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§Instituto de Fıśica Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
∥Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
⊥Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Tennessee, United States
#Department of Materials Sciences and Engineering, University of Tennessee, Knoxville, Tennessee, United States

ABSTRACT: We consider nanometer-sized fluid annuli (rings)
deposited on a solid substrate and ask whether these rings break
up into droplets due to the instability of Rayleigh-Plateau-type
modified by the presence of the substrate, or collapse to a
central drop due to the presence of azimuthal curvature. The
analysis is carried out by a combination of atomistic molecular
dynamics simulations and a continuum model based on a long-
wave limit of Navier−Stokes equations. We find consistent
results between the two approaches, and demonstrate character-
istic dimension regimes which dictate the assembly dynamics.

1. INTRODUCTION

Understanding competing forces in liquid phase nanostructures
far from equilibrium is critical to self- and directed-assembly
approaches of complex nanomaterials. Specifically, the com-
petition between instabilities and transport is required to
control the evolution of nanostructured liquids into self-
organized arrays of correlated nanoparticles.1−5 While much
experimental6−11 and computational12−19 work has been
performed historically to study the assembly of polymeric
nanometric thin films, recently there has been a significant
interest in studying the organization of metallic films20−24 and
lithographically patterned nanostructures.3,4,23,25−29

The competition between collapse and breakup for nanoscale
annuli, or rings (see Figure 1) has been investigated using a
continuum model (CM) based on a long-wave approximation
of Navier−Stokes equations.4,5 Large melted metal rings of 5−
10 μm in radius, 100−1000 nm in width, and ∼10 nm in
thickness have been studied within the framework of linear
stability analysis and nonlinear continuum simulations.5 The
results revealed an interesting interplay between a Rayleigh-
Plateau-like instability and thin film instability. While previous
studies provide remarkable insights into the stability of larger
rings, it is of particular interest to consider whether and how
the continuum limit calculations could extend to the atomistic
length scales. Toward this end, molecular dynamics (MD)
simulation provides powerful means to capture hydrodynamic
interactions from an atomistic modeling perspective, as already

demonstrated in the studies on the spreading dynamics of
polymer droplets,30 the turbulent mixing between two fluids,31

the dynamic wetting of solid−liquid interfaces,32 and the
dewetting behavior of metallic nanodroplets.28,33

Herein, we focus on the nonequilibrium dynamics of melted
copper thin rings deposited on a graphite substrate using MD
simulation in comparison with the continuum model. In
addition to an analytical model recently developed to
investigate the linear stability of fluid rings on supporting
homogeneous substrates,34,35 we use a modified approach that
relates atomistic interactions to a conjoining−disjoining
pressure and allows a more direct comparison between MD
and CM results. Our study reports a remarkable quantitative
agreement between atomistic and continuum models with
respect to several time-dependent key characteristics of the
rings. Moreover, both models successfully capture the contact
line instability that may result in either a collapse or breakup
depending on the ring initial geometry. The noticeable
agreement of these two distinctive approaches to this
nanoscopic system suggests the applicability of either
alternative to obtain predictions for similar systems. This may
turn out to be extremely useful when considering large systems,
characterized by a typical length scale measured in tens of

Received: July 30, 2012
Revised: September 8, 2012
Published: September 9, 2012

Article

pubs.acs.org/Langmuir

© 2012 American Chemical Society 13960 dx.doi.org/10.1021/la303093f | Langmuir 2012, 28, 13960−13967

pubs.acs.org/Langmuir


nanometers, where molecular dynamics simulations become
computationally expensive.

2. METHODS
2.1. Atomistic Modeling. The atomistic MD simulations are

carried out using the technique employed in our previous studies.28,33

In particular, we use three potentials to account for all of the atomic
interactions: the Cu−Cu interactions are described using the
embedded atom model (EAM) potential,36 while for the C−C
interactions we use an adaptive intermolecular reactive empirical bond
order (AIREBO)37 potential. The Cu−C interactions are treated with
the Lennard−Jones 12−6 energy potential
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where ε is the depth of the potential, σ is the atomic radius, and r ̂ is the
distance between the atoms. This potential is truncated and shifted to
zero at a cutoff distance of rĉ = 11 Å for computational efficiency while
ensuring energy conservation.38

