂+] bi = κ̂+ − i2 (4.19b)

which are easily solved in terms of i, κ̂+ and κ̂−.
By using the Gauss–Lobatto grid (see Boyd 2000),

ζi = cos
(
πi

N − 1

)
, i= 1, 2, . . . , (N − 2), (4.20)

we generate a matrix of dimension N − 2 (excluding the grid points ζ = ±1)
and demand that the residual of the differential equation becomes negligible at
the interpolation points on the interior of the interval (−1, 1). Thus, we pose the
eigenvalue problem

Ui,jβi =−ωVi,jβi, i, j= 1, 2, . . . , (N − 2) (4.21)

where

Ui,j = ĉ4(ζi)φ
′′′′
j−1(ζi)+ ĉ3(ζi)φ

′′′
j−1(ζi)+ ĉ2(ζi)φ

′′
j−1(ζi)

+ ĉ1(ζi)φ
′
j−1(ζi)+ ĉ0(ζi)φj−1(ζi), (4.22)

Vi,j = φj−1(ζn). (4.23)

For given n, we choose the two largest eigenvalues, ω1 and ω2, and the corresponding
coefficients, β(1)i and β

(2)
i , that give the eigenfunctions by means of (4.17). As we

discuss in more detail below, the modes with ω1 and ω2 for the ring asymptotically
tend to the varicose and (stable) zigzag modes of the filament (Thiele & Knobloch
2003; Diez et al. 2009, 2012), respectively.

Figure 7 shows the two largest eigenvalues ω1 and ω2 (<ω1) as a function of n for
different numbers of grid points, N. First, we note that due to the lack of translational
invariance, the growth rate of the mode n = 0 is not zero. We note in passing that
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FIGURE 8. (Colour online) Dispersion relations with gravity effects (G = 1) for r1 = 1,
r2 = 2 and θ2 = 30◦ with decreasing values of ` as shown by the arrows. The curves were
obtained using N = 640.

this mode does not correspond to ring breakup, but instead to a radial collapse of
the whole ring into a central drop. Second, there are two other relevant points of
these curves, namely, its maximum at (nmax, ωmax) and its zero at (nc, 0), which will
be analysed below. Next, we see that for the slip length, ` = 10−3, N = 160 assures
converged results, and therefore we use this value of N whenever such ` is considered.
When a smaller value of ` is chosen, a larger N is required to ensure convergence, as
discussed below.

4.1. Effects of the slip length
Figure 8 shows the effect of the slip length on the dispersion relations. Here we use a
large value of N(=640) for which all of the results are fully converged. We see that
the main influence of ` is to reduce the growth rates of unstable modes and increase
the absolute value of stable ones. Note that the marginal angular wavenumbers at
which ω1 and ω2 vanish do not depend on the slip length, `, indicating that the
marginal stability does not depend on the model used to overcome the contact line
divergence; this issue is also discussed below in § 5.1. We note that this behaviour is
expected as (2.2) represents a gradient dynamics implying that stability thresholds do
not depend on the mobility function but only on the second variation of the underlying
energy (Mitlin 1993; Thiele 2010).

4.2. Effect of the azimuthal curvature
In order to study how the ring curvature affects its stability, we consider now the
dispersion relation for fixed ring width, w, and vary the internal radius, r1. As an
example, figure 9 shows the dispersion relations, ω1(n) and ω2(n), for w = 1. We
will analyse here in detail the limit r1→∞. We observe that the curve for the ring
asymptotically approaches that obtained for the straight filament (dotted line), see Diez
et al. (2012). In that work, ω1 was given as a function of the wavenumber q; for
comparison purposes in the present context we can take n = qr1, remembering that
only integer values of n have physical meaning. However, to fully understand the
limit leading to a straight filament, it is convenient to first discuss the corresponding
eigenfunctions.
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FIGURE 9. (Colour online) Dispersion relations ω1(n) > ω2(n) for (a) r1 = 1 and (b) r1 = 5.
The (blue) dotted line corresponds to r1 =∞, i.e. a straight filament. Here, w = 1, G = 1,
θ2 = 30◦, `= 10−3 and N = 160.
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FIGURE 10. (Colour online) Eigenfunctions g1(ζ ) and g2(ζ ) for n equal to the integer closest
to nmax for a few values of r1. The rest of the parameters is as in figure 9.

The behaviour of the eigenfunctions, g1(ζ ) and g2(ζ ), as r1 is varied provides
additional insight on this limit. First, we consider the eigenfunctions for n equal to
the integer closest to nmax. Figure 10(a) shows that g1(ζ ) is strongly asymmetric for
small r1, with the asymmetry diminishing as r1 increases. From (4.13), we see that the
contact line displacements, ξ1 and ξ2, are of different signs if the values of ĥ1(r) are of
the same sign at both edges. This implies that the inner and outer contact lines evolve
in opposite directions, which is characteristic of a varicose-like mode. In particular,
the tendency of g1(ζ ) to become more symmetric as r1 is increased is consistent with
the limiting pure varicose mode, as we discuss further below. Further inspection of
figure 10(a) shows that for small r1, the amplitude at the inner radius, g1(−1), is
always larger than that at the outer one, g1(1), indicating that the perturbation is more
significant at the regions characterized by larger azimuthal curvature. In figure 10(b)
we show g2(ζ ), which is stable for the considered n. We note that the feature of the
zigzag mode (i.e. different signs of g2(ζ ) at the inner and outer radius) is maintained
even for large r1. On the other hand, the asymmetry of both g1 and g2 becomes more
pronounced as r1 decreases.

