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Abstract. We study the stability of a finite-length fluid rivulet at rest on a partially wetting
surface. We consider the problem by including the intermolecular force (van der Waals
interaction) within the framework of the lubrication approximation. The results are validated
by comparison with numerical simulations of the full nonlinear equation. For finite length
rivulets, we show that the distance between drops after breakup is very close to the wavelength
of maximum growth rate predicted by the linear theory for infinite rivulets. Finally, we compare
theoretical and numerical results with reported experimental data.

1. Introduction

The evolution of partially wetting thin liquid films on solid substrates and the subsequent
pattern formation is a subject of growing importance. The interest on the subject is raised
by a variety of important applications such as thin films in micro- and nano-fluidics [1, 2], as
well as templating or lithographic patterning and various types of coatings [3, 4, 5]. Many of the
fundamental dewetting studies have focused on continuous liquid or polymeric [6, 7] thin films.
More recently, the dewetting characteristics of continuous thin metal films were studied [8]. In
all of these examples, the films are often unstable and break up, leading to the formation of
dry spots. One important question is what are the mechanisms involved in the dewetting and
breakup of unstable thin films. The instability has been found to be either driven by nucleation
at defect sites which are not spatially correlated, or via spinodal-type of instabilities resulting
in a spatial correlation [9, 8, 10].

In this work we consider the instability of finite-length fluid rivulets placed on a horizontal
substrate under partial wetting conditions (see Fig. 1). The case of an infinite rivulet has
previously been considered by other authors assuming sharp contact lines and circular cross
section shapes. Among the most relevant papers on the subject we mention the works by
Davis [11], Langbein [12], Roy & Schwartz [13], Sekimoto et al. [14] and Brochard-Wyart et
al. [7]. Here, we perform a stability analysis by considering van der Waals forces which diffuse
the contact line into a thin precursor film and also consider the effects of gravity. Thus, the cross
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section of the rivulet cannot be described as a circle either because of the non sharp contact line
or because of the influence of gravity.

h(y)

Figure 1. Schematic of the liquid rivulet
placed on a horizontal substrate.

One significant difference to previous approaches is that intermolecular forces are taken into
account. Here, we choose a conjoining/disjoining pressure model. Instead of imposing a fixed
contact angle at the contact line where h — 0, we introduce the wettability properties directly
in the model so to reach a given free surface slope (apparent contact angle, 6) far from the
contact line. To do so, an equilibrium film is required ahead of the macroscopic contact line,
whose thickness is very close to that of equilibrium for an infinite flat film.

The paper is organized as follows. The linear stability analysis (LSA) within the framework of
lubrication approximation is presented in Section 2. The comparison between the linear theory
and the numerical evolution of the full nonlinear equation is given in Section 3, where the case of
finite rivulet is also considered. The comparison between experimental data reported elsewhere
and the present theoretical and numerical results is discussed in Section 4. Finally, Section 5
summarizes main results and conclusions.

2. Long-wave approximation and linear stability analysis

In the study of thin film flows on solid substrates, the evolution of the fluid thickness, h, is
typically described under the framework of lubrication theory. This approach allows to reduce
Navier-Stokes equations to a single nonlinear partial differential equation for A. In addition,
finite contact angles can be included in the model by accounting for van der Waals forces, as
described below.

We note that although lubrication theory is strictly valid only in the problems characterized
by vanishing free surface slopes, it has been used commonly in partial wetting conditions,
therefore in situations where the contact angle is not necessarily small [15, 16, 17]; see also
[18, 19, 20, 21] for further discussion regarding involved issues. This approach has been justified
in part by the works which show that even in the case of large contact angles, only relatively
small deviations from more complete models result. For example, [22] compares the solutions
for the cross section of a rivulet flowing down a plane obtained by solving the complete Navier-
Stokes equation with the predictions of the lubrication approximation (see their Table I). For a
contact angle of 30°, they find that the differences between the two approaches related with the
shape of the free surface are of the order of few percent. Although the accuracy of lubrication
approximation is not so good regarding the details of the velocity field, they find that these
velocity differences cancel out when the total flux along the rivulet is computed. The issue of
appropriateness of the use of lubrication approximation was also discussed earlier [23]. In that
work it was shown that there are some differences in the free surface slope between lubrication
theory and Stokes formulation, but only very close to the contact line.
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Another concern regarding the use of lubrication approximation is that one typically (as we
do here) approximates curvature of the free surface by hy,, where z is in-plane coordinate.
This issue was considered in [24], where it is shown that use of the complete nonlinear
curvature yields only a few percent difference (see Fig.2b in [24]). There have been also some
attempts [25, 26] to improve the typical lubrication approximation approach. These works show
that including a correction factor to the flux term in the continuity equation extends the limits
of its validity. Therefore, it may be appropriate to implement these improvements when precise
quantitative results are desired. In the present problem, where we are mainly concerned with
the basic mechanisms involved in the dewetting and breakup processes, we expect that standard
lubrication approach is sufficient.

