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We present computational and experimental results involving instability development in the
gravity-driven flow of thin fluid films on heterogeneous surfaces, with particular emphasis on the
dynamics of the fluid fronts. We show that heterogeneity of the solid surface can have a significant
effect on the flow dynamics. Since the effect of heterogeneity often competes with the basic
instability mechanism that would occur even on macroscopically homogeneous surfaces, the result
is an elaborate interplay of various instability mechanisms. The computational results presented here
outline both the flow on surfaces perturbed by regular patterns, and on surfaces perturbed by
irregular, noiselike perturbations. We relate these computational results to the pattern formation
process in our experiments of gravity-driven flow down an incline. Good qualitative agreement is
found between the simulations and the experiments. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1772732]

The flow of thin films is relevant in a number of different
fields, such as engineering, biology, and chemistry. These
flows can be driven by gravity, or various other forces of
mechanical, thermal, or electromagnetic origins. In many
situations, the fluid fronts become unstable, leading to the
formation of fingerlike or triangular sawtooth patterns, and
resulting in uneven or partial surface coverage. Very often,
these instabilities are undesirable in technological applica-
tions since they may lead to the formation of dry regions or
other defects. In other applications, however, partial wetting
is actually preferred, since surfaces that are selectively wet-
ted on microscale can be used as the base for various micro-
electromechanical system(MEMS) devices.

In this work, we concentrate on perhaps the simplest of
thin-film flows, namely gravity-driven flow down an inclined
plane. Experiments are usually performed by releasing fluid
in some controllable fashion at the top of an incline. After
some time, the initially straight contact line, where liquid,
gas, and solid phases meet, becomes unstable with respect to
transverse perturbations. It has been conjectured that this in-
stability is related to the formation of a capillary ridge in the
fluid profile, just behind the advancing contact line. Silvi and
Dussan,1 expanding on the pioneer work by Huppert,2 show
that the fluid wetting properties play an important role in the
instability development and the degree of surface coverage.
Recently, the experiments by Johnson and co-workers,3,4 as
well as computations by Diez and Kondic5,6 show that an-
other important parameter is the inclination angle. The de-
crease of the inclination angle not only reduces the patterns’
growth rate, but it also modifies their shape: while larger
angles lead to fingers characterized by almost straight sides,

smaller angles lead to the formation of triangular sawtooth
patterns.

Theoretically, the fluid film’s dynamics are typically ap-
proached by using the lubrication approximation. Within this
framework, an initial insight into the instability results from
the linear stability analysis(LSA). Troian et al.7 perform
LSA for the flow down a vertical plane and show that there is
a band of unstable modes, with short wavelengths being sta-
bilized by surface tension. Spaid and Homsy8 and Bertozzi
and Brenner9 extend this analysis to the general case of flow
down an inclined plane, and show that the normal compo-
nent of gravity(hydrostatic term) shifts the mode of maxi-
mum growth to longer wavelengths, and also tends to stabi-
lize the flow by decreasing the instability’s growth rate. This
stabilizing effect appears to be so strong that it is predicted to
completely remove the instability for very small inclination
angles, in contradiction to experiments. In Ref. 9, a transient
growth approach is used to explain this discrepancy, while
Ye and Chang10 use the spectral theory to reach the same
goal. Both works analyze the propagation and amplification
of noise from the substrate to the fluid front, although they
employ different methods. Grigoriev11 analyzes the transient
growth and related effects in the flow of thermally driven
films. A recent paper by Davis and Troian12 claims that the
influence of a transient growth mechanism is weaker than
previously thought for gravity-driven thin films. Although
our paper does not directly address the issue of transient
growth, we expect that some results presented here will be of
interest to that problem as well. We note that all computa-
tional works necessarily use one of two regularizing models
to analyze the contact line dynamics: relaxing a no-slip
boundary condition, and/or assuming a numerical precursor
film.

The flow on heterogeneous surfaces has also been re-
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cently considered by a number of authors. Kalliadasiset
al.,13 Bielarz and Kalliadasis,14 and Decré and Baret15 dis-
cuss two-dimensional(2D) and three-dimensional(3D) flow,
respectively, over trenches that are of a comparable length
scale to the film height, similarly to the earlier work by Still-
wagon and Larson.16 A concept of nonuniform slip coeffi-
cient has been applied to thin-film flows by Hoffmanet al.17

and Wang,18 building upon previous works by Hocking19 and
Miksis and Davis.20 Kondic and Diez21 use a varied precur-
sor film thickness to explore the instability development in
the flow over controlled surface perturbations(“channels” of
varying flow resistance). Modifications of the contact angle
in the spreading of drops on chemically heterogeneous sub-
strates are analyzed experimentally by Drelichet al.,22 and
computationally by Schwartz,23 Schwartz and Elley,24 and
Brandonet al.25 The effects of random distributions of per-
turbations at the substrate on the contact angle hysteresis has
been discussed using the probability theory by Öpik.26 A
series of papers by Troian and co-workers27–30 considers se-
lective, controlled wetting of a chemically heterogeneous
substrate. Garnieret al.31 propose the use of thermal feed-
back control to suppress the contact line instability. Dewet-
ting of heterogeneous substrates has been also analyzed re-
cently, e.g., by Bruschet al.32 and Kargupta and Sharma.33

We will see later that some results presented in our work
have common features to the results presented in Refs. 32
and 33, although the systems considered are rather different.