We now consider in more detail the change of character of the eigenfunctions as n
is modified, and also discuss the appropriate limit of the ring problem to the straight
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FIGURE 11. (Colour online) Eigenfunctions g1(ζ ) and g2(ζ ) for n= 2 and increasing values
of r1. The rest of the parameters is as in figure 9.
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FIGURE 12. (Colour online) Eigenfunctions g1(ζ ) and g2(ζ ) for r1 = 5 and decreasing values
of n. The rest of the parameters are as in figure 9.

filament one. For this purpose, it is useful to point out that the behaviour of the
eigenfunctions as q→ 0 can be analysed either for: (i) fixed n and r1→∞; or (ii)
fixed r1 and n→ 0 (since n has to be an integer, the latter limit is only formal); or
(iii) both n, r1→∞ but with n/r1→ 0. In order to study case (i), we consider as an
example n = 2 and show in figure 11 both g1 and g2 as r1 increases. For moderate
values of r1 (of the order of the width w) we observe a varicose-like shape for g1

and a zigzag-like shape for g2. However, for large r1, both modes tend to a purely
zigzag mode in the limit q→ 0. Note that this is a different behaviour from the

straight filament problem where (unstable) g1 is of varicose type. Therefore, case (i)
does not correspond to a straight filament. To help the discussion of case (ii), figure 12
shows the corresponding eigenfunctions for r1 = 5, as n is varied. We see that the
modes corresponding to ω1(n) and ω2(n) change their character along the dispersion
curves. For example, g1 is generally of the varicose type for moderate to large n (see
figure 12a). However, its asymmetry increases as n decreases, acquiring a zigzag-like
behaviour. Consequently, both g1 and g2 tend to the same zigzag mode for n→ 0
as in case (i). This discussion already suggests that case (iii) actually corresponds
to the straight filament limit. This makes sense, since r1→∞ reduces the curvature,
while taking n→∞ is consistent with the simultaneous increase of the system length.
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FIGURE 13. (Colour online) Largest eigenvalue, ω1(n), for rm = 4 and a set of values of the
aspect ratio, ψ0: (a) without gravity (G= 0) and (b) with gravity (G= 1).

As expected, in this case we obtain g1 as a pure varicose mode and g2 as a pure
zigzag mode for q→ 0, in agreement with the straight filament problem (Diez et al.
2012). This type of limit (where both n, r1→∞) is further discussed using analytical
techniques in § 5.1 in the context of the study of the convergence of the marginal
stability criterion of a ring to that of a straight filament.

4.3. Effect of the aspect ratio
Figure 13 shows the dispersion relations for different values of ψ0 for given rm, i.e.
varying ring width w. Starting from small values of ψ0, we observe that for ψ0 less
than a certain value, ψ∗0 ≈ 0.85, both the maximum growth rate, ωmax = ω1(nmax),
and its corresponding angular wavenumber, nmax, decrease as ψ0 increases. For
ψ0 > ψ∗0 , the maximum jumps from nmax ≈ 2 (recall that only integer values of n
are physically admissible) to nmax = 0, and for larger ψ0 the growth rate ωmax increases
monotonically.

This behaviour is related to the change in tendency of the ring to collapse into a
single central drop before breaking up into smaller drops (see § 5). It applies both with
and without gravity. However, gravity reduces the growth rates and modifies the aspect
ratio beyond which nmax = 0. In general, we observe that the geometric properties of
the ring strongly affect the growth rates of the modes, which eventually will affect the
final pattern of the instability. The combined effect of ψ0 and rm on the values of nmax

and ωmax is studied below in § 5.2.

4.4. Effects of the contact angle
Figure 14(a) shows ω1 normalized by tan3θ2 for a set of angles and fixed radii r1 and
r2. The motivation for this normalization is the dependence of the coefficients of the
operator L on H ∼ H′ ∼ h3

0 far from the contact lines, i.e. where h0 � ` (see (4.7))
and the fact that h0 ∼ p ∼ tan θ2 (see § 3). Although the simple scaling ω1 ∝ tan3θ2

is not strictly satisfied since it does not lead to a single curve in figure 14(a),
we observe that the differences between curves are small. This indicates that any
additional angular dependence is weak so that this scaling catches the main behaviour.
Furthermore, if ` is reduced, the tendency to a universal curve becomes more apparent
as shown in figure 14(b) for `= 10−5.

As the positions of the maxima essentially do not change as θ2 is varied, nmax

remains practically unchanged. Therefore, the main effect of θ2 is to determine the
growth rates, which basically scale as tan3θ2, while nmax remains fixed.
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FIGURE 14. (Colour online) Normalized growth rates, ω1(n), for r1 = 1 and r2 = 2 for
different contact angles, θ2, and two different slip lengths: (a) `= 10−3 and (b) `= 10−5. The
arrows indicate the effect of increasing θ2. The other parameters are as in figure 9.

5. Linear stability analysis predictions: ring breakup
As discussed in the previous section, the LSA shows that there exists a range of

unstable wavenumbers. They eventually lead to a breakup of the ring into a number
of drops in the nonlinear stages of instability development. Here we will assume that
the LSA results can be extended to the nonlinear regime and discuss the resulting
predictions. In the following two sections, we will further compare these predictions
to the results obtained by using a quasi-static approach, § 6, and fully nonlinear
simulations based on a disjoining pressure model, § 7.

Based on the LSA, an upper bound to the number of drops is given by the marginal
mode with angular wavenumber nc, characterized by zero growth rate. This marginal
mode is analysed in detail in § 5.1. The modes near this bound are unlikely to be
observed, however, due to their small growth rate. The mode nmax, corresponding to
the maximum growth rate, provides a better estimate of the expected number of drops.
Figure 13 tells us that nmax = 0 for ψ0 larger than a certain value and, therefore,
collapse is likely to occur for wide rings.