The van der Waals forces are included in the formulation of a lubrication model via disjoining
pressure II(h) (see for instance [9]). The resulting equation for the fluid thickness, h = h(zx, y,t),
is (see, e.g., [27, 15, 16])

3@—? +9V - (B3VV?h) + V- [RVII(h)] — pgV - (h3VA) =0, (1)

where p is the viscosity, p is the fluid density, v is the surface tension, and g is the gravity. Here,
the first term stands for viscous dissipation and the other three terms account for the driving
forces, which are surface tension, van der Waals and gravity force, respectively. The disjoining

pressure model that we use
H(h)—nf(h)—m[(%)n— (%)m] ) (2)

introduces k (proportional to the Hamaker constant) and the exponents n > m > 1 (note
that f(h) is a dimensionless function). The first term represents liquid-solid repulsion, while
the second term is attractive, leading to a stable film thickness h = h,. Within this model,
k = S/(Mh,), where S is the spreading parameter, and M = (n —m) /((m —1)(n — 1)) (see
[9]). The spreading parameter can be related to the apparent contact angle 6 via Laplace-Young
condition S = y(1 — cosf).

Here, we take z-axis along the rivulet, and y-axis in the transverse direction. By defining the
dimensionless variables h = h/a, & = z/a, §j = y/a, t = t/t,, with t. = 3ua/7, Eq. (1) becomes

oh

SV (h3vv2h) LKV {h?’f’Vh} v (h3Vh) =0, (3)

where f’ = df /dh and we have omitted the ‘hat’ symbol for simplicity. We define K = xa/7,
with a = \//pg being the capillary length.

2.1. Steady state (base) solution
We first concentrate on the z-independent solution, h(y,t), so that Eq. (3) reduces to

oh 0 [ 4 (% ,0h  Oh
— _— = . 4
T lh <ay3 HEfS ayﬂ 0 (4)

We consider now 0h/0t = 0. After integrating twice the resulting equation and using the
boundary conditions hy' = h{, = 0 at y = £oo, where the primes stand for y-derivatives, we
obtain (see e.g. [9]):

ho + K f(ho) = ho +p =0, (5)

where the constant p > 0 is the equilibrium pressure [28, 29] within the fluid. An
analysis [28, 30, 9] of the solutions of Eq. (5) shows that there is a range of pressures p. < p < p*
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for which there exist bounded-in-height solutions, where hg min < ho < hosmae. Within that
range, the value of p corresponds to different cross section areas,

A=2 /0 " (ho() — houmin) dy, (6)

where [28, 9] homin = hy + phy/K(n —m). Figure 2 shows relationship between p and the
corresponding area, A. For the case considered here, with gravity effects included, p cannot
be lower than a certain limit, p., and, consequently, the maximum drop thickness, homaz, iS
bounded from above.
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02 p, in Eq. (5) and the corresponding area, A,

of the rivulet cross section for three different
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and h, = 1072,

The solution of Eq. (5) is studied in detail in the Appendix B of [9]. The case with no van
der Waals forces, i.e. K = 0, but supplemented with boundary condition h = 0 at the contact
lines (x = tw/2, w being the width of the 1D drop) is also analyzed in that paper. Here, we
use both solutions as possibilities to describe the cross section of the rivulets.

2.2. Perturbations and eigenvalue problem
In order to perform the linear stability analysis (LSA) of the transverse thickness profile, ho(y),
with respect to longitudinal perturbations (z-direction), we write:

h(x,y,t) = ho(y) + eg(y) exp(at + ikx) (7)

where € is small number, g(y) is the amplitude of the perturbation, k¥ = 27/ is the wave number,
and A is the wavelength.
By replacing Eq. (7) into Eq. (4), we obtain to O(e) the eigenvalue problem:

Lg=—og

where L is the linear operator defined by:

Lg = ca(y)gyyyy + 3(¥)9yyy + 2(y)gyy + 1 (y)gy + co(y)g, (8)
where the coefficients ¢;(y) (i = 0,...,4) are defined by:
caly) = hg,
cs(y) = 3hghy,
eoly) = — (1 1 ok? - Kf’) hg, (9)
aly) = —hg [30+k - Kf') = 2K "] by
coly) = co2hd + coshi + coahp
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and coj (j =2,3,4) are given by:
co2(y) = 3hgKf",
cosy) = K (1+K —Kf)—Kf' (p+Kf)+hKf" (10)
coaly) = Kf"