As in a previous paper,33 we fit the LJ potential so as to reproduce
the equilibrium contact angle of liquid Cu on graphite39 and the ab
initio binding energy and distance of the Cu(111)/graphene
interface.40,41 The potential that more accurately reproduces these
values has ε = 0.01 eV and σ = 3.225 Å. We also varied ε while keeping
σ constant in order to assess how a change in the strength of the Cu−
C interaction affected the dewetting behavior.28 In particular, two
other values for ε were considered, 0.02 and 0.03 eV. The latter led to
a contact angle of 75.6°, which is different from the experimental
equilibrium contact angle (∼140°), and a binding energy about 7.5
times larger than the ab initio value. However, in the present work our
selection of ε = 0.03 eV allows a comparison of MD results with
continuum simulations which, in turn, invoke the long-wave
approximation and are limited to small contact angles.

As in related studies,28,33 a bulk liquid Cu and a graphitic substrate
made of 3 layers are equilibrated at a temperature T = 1500 K (only
the upper layer of the substrate is kept at constant temperature; the
other two layers are frozen). From the bulk liquid sample, we extract
rings with different width (W), inner radius (R), and thickness (H),
which are then deposited on top of the graphitic substrate.
Subsequently, the copper atoms are relaxed in the NVE ensemble,
i.e., the number of atoms, volume, and energy are kept constant, to
observe the dewetting behavior of the rings. Depending on the ring
dimensions, the number of atoms in a ring varies in the range of 103−
105, which together with the graphitic substrate gives a total number of
atoms between 105 and 106. All simulations are carried out with the
software LAMMPS.42

2.2. Continuum Modeling (CM). For simplicity, we consider a
long-wave approach which reduces the formulation to a nonlinear
fourth order partial differential equation of diffusion type. We include
slip effects at the metal/substrate interface, since they are clearly
present in the MD simulations, as discussed later in the text. The
comparison itself with MD results is carried out by two related but
slightly different approaches. The first approach is based on the linear
stability analysis (LSA) of a (static) ring solution. The second
approach is based on fully nonlinear time dependent simulations
implementing a model which, in addition to slip, includes disjoining
pressure effects. This approach allows us to consider nonlinear
dynamics without including additional parameters, since the quantities
entering the disjoining pressure model are directly related to the ones
used in the MD simulations, as described briefly below.

2.2.1. Slip Model and Linear Stability Analysis. Long-wave theory
leads to the following equation43,44 for the film thickness h(x,y,t)
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where t is the time, (x,y) are the in-plane coordinates, μ is the fluid
viscosity, and γ is the liquid−solid surface tension. Slip is included via a
Navier boundary condition at the fluid−solid interface z = 0, i.e.:

Figure 1. The thin film ring (a), characterized by an (initial) internal radius (R) and a width (W), retracts to form an annular rivulet, or ring, (b) in
the liquid phase. The resulting ring has mean (time-dependent) in-plane radius rm, contact width (w) with the underlying substrate where w = 2Rriv
sin (θ); Rriv is the radius of the rivulet and θ is the wetting angle of the rivulet with respect to the substrate. Ring contraction (as shown schematically
in (c) and (d)) is observed for the case of a relatively large value of the aspect ratio ψ = w/rm where the rivulet contraction is driven by a large value
of in-plane curvature (κ′ = 1/rm) coupled with an increasing rivulet width, w. The superimposed (yellow) circumference indicates the initial mean
radius rm(t = 0) of the thin film ring while the dark ring superimposed on (b−d) indicates the original contact area of the thin film annulus with the
substrate. These features are added to the schematic in order to emphasize the radial rivulet contraction over time (b → d).
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where vx,y are the x and y components of the fluid velocity, the
coordinate z is normal to the plane, and l is a prescribed slip length.
The linear stability analysis (LSA) of a static ring35 is performed by

studying the evolution of the perturbed static solution, h0. In polar
coordinates, we have the following:

φ φ ε φ= +h r t h r h r t( , , ) ( , ) ( , , )0 1 (4)

where ε is the (small) amplitude of the perturbation specified as a
normal mode:

φ φ ω= ̂h r t h r n n t( , , ) ( )cos( )exp( ( ) )1 1 (5)

with ω(n) being the growth rate of the n-th mode. Plugging eq 4 into
the governing eq 2 and linearizing in terms of h1 lead to an eigenvalue
problem which is solved by a pseudospectral method.35 The resulting
eigenvalues, ω(n), are determined as a function of the aspect ratio of
the ring, ψ = w/rm, where w are rm are its width and the mean radius,
both time dependent.
2.2.2. Disjoining Pressure Model: Numerical Simulations. We

proceed to develop a nonlinear CM to capture the time evolution of
the rings. Here, the disjoining pressure is included to model the long-
range intermolecular interaction between the liquid and the substrate.
Since this interaction is considered in the MD simulations through the
LJ 12−6 potential, we introduce this effect by integrating this
interaction over an infinitely extended substrate and on a liquid
column of height h and unit cross sectional area.45,46

According to the atomistic model used in eq 1, the resultant
interaction energy of a single particle in the liquid with all of the
particles in the substrate can be written as follows:

∫=V Un dV
V

s
S (6)

where VS is the substrate volume, and ns is the number of particles per
unit volume in the substrate. If we consider all of the liquid particles
within a column of height h and unit area, then we obtain the energy
per unit area in the van der Waals form as follows:45
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where nl is the number of liquid particles per unit volume, and cσ is the
distance of closest approach of molecules of the liquid and the solid,
with c a constant of order of unity. By plugging eq 1 into eq 7, and
performing the integration, we have
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such that VvdW = 0 at h = cσ, and VvdW → V0 for h → ∞. Taking the
first derivative of this energy potential, we obtain the disjoining
pressure as follows:
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is the thickness at which Π(h*) = 0, and
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The static contact angle, θ, can now be obtained from the Young−
Laplace condition:

θ
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where S = −VvdW(h*) is the spreading parameter. Thus, for given
material parameters, eq 13 allows to obtain the corresponding value of
c.

To directly compare CM simulations with the MD results, we use
the following parameters: copper density ρl = 8.0 g/cm3, carbon
density ρs = 3.23 g/cm3, σ = 3.225 Å, ε = 0.03 eV, and γ = 1.304 N/m.
The particle densities are obtained as nl = ρlNa/Ml and ns = ρsNa/Ms,
where Na is the Avogadro number, and Ml = 63.536 g/mol and Ms =
12.01 g/mol are the copper and carbon atomic weights, respectively.
For this set of parameters, and considering that MD simulations
yield28 θ = 75.6°, we have c = 0.55.

We will report here numerical results obtained by solving eq 2 with
the addition of the disjoining pressure term:

∇· + ∇Πh h l[ ( 3 ) ]2 (14)

where Π is given by eq 10. We employ a procedure based on the
alternating direction implicit (ADI) method which is described in
detail elsewhere.47 We note that there is only one free parameter left to
proceed to a comparison with MD results, that is, the slip length, l.
The remaining parameter is copper viscosity, which we take as μ =
4.38 mPa s.

3. RESULTS
The simulated system is depicted in Figure 1 in which a fluid
thin ring is deposited on a solid graphite substrate. We choose
an initial rectangular cross-section geometry to be consistent
with our previous work, which mimics experimental geometries
of lithographically patterned solid nanostructures that are
irradiated with a nanosecond pulsed laser which rapidly melts
the far-from-equilibrium structures and allows them to evolve.27

The nanometer-sized rings have smaller (initial) radius and
width than, yet similar thickness to, those in experiment: inner
radius (R) in the range of 160−320 Å, width (W) 10−80 Å, and
thickness (H) 10−50 Å. The number of atoms simulated varies
in the range of 105−106.

3.1. Connection between CM and MD Simulations.
One of the key factors that governs the dynamics of fluid thin
films is the boundary condition at the solid−fluid interface.48−50
Continuum simulations can be performed within a no-slip
regime, as often done in previous works.2−5 Similar
simulations,28 however, suggested that the slip length could
be as large as some tens of Angstroms. As will be shown later by
MD velocity profiles, slip is indeed present in this system. It is
nevertheless difficult to extract accurately the slip length, l, from
the MD simulations in the presence of thermal noise and fast
dynamics. We instead carry out CM simulations using the
disjoining pressure and slip model to determine the slip length
with which the rings entirely collapse after the same duration as
in MD simulations. For this purpose, we assume that the rings
have azimuthal symmetry and their thickness is dependent only
upon the radial distance, i.e., h = h(r). An example of the profile
evolution in this type of simulations is shown in Figure 2. The
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cross section of the initial condition used for all reported
simulation is a rectangle.