5.1. Marginal stability
In order to obtain the marginal stability criterion, we consider n = nc, so that h1 is
time independent, see (4.1). Thus, (2.9) leads to

∇ ·

[
h2

0(h0 + `)∇
(∇2 − G

)
ĥ1

]
= 0, (5.1)

since the equilibrium solution, h0, satisfies (3.2). After integrating and using the
boundary conditions (2.4), we have(∇2 − G

)
ĥ1 = 0, (5.2)

where we have chosen the integration constant equal to zero, since a marginal
perturbation does not affect the pressure of the base state. In the following we separate
the study of the marginal solutions into two cases, depending on whether gravity is
considered (G= 1) or not (G= 0).

The solution of (5.2) for G= 0 can be expressed as an eigenfunction of the form

h1 =
(

Arnc + B

rnc

)
cos ncϕ. (5.3)
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FIGURE 15. (Colour online) Critical value of n, nc, as a function of the aspect ratio
ψ0 = w/rm for different ring sizes. Although only integer values nc have physical meaning, we
show a continuous curve to clearly distinguish the regions of stability and instability.

In order to satisfy the boundary conditions, we insert this expression into (4.10) and
(4.11), and solve the system for A and B. The resulting condition for existence of a
non-trivial solution is

κ−κ+r1r2(r
2nc
1 − r2nc

2 )+ n2
c(r

2nc
2 − r2nc

1 )+ nc(κ
−r1 − κ+r2)(r

2nc
1 + r2nc

2 )= 0, (5.4)

which yields nc, which is independent of the contact angles, θ1 and θ2. Alternatively,
by writing (5.4) in terms of rm and ψ0, we observe that nc is independent of rm since,
by using (3.8) and (3.10) we can write

κ− = f1(ψ0)/rm, κ+ = f2(ψ0)/rm for G= 0, (5.5)

where f1 and f2 are known functions of ψ0. Consequently, only the ring’s aspect ratio
determines the region of stability. Figure 15 shows this result, where the solid line for
G= 0 defines the stability regions for any rm.

To compare (5.4) with the results obtained for a straight infinite filament on a
horizontal plane, we consider the limit rm, nc →∞. It is appropriate to define the
marginal wavenumber as qc = nc/rm. In this limit κ±→ κ and we find

−2κqc cosh qcw+ (κ2 + q2
c) sinh qcw= 0, (5.6)

which is coincident with the results reported in Diez et al. (2012).
When gravity is considered (G= 1), the solutions of (5.2) are of the form

h1 = AInc(r)+ BKnc(r). (5.7)

As done previously in the non-gravity case, we replace this expression into the
boundary conditions now given by (4.10) and (4.11). A non-trivial solution for nc

can be found provided that the condition

Inc−1(r2)− A2Inc(r2)

Knc−1(r2)+ A2Knc(r2)
= Inc−1(r1)− A1Inc(r1)

Knc−1(r1)+ A1Knc(r1)
(5.8)

is satisfied, where

A1 = κ− + nc

r1
, A2 = κ+ + nc

r2
. (5.9)
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FIGURE 16. (Colour online) Dependence of (a) nmax (expected number of drops) and (b)
ωmax = ω1(nmax) on the initial aspect ratio ψ0 for G = 0 and several values of rm. The thin
lines in (b) show ω1 for n= 0.

Thus, (5.8) and (5.9) allow us to obtain nc for G= 1. In contrast to the G= 0 case, nc

now depends on both ψ0 and rm. Nevertheless, the independence of nc on both θ1 and
θ2 still remains as in the case G = 0 (cf. figure 14), since both κ− and κ+ are contact
angle independent (see (4.12)).

Figure 15 gives the corresponding results, showing that the presence of gravity
always has a stabilizing effect since the stable region increases for G = 1. This
stabilization becomes more pronounced for larger rm, as expected due to the flattening
of the static thickness profile in the presence of gravity, see figure 5. Since nc

represents the maximum possible number of drops, we can conclude that for large
rm and ψ0 > 1, only one (central) drop is expected to form.

5.2. The mode of maximum growth
Now we focus on the predictions of the LSA regarding the expected number of
drops, approximated by n= nmax, for which the growth rate is maximum. Figure 16(a)
shows nmax when gravity is ignored. For small ψ0, nmax practically does not depend
on rm, similarly to what was found for nc. For ψ0 greater than a certain critical value,
ψ∗0 ≈ 0.85, nmax decreases abruptly and jumps from nmax & 1 to nmax = 0. This effect
is due to the fact that the growth rates for n = 0, 1, 2 become very close to each
other for ψ0 ≈ ψ∗0 , as illustrated in figure 13(a). Physically, this means that a ring
could evolve with almost the same likelihood to either a single centred drop (n = 0),
a single off-centred drop (n = 1) or two drops (n = 2) for 0.75 . ψ0 . 1; a more
thorough analysis of the predictions regarding the final number of drops is given in § 6.
The abrupt transition from nmax > 1 to nmax = 0 at ψ∗0 is correlated with the change
of dependence of ωmax on ψ0. Figure 16(b) illustrates this effect, showing that ωmax

changes from a decreasing to an increasing function of ψ0. The critical value, ψ∗0 ,
where this change takes place, increases slightly with rm. We note that although the
mean radius of the ring, rm, does not influence the LSA prediction for the expected
number of drops, nmax, it strongly affects the growth rate of the instability that leads to
that pattern.

Figure 17 shows that a similar picture is obtained when gravity is included (G = 1).
The main difference compared with G = 0 is that ψ∗0 is smaller for the same rm, and
that it noticeably decreases with rm. For sufficiently large rm, nmax may fall down
from nmax > 2 directly to nmax = 0, so that the likelihood of having an off-centred
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FIGURE 17. (Colour online) Dependence of (a) nmax (expected number of drops) and (b)
ωmax = ω1(nmax) on the initial aspect ratio ψ0 for G = 1 and several values of rm. The thin
lines in (b) show ω1 for n= 0.

drop (n = 1) is small. For both cases (with and without gravity), for large rm and
ψ0 > 1, a single central drop is expected to form.