We use n =3, m =2, and h, = 0.01. The considered contact angles range between § = 30° and
0 = 50°.
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Figure 3 shows the thickness, slope and curvature profiles for A = 2 and 6 = 30°. Figure 4
show the resulting dispersion relation curves. We see that the maximum growth rate as well as
its corresponding wavenumber diminish as A is increased.
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Figure 4. Dispersion relations for the three
rivulet cross sections, A, using 6 = 30°.
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3. 3D numerical simulations

In order to understand the nonlinear effects in the rivulet instability, we perform numerical
simulations of the evolution of the rivulet governed by the full nonlinear Eq. (3). The calculations
are carried out in a rectangular computational domain defined by 0 < x < X and 0 <y <Y,
which is divided into cells of size dx x dy (typically, we use §, = 6, = 0.04). Equation (3) is
discretized in space using a central finite difference scheme. Time discretization is performed
using implicit Crank-Nicolson scheme. We note that all the results presented in this paper are
fully converged, as verified by grid refinement; more details about numerical issues can be found
in [31].
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We choose a rivulet with pressure p = 5 and, due to the symmetry along the line x = 0,
we simulate only half of the whole rivulet, i.e. y > 0. We take a numerical domain length, L,
coincident with the wavelength of maximum growth, A, = 1.087 and impose no-flow (symmetry)
conditions at the boundaries, which is equivalent to periodic boundary conditions for this infinite
rivulet case. We perturb the free surface of the rivulet at t = 0 as prescribed by Eq. (7), and
take e = 1073 and g(y) as given by the corresponding (varicose) eigenfunction. Fig. 5 shows the
time evolution of the free surface shape, where the breakup process is clearly observed at the
middle of the domain.

Figure 5. Evolution of a fluid rivulet of
length L = 1.087 with p = 5. We employ
a perturbation with wavelength A,, = 1.087.

In Fig. 6 we show the amplitude of the perturbation in the middle of the rivulet, i.e., at
x = L/2 and y = 0, measured as the difference between the maximum height of the rivulet
and the fluid thickness at that point. For early times, the perturbation follows an exponential
law, as expected for a linear regime. The good agreement between the exponent, 3, that fits
this behavior, and the eigenvalue o corresponding to A,, = 1.087 indicates that the eigenvalue
problem describes correctly the early evolution of a given steady initial profile.

An interesting feature of this analysis is that a perturbation different from the corresponding
eigenfunction, say by setting g(y) in Eq. (7) equal to unity instead, yields a stable flow, i.e. the
amplitude of the perturbation decreases and no rivulet breakup occurs.
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Motivated by the comparison with experimental results in the following section, we here
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analyze the evolution of finite length rivulets. Thus, we perform the numerical simulation for
an initial condition obtained by modulating the steady solution of the rivulet as [9]:

h(z,y,0) = ho(y) [arctan (¢(z — x1)) — arctan (¢(z — x2))] /7, (11)

where x1, xo are the coordinates of the end points of the rivulet, so that the fluid length is
¢ = x9 — x1. The computational domain has an z-length L = ¢/2 + 1, i.e., half length of the
rivulet plus a small space for the precursor film ahead of it. The value of ¢ determines the width
of the transition region between the unperturbed rivulet of height hgpe, and the precursor film
region. We use a relatively large ¢ (typically, ¢ = 100) to obtain an initial condition resembling
a step function connecting ho(y) and h, at the end points of the bulk.

The evolution of a finite length rivulet for p = 5 is shown in Fig. 7. This mechanism of rivulet
breakup has previously been studied in connection with the one dimensional (1D) rupture of
flat thin films [9, 32]. In those cases, there exist instabilities of two different kinds: spinodal
or nucleation instability. These regimes depend on the value of the thickness of the film, with
nucleation being relevant for thinner films. The main difference between the final patterns formed
by these two mechanisms is the distance, D, between consecutive 1D-drops. In the spinodal
regime, D is given by the wavelength, \,,, of maximum growth rate of the corresponding LSA,
while in the nucleation regime D is not correlated with A,,, but it is determined by the nonlinear
evolution of the flow.

In the 3D-rivulet case, its thickness hgpez = ho(0) depends on the value of the pressure, p,
inside the rivulet. In particular, for p = 5, we find that D =~ 1.09, which is very close to A,,,. We
find basically the same result for other values of p, so that we conclude:

D=~ A\, (12)

for different rivulet thicknesses hgpe,. This indicates that no nucleation regime exists in the
rivulet problem and, therefore, the distance between droplets is close to the wavelength of the
maximum growth resulting from LSA, \,.