Figure 3(a) shows that this collapse time in the continuum
simulations indeed strongly depends on l; the greater the slip

length, the faster the ring collapses. For the particular choice of
the initial conditions considered, we find that a good agreement
of collapse time is obtained for l = 70 Å. To confirm that the
MD and continuum simulations lead to consistent predictions
for collapse times as the initial conditions are varied, we fix this
value of l and compare directly the collapse times for different
values of R and W (see Figure 3(b)). Remarkably, the time
evolution of the mean radius rm(t) predicted by the continuum
model match with that in MD simulations for both rings, as
shown in Figure 3(c,d). The consistency between atomistic and
continuum models is maintained until the ring either breaks up
for W = 10 Å, or collapses for W = 35 Å. It is therefore evident
that both approaches can predict qualitatively identical
evolutions of the rings as long as the azimuthal symmetry of
the rings is present, i.e., breakup has not yet occurred.
3.2. Stability Analysis. Previous studies have shown that

the dynamics of thin films on a solid substrate is strongly

influenced by Raleigh-Plateau instability.2,4,5,34,50 Given a fixed
ring geometry and using a slip model (see Section 2.2.1) we can
predict the perturbation mode with the fastest growing rate,
which presumably determines the number of droplets being
formed.2,35 The dispersion curve in Figure 4 obtained from the
LSA analysis shows the dependence of the fastest growing
perturbation mode, nmax, on the (time-dependent) aspect ratio
of the ring, ψ.

To extract the fastest growing perturbation mode from the
MD simulations, we perform Fourier transforms of the ring
width along its circumference during the collapse process or
before the first breakup event occurs. We use this procedure
because once the rings break up, the geometry of individual
segments is completely different from the slightly perturbed
ring used to analyze the instability with the slip model, making
the comparison less meaningful. We choose the ring width
instead of thickness as the later quantity is closer to the atomic
length scale and hence is more sensitive to thermal noise. From
the Fourier spectrum of the ring width at a given time, we
identify the location of the highest peak, which indicates the
most dominant spatial frequency, fmax, of the fluctuating width.
The corresponding mode number, nmax = 2πfmax, is then
attributed to the fastest growing perturbation mode to be
compared against the LSA.
We carry out MD simulations of rings with the same initial

thickness (H = 10 Å) but with different initial inner radii (R =
160 Å, 200 Å, and 320 Å) and widths (W = 10 Å, 15 Å, and 20
Å). During collapse, the mean radius, rm, decreases while the
average width, w, increases due to mass conservation.
Consequently, ψ increases over time, which according to the
LSA corresponds to a decrease in nmax. As shown in Figure 4,
this expected feature is observed in MD simulations for all
studied cases, particularly for the rings that entirely collapse, for
example, with R = 160 Å.
We have also performed MD simulations of straight lines

with the length of L = 2010 Å, which is equal to the inner
perimeter of the rings with R = 320 Å, while varying the width

Figure 2. Time evolution of the thickness profile in an azimuthally
symmetric CM simulation, showing the collapse of the ring into a
single central drop. Initially, the ring dimensions are R = 200 Å, W =
35 Å, H = 10 Å, and the cross section is a rectangle, as described in the
text. The slip length is taken as l = 70 Å. The arrow points the
direction of increasing time.

Figure 3. (a) Collapse times, tc, obtained using CM simulations versus
slip length, illustrating the optimum value for l = 70 Å. (b) Collapse
times for R = 160 Å and 200 Å with different ring widths obtained by
MD versus continuum simulations with l = 70 Å. (c) Comparison of
the mean radius rm(t) for a ring with R = 200 Å,W = 10 Å, and H = 10
Å up to the breakup time of about 50 ps in the MD simulations. (d)
Comparison of both rm(t) and width w(t) with R = 200 Å, W = 35 Å,
and H = 10 Å until collapse onto a single central drop.