Figures 16(a) and 17(a) also show the curve

nmax,app = π/(2ψ0)≈ 1.57rm/w, (5.10)

as an attempt to approximate nmax for ψ0 < 1. The accuracy of the approximation
is very good in particular for small ψ0. This suggests that the wavelength (i.e. the
average distance between drops along the perimeter) is given by

λ= 2πrm

nmax,app
= 4w, (5.11)

independently of rm. In fact, the value predicted for a straight filament (i.e. when
the azimuthal curvature effects are not present) is very close to this value, with
a weak dependence on the contact angle (Diez et al. 2009, 2012), see also § 4.4.
In a different setting, recent experiments by Pairam & Fernández-Nieves (2009)
carried out with rings of glycerin immersed in a liquid phase (silicon oil) yield
the relation nmax ≈ 1.14rm/w, which is comparable to the prediction (5.10) in spite of
the differences between their experiments and the present problem. It should be also
mentioned that the older experiments with mercury rings falling down on a substrate
by Worthington (1879) yield nmax = (2π

√
2/6.1)rm/w ≈ 1.45rm/w, in good agreement

with (5.10).
In order to analyse the competition between and breakup of the ring, we introduce

here the collapse and breakup times, tc and tb, respectively. When only the mode n= 0
is present, the ring evolves in a axisymmetric fashion, leading to the closure of the
inner hole (collapse) and the subsequent formation of a single central drop. Assuming
that the LSA approach can be extended throughout the evolution, the collapse time, tc,
can be roughly estimated as

tc = 1
ω1,0

ln
(r1

ε

)
, (5.12)

where ω1,0 = ω1(n = 0) is assumed to be time independent and ε is the initial
amplitude of the perturbation. Similarly, we define the time it takes a certain mode
n > 0 to produce a pinch-off of the ring as the breakup time, tb. Assuming that the
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ring width decreases exponentially with time, tb can be estimated as

tb = 1
ω1,n

ln
(w

ε

)
, (5.13)

where ω1,n = ω1(n> 0).
The comparison of tb and tc gives an idea whether a ring would breakup or collapse.

Clearly, one can question the assumption that the instantaneous growth rate of the
modes remains equal to its initial value for varying radius and width as the ring
evolves. In the next section, we develop a more elaborated quasi-static model based on
a WKB (Wentzel–Kramers–Brillouin) type of analysis to obtain better predictions for
both tc and tb.

6. Quasi-static modelling
So far, we have considered a static ring and its stability. Now we extend our

approach to consider an evolving ring which slowly collapses, or breaks up into drops.
The concept of ‘slow’ evolution can be related to a quasi-static process, where the
instantaneous thickness profile is similar to the static one for the corresponding values
of ψ0 and rm. A similar approach has been considered elsewhere, see e.g. González
et al. (2004) for a flow of a fluid down an incline or Münch & Wagner (2005) for
an analysis of a dewetting process. The assumption of quasi-static behaviour will be
tested and confirmed in § 7.

For brevity, we restrict to the case G = 0. To begin with, we write the equations of
motion for the perturbed inner and outer radii as (see also (4.2) and (4.3))

R1(ϕ, t)= r1 + ε ξ1 cos (nϕ)F(n, t), (6.1)
R2(ϕ, t)= r2 + ε ξ2 cos (nϕ)F(n, t), (6.2)

where F(n, t)= exp[∫ t
0 ω1(n, t′) dt′], and ω1(n, t) is the growth rate of mode n as given

by the LSA of a ring of instantaneous radii R1(ϕ, t) and R2(ϕ, t); recall that r1 and r2

stand for the initial values of the unperturbed (ϕ-independent) ring radii. We will now
study the collapse and breakup processes separately.

6.1. Radial collapse

We first analyse the axisymmetric convergent flow of the ring for n= 0 so that R1 and
R2 are ϕ-independent. The above definitions lead to the following expression for the
instantaneous aspect ratio,

ψ(t)= 2
R2(t)− R1(t)

R2(t)+ R1(t)
= wc(t)

Rm(t)
, (6.3)

where

wc(t)= w+ δwcF(0, t), Rm(t)= R1(t)+ R2(t)

2
= rm + δrmF(0, t), (6.4)

are the perturbed width and mean radius of the ring (subscript ‘c’ stands for
‘collapse’). Also, δwc = ε(ξ2 − ξ1)|n=0 and δrm = (ε/2)(ξ1 + ξ2)|n=0. The growth rate
ω1(0, t) is a function of both the instantaneous aspect ratio, ψ(t), and of the mean
radius, Rm(t). Since the evolution is performed for a fixed volume, V , Rm(t) is a
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function of ψ(t) as (see (3.19))

Rm(t)=
(
πψ(t)[ψ(t)+ 2]

V

[
ψ (t)2+ 4

]
tanh−1(ψ(t)/2)− 2ψ(t)

2[ψ(t)+ 2]2tanh−1(ψ(t)/2)− 4ψ(t)
tan θ2

)−1/3

. (6.5)

Thus, we can simply write ω1(0, t) = Ωc(ψ(t)). By taking a derivative of (6.3) and
replacing F′(0, t)=Ωc(ψ(t))F(0, t), we have

rm
dψ
dt
= F(0, t)

[
Ωc(ψ(t)) (δwc − ψδrm)− dψ

dt
δrm

]
. (6.6)

Using (6.3) to eliminate F(0, t), we obtain the equation for evolution of ψ

dψ
dt
=−Ωc(ψ(t))

ψ −1c

ψ0 −1c
(ψ − ψ0), (6.7)

where 1c = δwc/δrm and ψ0 = w/rm is the initial (t = 0) aspect ratio of the
unperturbed ring (to be distinguished from the initial aspect ratio of the unperturbed
ring introduced below). Integrating, we have the implicit relationship t(ψ) for the
radially convergent flow as

t(ψ)=
∫ ψ

ψ(0)