In this work, we concentrate on the influence of surface
heterogeneity on the instability development. The heteroge-
neity, which in physical systems may be either due to noise,
or due to imposed patterning, is modeled by perturbing the
precursor film thickness. This simplified approach to the ar-
guably quite complicated dynamics that occurs on a micro-
scale is then used to discuss macroscale features of the in-
stability development. This study is partially motivated by an
earlier work by Kondic and Bertozzi34 that has shown that
substrate perturbations can play a role in the development of
the instability. However, that work reached this conclusion
indirectly, by recording the influence that a substrate pertur-
bation has on the capillary ridge’s height, which is itself
related to the instability development. Here, we approach the
instability directly, by performing fully nonlinear simulations
in a 3D system under lubrication approximation. We note
that in this work we assume complete wetting, and do not
discuss in any detail issues related to nonzero contact angle.
An interested reader can find significant material regarding
partial wetting in recent works that discuss the disjoining-
pressure model(e.g., Bertozzi et al.,35 Glasner and
Witelski36) or the related diffuse interface model(e.g., Pis-
men and Pomeau,37 Thiele et al.38).

This paper is organized as follows. In Secs. I and II we
formulate the problem and present computational and experi-
mental results that outline the main features of the contact
line instability in the flow on(macroscopically) homoge-
neous surfaces. In Sec. III we show in our simulations how a
localized surface inhomogeneity, introduced by a perturba-
tion of the precursor film thickness, leads to the formation of
regular patterns. Section IV concentrates on the dynamics in
systems with multiple perturbations, either discrete or con-

tinuous, including the modeling of random surface perturba-
tions. The influence of boundary conditions, as well as para-
metric dependence, are discussed in Sec. V. In Sec. VI we
use the understanding developed in the previous sections to
approach a more involved problem of the interaction be-
tween multiple irregular(“noise”) and regular(imposed pat-
terns) surface perturbations both in simulations and in ex-
periments. The experiments involve the flow of completely
wetting viscous Newtonian fluid down a prewetted inclined
plane in both(macroscopically) homogeneous and on pat-
terned surfaces, prepared by introducing controlled, macro-
scopic regions of varied wetting properties. In both groups of
experiments, the uncontrolled variations of the thickness of
the prewetted film could be thought of as a source of the
noise that we introduce in our numerical simulations. Al-
though the physical mechanism by which the imposed per-
turbations modify the flow is different, we show that at least
on a macroscopic level, these additional perturbations can
also be successfully modeled by precursor film perturbations.

I. FORMULATION OF THE PROBLEM

The dynamics of thin liquid films is typically analyzed
within the framework of the lubrication approximation. The
assumptions of this approach, as well as the details of our
computational methods are given elsewhere, see Diez and
Kondic39 and the references therein. For completeness, here
we give a basic outline, concentrating mostly on the aspects
relevant to the main subject of this work.

Within the lubrication approximation, one uses the fact
that the film thickness is much smaller than any in-plane
dimension. After depth averaging the fluid velocity over this
short direction, and using a no-slip boundary condition at the
solid–liquid interface, the continuity equation yields the fol-
lowing equation for the heighth of the (incompressible) liq-
uid film:

]h

]t
= −

1

3m
¹ · fgh3 ¹ ¹2h − rgh3 ¹ h cosa

+ rgh3 sinaig, s1d

where¹=s]x,]yd, x points down the incline, andy points in
the transverse direction. Here,m , r , g, g, and a are the
viscosity, density, gravity, surface tension, and inclination
angle, respectively. The fourth-order term results from sur-
face tension, and the last two terms are due to gravity.

To balance viscous and capillary forces in Eq.(1), we
scaleh by the fluid thickness far behind the contact line,H,
and define the scaled in-plane coordinates and time by
sx̄, ȳ, t̄d=sx/X,y/X,t /Td, where

X = S a2H

sina
D1/3

, T =
3m

g

a2X

H2 sina
, s2d

and a=Îg /rg is the capillary length. The velocity scale is
chosen naturally asU=X/T, and the capillary number is de-
fined asCa=mU /g. Using this nondimensionalization, Eq.