Figure 4. Mode number of the perturbation of maximum growth rate
(nmax) as a function of the ring aspect ratio (ψ) from MD simulations
(symbols). Dimensions are in Angstroms. The simulated lines with the
effective aspect ratio ψe = w/Re where the effective radius Re is defined
as Re = L/2π = 320 Å are also included. The error bars at the data
points of the lines are obtained by averaging nmax within each window
of [ψe; ψe + Δψ] where Δψ = 0.01. For a given ring (and line)
geometry, the data points correspond to different times during the
course of the simulation. The solid line is obtained using the LSA of
the continuum model.
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W = 20−60 Å and thickness H = 10−30 Å, to investigate how
the initial geometry influences the fastest growing modes.
Periodic boundary conditions are applied at the ends of the
lines to eliminate edge contraction effects at the early stage.
Fourier analysis of the line width profile is performed in a
similar manner to the ring width to investigate the evolution of
the perturbations. Our analysis reveals that the fastest growing
perturbation modes of the lines are consistent with that of the
rings and with the dispersion curve predicted by the LSA for
small aspect ratio, ψ.
3.3. Assembly Dynamics. Having shown that the initial

ring dimensions play an important role in determining the
fastest growth mode, we proceed to correlate the initial
geometry to the resultant self-organized droplet array. We have
also demonstrated in Section 3.1 that MD simulations can
produce consistent results with the CM in the early stage at a
certain slip length. Now we proceed to examine whether the
current atomistic model could capture the dynamics of the
rings in the late stage, i.e., after the first breakup event.
Figure 5(a) shows a representative time evolution of rings of

different widths, but with the same initial inner radius R = 200
Å, and thickness H = 10 Å. The first column illustrates the
initial geometry and the middle and far right column show the
ring at approximately 100 and 500 ps, respectively. We have
also studied lines with equivalent length (2πR), thickness and
width, so as to elucidate, by comparisons with the rings, the
forces operative in the competition between the collapse and
breakup process (Figure 5(b)).
The assembly dynamics have different stages involved in the

evolution of the initial rectangular cross-section rings to the
subsequent nanoparticle array. Initially, the rectangular cross-
section quickly minimizes its surface energy (∼10 ps) by
transforming into circular cross-section whose contact width
(w) and contact angle (θ) are governed by Young−Laplace

condition (see Figure 1). The subsequent breakup time
depends on the width of the ring/rivulet that forms on the
substrate. For the narrowest ring (w = 10 Å), the equilibrated
initial radius is the smallest one (w = 9.6 Å), and thus it has the
shortest droplet formation time (∼40 ps), which is
approximately the time for an equivalent line to break up
(∼40 ps). For theW = 30 Å ring (Figure 5(a)), the equilibrated
initial rivulet width is larger (w = 18.6 Å), and the breakup time
is longer, ∼120 ps (the mean ring radius, rm, at breakup is 142
Å compared with 215 Å at t = 0, due to the contraction that
occurs prior to breakup). The equivalent line for this width has
a breakup time of ∼130 ps. Thus, the wider ring has a longer
breakup time and therefore it contracts further before breakup.
Interestingly, the ring structures have equivalent or earlier

breakup times than the corresponding straight lines, which is
counterintuitive since the radial collapse tends to increase the
ring width. We hypothesize that in advanced stages, the collapse
and breakup modes have grown enough to allow for nonlinear
interaction which transfers energy from the long wave mode
(collapse) to the short wave one (breakup). Unlike in the
straight rivulet, this effect accelerates the breakup process.
Finally, if one compares the straight line and ring for W = 35 Å,
the line breaks up at ∼210 ps and forms 5 droplets (Figure
5(b)); however this time scale is prohibitively long as the
azimuthal curvature driven collapse dominates and a single
central droplet is formed for this ring (∼210 ps).
Before we leave the discussion of the collapse versus breakup,

it is relevant to mention that the final number of drops in the
MD simulations is ultimately smaller than the number of
perturbation modes on the ring or line prior to initial pinch-off
of the fastest growing mode. Similar coarsening effect observed
in the final droplet size as described previously5 is due to
circumferential transport after breakup. This is apparent by the
intermediate and final snapshots of theW = 30 Å ring and most