ψ0 −1c

Ωc(ψ(t))(ψ −1c)(ψ − ψ0)
dψ, (6.8)

where the lower limit corresponds to the (perturbed) aspect ratio at t = 0. Following
(6.3), this quantity can be written as

ψ(0)= w+ δwc

rm + δrm
≈ ψ0 − ψ0

δrm

rm
+ δwc

rm
(6.9)

correct to the first order in δrm/rm.
Since the ring volume is kept constant during the evolution, from (3.19) we have

3
δrm

rm
+ f (ψ0)

f ′(ψ0)
δψ = 0, (6.10)

where δψ is given by (6.9) as

δψ = ψ(0)− ψ0 ≈ δrm

rm
(1c − ψ0) . (6.11)

By replacing into (6.10) we obtain

1c = ψ0 − 3f ′(ψ0)

f (ψ0)
. (6.12)

Note that in order to trigger the collapse, one expects δrm < 0, i.e. it is required that
both radial perturbations ξ1 and ξ2 are negative. The LSA calculations using (4.13)
confirm that this is the case. In addition, f ′(ψ0) > 0 for 0 < ψ0 < 2, and consequently
δψ > 0, i.e. the net effect of the perturbations at the contact lines for the mode
n = 0 is to increase the aspect ratio. Finally, for a given ψ0 the integral in (6.8)
can be calculated by using the instantaneous growth rates as obtained from the LSA
developed in § 4. Thus, the collapse time is given by tc = t(ψ = 2).

We now choose a fixed volume, and specify rm = 1 and ψ0 = 0.5, giving V = 0.16;
also we use ε = 10−3. Figure 18(a) shows tc as function of ψ0 ((blue) solid line
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FIGURE 18. (Colour online) (a) Collapse and breakup times, tc and tb, obtained by using the
quasi-static approximation (solid lines) versus the initial aspect ratio of the ring, ψ0, for a
fixed volume V = 0.16. The numbers indicate the corresponding n modes. The dotted lines
are the times obtained from the LSA as given by (5.12) and (5.13). The full circles show the
collapse times calculated using disjoining pressure simulations as described in § 7. (b) Time
evolutions of the global aspect ratio, ψ(t), and the local aspect ratio, Ψ (t), for n = 3. The
initial aspect ratio of the ring is ψ0 = 0.5 and the average radius rm = 1, for the same volume
as in (a). We use θ0 = 30◦, `= 10−3 and G= 0.

marked by 0); note that we use the value of rm that keeps the volume constant. For
comparison, we also plot the collapse time as obtained using the LSA as given by
(5.12), which yields slightly larger values of tc. The reason for the difference can be
seen in figure 18(b), which shows that the growth rate of the n = 0 mode (see the
(blue) solid line), does not remain constant, as assumed by the LSA, but it instead
increases as the collapse proceeds. For the present choice of parameters, this increase
is concentrated near the very end of the collapse. For smaller values of ψ0, the
increase extends for longer periods and yields larger departures of tc from the LSA
results.

6.2. Breakup of the ring
Now we consider a quasi-static approximation with the goal of estimating the breakup
times for various angular wavenumbers. We consider a single value of the azimuthal
angle, ϕ, such that |cos(nϕ)| = 1, i.e. we concentrate at a neck of the mode n which
evolves towards a pinch-off.

We consider the evolution of the width of the ring concomitant with the radial
convergence described previously. Therefore, the ring width is being perturbed
simultaneously by both the mode n = 0, which triggers the ring collapse, and by a
mode with n> 0, which tends to produce a breakup. Thus, we write the resultant ring
width as

wn(t)= wc(t)− δwnF(n, t), (6.13)

where δwn = ε(ξ2 − ξ1)|n>0. At breakup, we have wn(tb)= 0, so that (6.13) leads to

ln
wc(tb)

δwn
=
∫ tb

0
Ωn(ψ(t)) dt, (6.14)

where Ωn(ψ(t)) = ω1(n, t) is the growth rate for the instantaneous value of the global
aspect ratio ψ(t) of the ring.
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Equation (6.14) implicitly yields the breakup time, tb, for the mode n, and it is
solved simultaneously with (6.8). As an example, figure 18(b) shows the evolution
of the local aspect ratio Ψ (t) = wn(t)/Rm(t) for the mode n = 3 (dashed line), which
depicts a typical case where the ring breaks up due to the presence of this mode. As
before, we use ε = 10−3 for this and for all of the other modes considered below.

Figure 18(a) shows the values of tb versus ψ0 for the first few modes (solid lines).
The dotted lines correspond to (5.13). Unlike the comparison made for tc, the breakup
times obtained using the LSA are smaller than those given by the quasi-static method.
The reason is that ω1(n, t) decreases as ψ0 increases (see e.g. figure 13a) and therefore
the instantaneous growth rates obtained by the quasi-static method are smaller. Note
that the mode n = 1 is not plotted here since tb|n=1 > tc and is out of the time range
shown in figure 18(a). This suggests that this mode, which would imply a single
breakup and formation of an off-centre single drop, is very unlikely to be seen in an
actual flow.

Note that the breakup times given by the quasi-static method can be calculated only
up to a certain maximum value of ψ0, depending on the value of n. This result points
out that the mode n does not have time to break up the ring before it collapses. This
is another difference compared with the LSA, which cannot show this effect since it
considers the collapse and breakup process independently, and not coupled as done in
quasi-static approach to describe more accurately the actual flow.

We observe that the most likely breakup mode, which is that with the lowest tb,
varies depending on the value of ψ0 in the ranges marked in figure 18(a) by A, B, C
and D. Thus, we have that the mode n= 2, i.e. the formation of two drops, is likely to
occur for ψ0,B <ψ0 <ψ0,A, n= 3 for ψ0,C <ψ0 <ψ0,B, and so on for larger n.