Figure 7. Evolution of a finite rivulet of
length L = 18 with p = 5. The final pattern
is formed by droplets separated an average
distance D = 1.03.

The time needed for surface perturbations, like that used in LSA, Eq. (7), to break up the
rivulet is given by ts = —In€/o,,. In this case, we have o,,, = 0.114, so that surface perturbations
of amplitude € = 1073 lead to breakup only for t, = 60. Thus, for the considered rivulet length,
breakup due to dewetting from the rivulet ends proceeds faster than surface perturbations have
time to grow.
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4. Comparison with experimental results

In this section we aim to compare the LSA results, as well as from 3D-numerical simulations,
for the evolution of the rivulet instability with the experiments reported by Gonzalez et al. [33].
In that work, the rivulet is formed by capturing a thin jet of silicon oil (polydimethysiloxane,
PDMS) on a coated glass slide, which is a partially wetting surface for the oil. The evolution
of this rivulet shows a repetitive process of length contraction and breakup into droplets (see
Fig. 8). Each experiment is characterized by a contact angle, 8, and the cross sectional area of
the rivulet, A. When the fluid is placed on the substrate, the initial width, w, of the rivulet
is also measured and reported in that work. Thus, the theoretical model used to describe this
initial configuration must be able to yield w for given 6 and A. Since here we use the capillary
length a (= 0.145 cm for PDMS), as a characteristic length scale, we write the main experimental
results reported in Gonzélez et al. [33] in units of a (see Table 1). The last column in Table 1
corresponds to the predictions given in [13]. We observe large difference between the experiment
and that theoretical result.

||

) 0 min ) 4.87 min ) 8.93 min
S S
) 10.93 min ) 12.13 min ) 15.92 min
l. © =0 0 il. © o=—0 0 i'. ® © o ©
) 17.83 min ) 19.33 min ) 22.95 min

Figure 8. Evolution of a silicon oil rivulet of length 7 ¢m on a substrate covered with EGC-1700
(0. = 57°) as reported by Gonzdlez et al. [33] and formation of primary drops. The black segment
corresponds to 4.2 cm.

Table 1. The first six columns correspond to the experimental data reported in Table I of
Gonzélez et al. [33], where w is the rivulet width and n is the number of drops in the rivulet of
length L = 50 (in units of a). The last column shows A, predicted by the results in [13].

Exp. 0 A w n Degp  Am [13]

57° 0.069 0.517 12 3.501  1.015
57°  0.296 1.076 12.84  2.113
57 0.316 1.110 3 19.53  2.213
63° 0.041 0.352 16 2.802 0.701
63° 0.296 0993 7 6.117  1.980

Uk W N =
e

Next, we compare the values of A, given by LSA presented here, with the experimental
distance between drops, D.;p. To do so, we obtain the base thickness profile by using the
solution of Eq. (5) with van der Waals and gravity forces. Since this solution is determined by
a fixed value of the pressure, p, inside the drop, we find the corresponding p by relating it with
the experimental drop area, A, which is defined as the area for h > h, in the theoretical profile.
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The values of A\, reported in Table 2 are obtained for these values of p and for 8 as given by the
experimental data for few different values of the exponents (n,m). These results are closer to
the experimental data than the results from [13], but there is still only qualitative agreement.
It should be noted that the discrepancy is particularly large in the cases when only few drops
are seen, and the statistical fluctuations of the experimental results may be large. We also note
that the influence of the exponents (n,m) in van der Waals model is relatively weak.

Table 2. Comparison of D,,, with ), as obtained from LSA for a cross section with van der
Waals and gravity forces by using few different pairs of (n,m).

Dep AP ALY
3.501 2.424 2.356
12.84 5.427 4.885
19.53 5.694 5.136
2.802 1.743 1.742
6.117 5.178 4.700

We believe that one reason for the relatively larger discrepancy between the values of D), and
Am is the differences between the rivulet widths, w, of the base solution profile used in LSA, and
the corresponding measured values reported in Table 1 (see Fig. 9a). These departures come
from the inability of this base profile to yield large values of contact angles at the inflection
points, as explained in Appendix A. In fact, the experimental values of the contact angle refer
to the slope at these points, since they are measured by the maximum deviation of a light beam
perpendicular to the substrate. Consequently, when we set 6 equal to the values reported in [33],
the profiles with van der Waals forces (as those used in LSA for Table 2) exhibit apparent contact
angles different to those experimentally measured.