(1) for h̄=h/H is given by(dropping the bars)
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]h

]t
+ ¹ · fh3 ¹ ¹2hg − Dsad ¹ · fh3 ¹ hg +

]h3

]x
= 0, s3d

where the single dimensionless parameterDsad
=s3Cad1/3 cotsad measures the size of the normal component
of gravity.

All theoretical and computational methods require some
regularizing mechanism. There are two commonly used ap-
proaches. The first one is to assume a small foot of fluid in
front of the apparent contact line, the so-called precursor
film, see Refs. 7–9. This model is also very well suited for
the flows on prewetted surfaces(as considered in this work),
where the numerical precursor film plays the role of the
prewetting film in experiments. The second approach is to
relax the no-slip boundary condition at the fluid–solid inter-
face (see, e.g., Greenspan,40 Dussan,41 or Hocking and
Rivers42). Diez et al.43 have recently performed an extensive
analysis of the computational performance of these regular-
izing mechanisms applied to the spreading drop problem. In
that paper, it is shown that the results are rather insensitive to
the choice of the model, consistent with, e.g., Ref. 8. How-
ever, the computational performance of the precursor film
model is shown to be much better than that of various slip
models.43 This is an additional motivation for the use of a
precursor film as a regularizing method. We note that the
particular value of the precursor film thickness,b (scaled by
H), influences the instability and the details of the evolving
patterns. This point has recently been analyzed in some detail
both experimentally10 and computationally.6 In Ref. 6 we
show that the valueb=0.01 is sufficiently small to correctly
reproduce the main features of experimental results; there-
fore, this is the value that we use throughout this work.

The computational domain is chosen as a rectangle de-
fined by 0øxøLx and 0øyøLy, which is divided intoNx

3Ny cells centered at node pointssxi ,yjd with i =1, . . . ,Nx

and j =1, . . . ,Ny. Equation(3) is then discretized in space by
using a central finite difference scheme. The boundary con-
ditions are chosen to model constant fluid flux far behind the
fluid front. That is, we assume that there is an infinite stream
of fluid far behind the front, that keeps the fluid height con-
stant there. Within our nondimensionalization scheme, this
leads tohs0,y,td=1. We require that far ahead of the moving
front, the fluid height is equal to the precursor thickness,
hsLx,y,td=b, and also that the streamwise gradients of the
fluid height vanish at the boundaries, i.e.,hxs0,y,td
=hxsLx,y,td=0. At the boundariesy=0 andy=Ly, it is con-
venient to use hysx,0 ,td=hysx,Ly,td=0, hyyysx,0 ,td
=hyyysx,Ly,td=0. This choice enforces that there is no flow
across these boundaries. Since the tangential component of
the fluid flux is let free(there is no adhesion of the fluid to
the walls), these boundaries could be thought of as “slipping
walls.”

Time discretization is performed by using implicit
Crank–Nicolson scheme. The advantages of an implicit
scheme for this problem are obvious: the stability require-
ment for an explicit scheme is thatDt,C minfDx,Dyg4,
whereDt is a time step, andC is a positive constant. Thus, an
explicit scheme requires very short time steps for a reason-
able spatial accuracy. In our simulations, time steps are cho-

sen dynamically, based on prescribed accuracy, and the ob-
vious requirement that the computed solution is strictly
positive.39

The nonlinear system of algebraic equations that results
after time discretization is linearized by using the Newton–
Kantorovich method; the linearized problems are then solved
by employing the iterative biconjugate gradient method. As a
typical grid spacing, we useDx=0.2, Dy=0.25, leading to
about 200–400 grid points in each direction. More details
regarding efficiency, computational cost, and other issues
such as convergence and accuracy are given in Ref. 39.

II. MAIN FEATURES OF THE FLOW ON A
HOMOGENEOUS SURFACE

Linear stability analysis7–9 of the governing Eq.(3) has
shown that the flow is unstable with respect to fluid front
perturbations in the transverse direction. LSA is performed
by expanding to the first order all nonlinear terms about the
base state, obtained as they-independent solution of Eq.(3)
in a reference frame moving with velocityu=1+b+b.27 It is
characterized by the presence of a capillary ridge, which ap-
pears to be closely related to the onset of the instability.