Note that, in principle, one could think of the approximations given by (5.12) and
(5.13) as underestimates of tc and tb, since the exponential behaviour assumed for
the whole process should lead to faster velocities compared to those expected in the
later nonlinear stages (where some type of saturation occurs). When comparing with
the quasi-static results, we see that the LSA indeed underestimates tb, but it also
overestimates the collapse times, tc. This overestimate is due to the fact that the
growth rate of the initial aspect ratio (which is kept constant under the LSA) is smaller
than those for later (larger) aspect ratios considered in the quasi-static method (see
figure 16).

7. Comparison with disjoining pressure model
The condition of partial wettability is also treated in the literature by the

introduction of long range intermolecular forces, such as those of van der Waals
(vdW) type. This is usually done by including a new term at the left-hand side of (2.2)
in the form, see Diez & Kondic (2007) for a review,

K
∂

∂x

(
h3f ′(h)

∂h

∂x

)
, (7.1)

and by setting ` to zero. Here, f (h) stands for the conjoining–disjoining pressure as

f (h)=
(

h∗
h

)3

−
(

h∗
h

)2

, (7.2)

where h∗ is the equilibrium thickness of a flat film subject only to this pressure.
Thus, it corresponds to the thickness of the film ahead of the contact lines, extending
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(mathematically) to infinity. The (dimensionless) constant K is given by

K = 2(1− cos θ0)

h∗
, (7.3)

where θ0 ≈ tan θ0 is the asymptotic slope of the free surface at the inflection point of
h(x).

Before proceeding with a comparison between the slip and disjoining pressure
models, it is important to point out that a full quantitative agreement should not
be expected, since there are significant differences between the models. The first
is that slip model discussed so far concentrates on a configuration where contact
angles hysteresis is crucial: the analysis relies on the presence of hysteresis for the
existence of a static solution. The disjoining pressure as presented here does not
include the effect of contact angle hysteresis, a static solution does not exist and
the ring inevitably converges towards the centre due to the differences in pressures
associated with the azimuthal curvature of the contact lines. Note that introducing
contact angle hysteresis under disjoining pressure approach is complicated due to the
global character of the additional pressure field. This problem is not present under
the slip model where different contact angles can be imposed locally. The second
difference is that the slip model was considered on the level of LSA of static or
quasi-static configurations. These (quasi-)static configurations do not exist within the
disjoining pressure model and therefore we need to resort to (nonlinear) simulations
to understand the dynamics. Owing to these differences, only qualitative comparison is
expected. However, we note that in the recent comparison of the models by Savva &
Kalliadasis (2011), it was found that in many cases of interest the agreement between
the results extends even beyond the quasi-static regime considered here.

We report here the results obtained by solving (2.2) with the addition of the
disjoining pressure term (7.1), by employing a procedure based on the alternating
direction implicit (ADI) method which is described in detail elsewhere, see Lin,
Kondic & Filippov (2012). This approach turns out to be significantly more efficient
compared with the fully implicit discretization (see Diez & Kondic 2002; Diez et al.
2009). To ensure accuracy, we have carried out selected simulations using both
methods and obtained indistinguishable results. These non-axisymmetric simulations
are carried out in a square computational domain divided into cells of size 1x × 1y,
and the domain size is 1.1r2. We impose no-flow boundary conditions along the
domain boundaries, by setting both the first and third derivatives of h(x, y, t) to zero
there. For brevity, we restrict the focus to vanishing gravity case (G= 0).

7.1. Axisymmetric rings
We first consider the time evolution within the disjoining pressure model by
axisymmetric simulations, where we consider only the cross-section of a ring.
Figure 19 shows the thickness profiles at different times, using as an initial condition
the static solution obtained in § 3.1. Here we use 1x = h∗, which is sufficient for
numerical convergence. For each time, we compare these profiles with the static ones
calculated using the instantaneous values of r1 and r2 as given by the disjoining
pressure simulations and conserving the initial ring volume. We find that the difference
between the instantaneous values of θ2 (the angle at the outer radius) and θ0 is
small, less than 5 %. This agreement between the static profiles and the instantaneous
thickness profiles as given by the disjoining pressure model strongly suggests that
the evolution can be considered as quasi-static, although a careful comparison of the
profiles near the closure (not shown in detail in the figure) shows that the difference
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FIGURE 19. (Colour online) Numerical simulation of the evolution of a ring specified by
r1 = 1, r2 = 1.2 (rm = 1.1, ψ0 = 0.182) and θ2 = 30◦ (solid lines) using the disjoining
pressure model with θ0 = 30◦ and h∗ = 10−3 (see (7.2) and (7.3)). The dashed lines
correspond to the static solutions obtained using the slip model and lifted by h∗. The profiles
were calculated using the instantaneous values of r1, r2 as given by simulations based on the
disjoining pressure model, and using the value of θ2 obtained from volume conservation.

between both types of profiles increases there. The main difference between the results
of the two models has to with the speed of collapse: as shown in figure 18, the
collapse time, tc, is typically shorter under the considered disjoining pressure model.
This is particularly obvious for large ψ0, suggesting that for the rings characterized by
large aspect ratio we may expect differences in the non-axisymmetric cases as well. As
pointed out at the beginning to the section, these differences between the results of the
two models are expected.

7.2. Non-axisymmetric rings
In the following, we discuss the time evolution of the rings by solving the complete
governing equation without assuming axisymmetric flow. The initial profile, h0(x, y, 0),
is given by (3.5)–(3.11), lifted by h∗. We perturb this profile by a varicose mode which
radially shifts h0(x, y, 0) as follows

hpert(r, φ, 0)=
{

h0(r − δ(φ)), r > rm

h0(r + δ(φ)), r < rm
(7.4)

where δ(φ) is an imposed shift, and we interpolate the region around rm to ensure
smoothness.