Exp.1e
Exp. 4¢

04—

1 1 1 1 1 0 1 1 1 1
20 30 40 50 60 70 20 30 40 50 60 70

Figure 9. Width of the rivulet, w, as a function of contact angle, 8, as given by the solution:
(a) with and (b) without van der Waals forces. The symbols correspond to five experimental
cases reported in [33].

On the other hand, we find that the steady solution of a drop without considering van der
Waals forces (see e.g. Appendix B in [9]) yields very accurate values of w when compared with
experiments (Fig. 9b). It is worth noting that the LSA performed by using the base solution
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without van der Waals forces yields stability for zigzag modes and only marginal instability
(0 = 0) for varicose modes for all k£ > 0.

Thus, we perform three dimensional (3D) numerical simulations with an initial condition
as given by the solution without van der Waals forces. We start the evolution with the same
area, contact angle and width as in the experiments, which assures an initial condition close to
the experimental one. The evolution must be performed with the inclusion of van der Waals
forces, since they are necessary to account for the partial wetting condition. An example of this
evolution is shown in Fig. 10 for experiment 2.

t=0

Figure 10. Evolution of experiment 2 of
Table 2 with initial condition without van der
Waals forces, so that A, # and w are given
by the values in second line of Table 2. The
final pattern is formed by droplets separated
an average distance Dy, = 6.6.

The average distance between drops obtained for all experimental cases reported in [33] are
shown as Dy in Table 3. Clearly, regardless of the choice of exponents, the large differences
with the experimental data where only small number of drops is present, similarly to the results
shown in Table 2. It should be also noted that both \,, and D,,,,, are calculated using relatively
thick precursor film (h, = 0.01. This large value, required due to significant computational cost
involved if thinner precursor were used, may also contribute to inaccuracy of the results.

Table 3. Distance between drops, Dyym, from numerical simulations for (n,m) equal to (3,2)
and (4,3) compared with the experimental values from Table 1.

Dewp  Diim. Diin)

3.501  2.745 3.936
12.84 6.600 9.600
19.53 7.000 7.080
2.802 1.754 2.730
6.117 7.200 7.080

5. Conclusions
The linear stability analysis (LSA) of partially wetting fluid rivulets has proved to be very
useful for a deeper understanding of the breakup process. On one hand, it allows to consider

10
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simultaneously the effects of wettability and gravity. Therefore, it constitutes an advantage with
respect to previous approaches, which are limited to a circular cross section and sharp contact
lines with imposed contact angles. A more detailed comparison of our LSA results with those
theories is out of the scope of this work and will be presented elsewhere. On the other hand, we
have shown that the results of LSA apply also to large perturbations - therefore, the wavelength
of maximum growth rate determines the distance between drops after breakup.

The comparison of the predictions obtained from both LSA and 3D numerical simulations has
opened some challenging issues. The fact that: (a) for given area and contact angle the width
of the rivulet given by the profile with van der Waals forces does not agree with experimental
measurements (cf. Fig. 9a), and (b) that relatively large contact angles cannot be reached by
the cross section profile with intermolecular forces considered here (see Appendix A), indicate
intrinsic limitations of this lubrication approach. Future work is required to fully understand
the breakup of a partially wetting rivulet on horizontal substrate.

Appendix A. Rivulet width and apparent contact angle

In this Appendix we show a peculiar feature of the steady state solution for the cross section of
the rivulet. The value of the contact angle, 6, that characterizes the wettability of the substrate
is introduced in the theory by means of the prefactor K in the van der Waals potential. Let
us recall [27, 9] that the dependence of K on 6 is obtained by performing a local analysis in
the contact line region (which matches onto the precursor film of thickness h,) and assuming
that far away from that location the thickness profile asymptotes to a linear behavior with slope
0. However, the calculation of a profile that includes a maximum thickness at a finite distance
from that region does not completely satisfies this assumption. This case unavoidably has an
inflection point that connects the region near the precursor with that in the neighborhood of
the apex (bulk). Thus, the actual contact angle is basically given by the slope at the inflection
point, ;.
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0 - 5 = s & & 2 in van der Waals term, for typical areas A’s.

0 No gravity effects are considered here.

The analysis of the solutions of Eq. (5) allows to obtain the relationship between 6; and é for
given area, A (or equivalently, given pressure p) as shown in Fig. A1l. We see that, even for very
large 6, 0; cannot reach this high value, but it saturates around 50° (these 6;’s are calculated
without including gravitational effects, but these are not of relevance to the present discussion).
All the curves collapse into a single one as h, — 0, thus showing that the difference between 6;
and 6 is only due to the fact that the drop width is finite. This result is an important drawback
since these large apparent contact angles cannot actually be reached by the theory with the
commonly used van der Waals model.
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