Figure 5. Time evolution of (a) rings of R = 200 Å and (b) lines of L = 1200 Å with H = 10 Å and different initial widths. Initial configurations are
shown in the left columns.
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of the lines. For instance, if one estimates the number of
perturbation minima in the W = 30 Å ring at 130 ps (Figure
5(a)), one expects approximately 7 droplets to form. However,
the circumferential transport after breakup competes with the
growing instability and in this case results in only 2 droplets.
The breakup-collapse transition also occurs as we vary the

initial thickness of the rings. We observe that rings with R = 160
Å always collapse as their thickness is varied in the range of H =
10−30 Å. On the other hand, for larger inner radius, R = 320 Å,
the ring with H = 30 Å collapses, while for H = 10 Å and 20 Å
they break up into 6 and 2 droplets, respectively. For fixed
values of R and W, the thicker the rings, the more likely they
collapse. Thus, the initial thickness is another useful parameter
for controlling the number and size of stable droplets formed
by the ring instability.
To further characterize the difference between the rings that

collapse and those that break up into droplets, we measure the
variation in the ring mean radius (rm) and minimum width
(wmin) over time, where wmin = 0 reveals the breakup time.
Figure 6 demonstrates the analysis for R = 200 Å, H = 10 Å,
with W = 10 Å and 35 Å; the former breaks up while the latter
collapses (see Figure 5(a)). At t = 40 ps, as wmin reaches zero,
the W = 10 Å ring broke. For W = 35 Å, the radius continually
contracts with increasing velocity while the width initially
slightly decreases due to a reaccommodation process, and later
on remains approximately constant up to 125 ps. Eventually, at
this time, the radial contraction rate is such that it dominates
the breakup growth rate and, consequently, due to the fact that
the volume is conserved, the contact width increases as rm
decreases, thus leading to collapse at 210 ps. It is therefore
demonstrated that the capillary pressure collapse suppresses the
breakup for the wider ring, leading to a complete collapse;

whereas, the narrower ring breaks up as the perturbation
growth outpaces the radial contraction velocity.
The average radial velocity profiles of the atoms across the

cross-section for these two rings at 40 ps are shown in Figure
6(c,d). These figures indicate that both rings are accelerating
toward the center, and that the narrower ring has slightly higher
velocity. For the narrower ring, the atom velocities are more
randomly distributed across the ring cross section, which we
attribute to the evolving Rayleigh-Plateau instability; namely at
the localized perturbation peaks and troughs, material transport
away from the trough and toward the peaks5 contribute to the
more randomized (albeit greater) velocities. There could also
be contributions from the smaller sampling set for the smaller
rings as well as interfacial effects at the Cu−C boundary.
Meanwhile, for the wider ring, the radial velocities appear more
correlated and align toward the center of the ring until the ring
entirely collapses. We note that from the nonzero velocity of
the atoms in contact with the substrate in both cases, it is
reasonable to assume a considerable slip length in these
systems.28

4. CONCLUSIONS

Atomistic (MD) and continuum models (CM) are shown to
yield remarkably consistent predictions on the breakup and
collapse of nanometer-sized liquid copper rings on graphite.
The atomistic simulations use the Lennard−Jones 12−6
potential to describe the liquid copper−graphite interactions,
while in the continuum modeling we directly convert this
potential to a disjoining pressure. Furthermore, once we
estimate an appropriate slip-length for the continuum
simulations, the quantitative dynamics of the two methods
are also in very good agreement for the collapse and the initial
stages of the instability. Strong nonlinear effects present in MD

Figure 6. Time evolution of (a) the mean radius (rm) and (b) the minimum ring width (wmin) for R = 200 Å, W = 10 Å, H = 10 Å (breakup), and R
= 200 Å,W = 35 Å, H = 10 Å (collapse) (see Figure 5). Atom velocity profile and density of (c) R = 200 Å,W = 10 Å, H = 10 Å at 4 0 ps, and (d) R
= 200 Å, W = 35 Å, H = 10 Å (bottom) at 40 ps. The color map represents the atom density. The radial velocities point toward the ring center (not
shown). In (c,d), w is the average width of the ring along its circumference.
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simulations are related to circumferential transport, but the
general trend for the number of drops in the early breakup,
specially for thin rings, as well as characteristics of collapse are
consistent with continuum models predictions. Importantly,
this agreement between the two approaches inspires the
possibility for multiple length scale simulations of nano-to-
mesoscale self-assembly.
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