In order to compare the growth rates obtained from the disjoining pressure model
with those predicted by the LSA based on the slip model (called just ‘LSA’ in what
follows for brevity), we consider a single mode perturbation

δ(φ)= A0 cos(nφ), (7.5)

for a single angular wavenumber n with radial amplitude A0. Figure 20 shows the
time evolution of the corresponding thickness amplitude of the ring (solid line) for
n = nmax = 8 and A0 = 0.01 applied to the case shown in figure 19. This amplitude is
obtained as the difference between the maximum thickness of the ring in axisymmetric
and non-axisymmetric simulations at φ = 2π/n. This approach allows us to quantify
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FIGURE 20. (Colour online) Single-mode perturbation: amplitude of the thickness
perturbation as a function of time for r1 = 1, r2 = 1.2, θ0 = 30◦ and h∗ = 10−3 as given
by the non-axisymmetric disjoining pressure model (solid curve). The slope of the dotted
line corresponds to the growth rate, ω1, given by LSA for n = 8 with slip length ` = 10−3

(ω1 = 0.0502), and the dashed line to the quasi-static method.

the evolution of the azimuthal perturbation of the (quasi-static) axisymmetric base
solution. Since, as shown in § 7.1, the axisymmetric thickness profiles obtained for
the disjoining pressure model are remarkably similar to the static base solution
obtained using the slip model, one can compare the results of the LSA and quasi-
static approach for the slip model with those of the disjoining pressure model for
non-axisymmetric modes. The dotted line in figure 20 shows the exponential time
evolution of a perturbation with the growth rate as given by the LSA using n = 8.
For early times, the agreement between the LSA and the disjoining pressure model
is quite satisfactory. We also show a quasi-static calculation (dashed line) which takes
into account the progressive change of the aspect ratio, ψ . This model extends the
agreement to longer times, and shows the decaying trend of the growth rate. Naturally,
this agreement does not extend to the late times when axisymmetric calculations
approach a final collapse and non-axisymmetric evolution tends to a breakup.

In any physical experiment, one expects the presence of white noise which may
influence the evolution. While the noise influences both the initial configuration and
the evolution that follows, we expect that a good insight can be reached by considering
its influence on the initial shape of a ring only. The perturbations due to noise can be
expanded into an infinite Fourier series, which we approximate here by a superposition
of a finite number, N, of modes with random amplitudes, as follows

δ(φ)=
N∑

n=1

An cos(nφ), (7.6)

where An are random amplitudes such that |An| < Amax. Here, we set N = 50,
Amax = 10−3 and use 1x=1y= 5× 10−3. While full numerical convergence is difficult
to achieve for these non-axisymmetric simulations due to high computational cost,
our previous results using similar method (see Diez & Kondic 2007; Diez et al.
2009, 2012) suggest that this level of resolution is sufficient to accurately capture the
dynamics.
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FIGURE 21. (Colour online) Multiple mode perturbation: snapshots from the disjoining
pressure model of a ring with r1 = 1 and r2 = 1.2 (ψ0 = 0.182) with θ0 = 30◦ and h∗ = 10−3.
The initial condition was perturbed by a set of azimuthal varicose modes with random
amplitudes as given by (7.4) and (7.6). The LSA under the slip model yields nmax = 16.8:
(a) t = 0; (b) t = 100; (c) t = 150; (d) t = 250.

The question now is to which degree the computed dynamics compares with the
LSA results obtained using the slip model. To discuss this question, we first consider
initially small aspects ratios, ψ0, where we expect breakup, and then consider larger
ψ0, where competition between collapse and breakup is expected. Based on the
discussion in § 7.1, better agreement is expected for smaller ψ0.

Figure 21 shows snapshots for the ring with r2 = 1.2 (ψ0 = 0.182) evolving after
being perturbed by the superposition of modes specified above. The LSA here gives
nmax = 8.7. While a corresponding number of modes appear to be dominant for early
times (see figure 21b), for longer times, as the ring converges towards the centre, some
breakups predicted by the LSA do not take place and the final number of drops is five.
A similar trend (of smaller number of drops) was also noticed in the comparison with
experimental results involving liquid metal rings (Wu et al. 2011).

Figure 22 shows the comparison for r2 = 1.1 (ψ0 = 0.095) where 16 drops are
formed; here nmax = 16.8. In general, we observe that for smaller values of ψ0 the
agreement of the number of resulting drops between the disjoining pressure and the
slip model becomes very good. We also note that the simulation shown in figure 21
leads to the formation of satellite droplets, which are in some cases also observed in
physical experiments, see González et al. (2007), while the simulations in figure 22
do not lead to satellite droplets; this detail of the breakup process deserves further
consideration, which is however out of the scope of the present paper.
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FIGURE 22. (Colour online) Similar to figure 21, but with r2 = 1.1 (ψ0 = 0.095). The LSA
under the slip model yields nmax = 16.8: (a) t = 0; (b) t = 40; (c) t = 50; (d) t = 100.

For larger ψ0, we expect more significant differences between the disjoining
pressure and the slip model, in particular due to the shorter collapse times of
axisymmetric profiles in the former case (see figure 18). These shorter collapse
times are expected to lead to collapse in the case where slip model may predict
breakup. Simulations (not shown here for brevity) show that this is indeed the case.
For example, the case r2 = 1.4 (ψ0 = 0.33) and the other parameters as in figure 21
leads to collapse, while the LSA predicts breakup. Additional parameters come into
play here as well: for example, the same simulation with larger initial perturbation
amplitude leads to a breakup, showing that the details of the setup of simulations
(or physical experiments) may lead to different outcomes in this transitional range of
parameters.

8. Summary and conclusions
In this paper we are concerned with a liquid ring on a horizontal surface under

partial wetting conditions with and without gravity effects. We find that there exist
static solutions describing the ring shape, whose inner and outer contact angles,
θ1 and θ2, respectively, are different. Physically, the existence of a static ring on
a homogeneous substrate requires that the fluid–solid interaction includes hysteretic
effects. This feature is analogous to the problem of a drop or a filament on an inclined
plane as considered recently by Diez et al. (2012).

The ring stability is studied by analysing small perturbations of the fluid thickness
as well as of the contact lines. The eigenvalue problem derived from the linearization
of the perturbed equations is solved by using a Chebyshev pseudo-spectral method. In



276 A. G. González, J. A. Diez and L. Kondic

this method, we choose a convenient set of basis functions that automatically satisfies
the boundary conditions at the contact lines. This approach leads to a fast and accurate
numerical scheme.

It is found that the limiting case of a large radius ring with a fixed width is
consistent with that of a straight filament of infinite length. A distinctive property
of the ring evolution is that the growth rate of the n = 0 axisymmetric mode is not
equal to zero due to the lack of translational invariance. The mode n = 0 plays a
fundamental role in determining whether a ring collapses into a central drop, or breaks
up into multiple drops.

The LSA shows that the marginal stability angular wavenumber, nc does not depend
on the contact angles and furthermore, that the dependence of the mode of maximum
growth, nmax, on the contact angles is very weak. However, the growth rates scale with
the contact angle approximately as tan3θ2, and this scaling becomes more accurate for
smaller values of slip length, `. Therefore, only the internal and external radii are
left as the main parameters on which the instability process can depend upon. Further
insight into the problem can be reached by considering the mean radius, rm, and the
aspect ratio, ψ0 = w/rm, as the variables describing the ring evolution. When gravity
effects are negligible, a remarkable result is that nc does not depend on rm, and it is a
decreasing function of ψ0. When gravity effects are considered, the dependence on rm

is significant only for some intermediate range of ψ0.
Nonlinear stages of evolution lead to either collapse or breakup of a ring. Assuming

that the LSA predictions can be extended to these stages, we estimate the expected
number of drops by nmax. In general, we find that nmax is mostly influenced by the
aspect ratio, ψ0. Large ψ0 lead to a central collapse, and breakup into drops results
for small ψ0, say ψ0 < 0.4 (cf. figures 16 and 17). In the intermediate region of ψ0,
gravity decreases the expected number of drops by an amount that depends on the
mean ring radius. We find that the results regarding dependence of the number of
drops on the aspect ratio of a ring are in good agreement with existing experimental
data.

In order to extend the validity of our results, we develop a quasi-static approach
that describes the evolution simultaneously with a competition between the collapse
and the azimuthal breakup. Thus, we calculate the collapse time corresponding to the
n = 0 mode, as well as the breakup times for the other modes characterized by some
n > 0. The analysis shows that the modes n = 1 (off-centre single drop) and n = 2
(two drops) are unlikely to be observed, since their breakup time is longer than that of
the other modes. The agreement between the LSA results and those obtained using the
quasi-static approach shows that the extrapolation of the LSA predictions to advanced
stages of the collapse or breakup is appropriate.

Finally, we also report the results of a disjoining pressure model, that includes
explicit solid–liquid interaction in the model, but does not allow for contact
angle hysteresis. Within this approach a static solution does not exist and we
resort to numerical simulations to explore the dynamics. The results obtained
using axisymmetric simulations confirm the quasi-static character of the evolution.
Furthermore, the nonlinear evolution for non-axisymmetric calculations show good
agreement with the growth rates obtained from the LSA for early times; the quality
of the agreement extends to later times when comparison with quasi-static model is
considered. The final number of drops obtained by the nonlinear simulations under
disjoining pressure model is similar to that obtained from the LSA of the slip model
for the rings characterized by relatively small aspect ratio. For larger aspect ratios,
the disjoining pressure tends to suggest smaller number of drops compared with the
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LSA, or ring collapse for some of the configurations where breakup is found under
the LSA. As discussed extensively in the paper, this difference is not surprising due to
significantly different approaches and techniques employed in these two models.

The work presented here was to a certain degree motivated by experimental results
involving breakup of nanoscale liquid metal rings (Wu et al. 2010, 2011) and more
generally by instabilities leading to self-assembly and directed assembly of liquid
metals at the nanoscale (see Herminghaus et al. 1998; Favazza, Kalyanaraman &
Sureshkumar 2006; Fowlkes et al. 2011) which may be of direct relevance to
plasmonics and related applications, see Atwater & Polman (2010) for a recent
review. We expect that future direct comparison with the experiments will allow us
to accurately consider and address some of the questions that are left open in the
present work, such as importance of contact angle hysteresis, in addition to more
basic questions such as utility of continuum fluid mechanics in providing quantitative
description of the nanofluidic phenomena.

We note that in the present work, we do not consider geometries where a breakup
in the radial direction might be present, thus leading to concentric rings. This has
been observed in experiments with flat liquid metal rings (Wu et al. 2011), where
the resulting rings individually develop the type of instability described here. Unstable
rings have also been observed in the context of films dewetting (Voicu, Harkema &
Steiner 2006; Beltrame & Thiele 2010). They result from a radially directed dewetting
process that creates consecutively nearly static rings in what one could call radially
directed secondary nucleation, similar to the finite length films for planar geometry
studied by Diez & Kondic (2007). For instance, in figure 6 of Voicu et al. (2006) one
can see two rings that break up as in figures 21 and 22; figure 8 of Beltrame & Thiele
(2010) shows the case where the inner rings collapse, while the outer ones break up
into drops. This sequence of collapses is consistent with our results for ωmax shown in
figure 16.
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