Figure 1 illustrates the results of LSA, obtained by solv-
ing an eigenvalue problem of the form

Lgsjd = sgsjd,

whereL is a linear operator whose coefficients depend on the
base solutionh0sjd, andj=x−c0t. We solve this problem by
following the method outlined in Ref. 10, and obtain the
growth rates as the maximum value of the discretized spec-
trum. These calculations are performed with the routineRGG

(EISPACK package) for q’s in the range 0øqø1.2.
Figure 1 shows that the long wavelengths are unstable,

while the short ones are stabilized by surface tension, repre-
sented by the fourth-order term in Eq.(3). Consequently,
there is a band of unstable modes bounded by the wave num-
bersq=0 andqc=2p /lc, wherelc<8 for D=0. The wave-
length of maximum growth is approximatelylmax<12–14,
and it grows as the inclination angle is decreased, or, equiva-
lently, as the parameterD in Eq. (3) is increased. In the same
time, the growth rate of the instability decreases asD is

FIG. 1. Growth rate vs wave number for few different values ofD.
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increased. Although LSA is valid for short times only, one
expects that the distance between the resulting patterns in
actual experiments is close tolmax, and that the initial
growth is approximately exponential with the growth rate
close tosmax.

For future reference, we note here the influence of some
of the parameters on the LSA results. An increase/decrease of
the precursor film thickness leads to a decrease/increase of
the growth rate of the emerging patterns. This observation
was used in a recent work21 which showed that perturbing
precursor thickness in a controllable manner could induce
instability and the occurrence of regular patterns. The influ-
ence of(noise-induced) precursor thickness perturbations on
the flow stability for very small inclination angles was also
analyzed in some detail in a number of recent works.9,10,12,21

Figure 2 shows an example of our recent computational
results for the flow down a homogeneous verticalsD=0d
substrate.5,6 These results confirm the main predictions of
LSA. Here, the initial condition is formulated by perturbing
the base state[an example of a base state in 2D can be seen
in Fig. 6(a)] by a superposition ofN=100 modes character-
ized by wavelengthsl0,i =2Ly/ i, i =1, . . . ,100. Each mode is
assigned a random amplitude in the rangef−0.1,0.1g. This
initial profile is shown in Fig. 2(a). In Fig. 2(b) we see the
formation of long finger-like patterns that result for later

times. These fingers are characterized by nonuniform
lengths, resulting from the irregular initial conditions. This
nonuniformity is also related to the fact that the distance
between the fingers varies, although it is on average close to
lmax from LSA. Additional simulations that use different dis-
tributions of initial wavelengths and different domain size
show that this average value is close to 12. More details
regarding the influence of the inclination angle(controlled
by the parameterD) on the pattern formation is available
elsewhere.5,6 Here, we provide a brief illustration by present-
ing the results of physical experiments.

The experiments are performed on a glass surface of
dimensions of 100 by 50 cm, using fixed amount(typically,
25 g) of wetting fluid [polydimethylsiloxane (PDMS),
AlfaAesar Ward Hill, MA], also known as silicon oil(vis-
cosity: 50 cSt; surface tension: 21 dyn/cm, density
0.96 g/cm3). The fluid is released close to the top of the
plane by using a simple mechanical “dam” consisting of a
piece of rubber fixed to a metal frame. The surface is pre-
pared by cleaning it with soap and water. No efforts are made
to remove PDMS from the previous runs from the glass sur-
face, which can therefore be thought of as prewetted by the
fluid. This applies to all of our experiments, including the
ones performed on patterned surfaces shown later in Figs.
16–18. More details about experimental techniques, as well

FIG. 2. Contour plot of the fluid thickness. The initial profile is perturbed by a superposition of 100 modes characterized by random amplitudes. HereD
=0 andb=0.01. Note that thez scale is considerably stretched for presentation purposessLy=144d.
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as a pedagogical explanation of the details of the instability
development, are available in the paper by Kondic.44

Figure 3 shows the developed patterns for three inclina-
tion angles: e.g.,(a) a=90°, (b) a=30°, (c) anda=5°. These
results clearly show how the inclination angle influences the
instability development: for smallera (larger D), the insta-
bility develops slower, the wavelengths increase, and the
evolving pattern shape changes smoothly from finger-like to
triangular. These main features are in qualitative agreement
with the computational results presented in Fig. 2 forD=0,
and in Refs. 5 and 6 forD.0. For a more precise agreement,
the simulations need to be adjusted for the fact that the ex-
periments are performed using a finite amount of fluid. We
analyze these issues elsewhere, and concentrate here on the
constant flux flow on inhomogeneous surfaces.

Before proceeding, we note that LSA, as well as the
computations such as those yielding the results presented in
Fig. 2, assume the presence of small perturbations of the
contact line in the transverse direction. These perturbations
are necessarily present in any physical experiment. However,
for simplicity of presentation, and since in this work we are
predominantly interested in the inhomogeneities of surface
itself, we mostly ignore these perturbations, and refer to
them only briefly in connection to the experimental results
presented in Sec. VI. Most of the computational results are
obtained assumingD=0 (i.e., flow down a vertical plane),
with the influence of nonzeroD briefly outlined where ap-
propriate so as to relate computations to experiments.

III. BASIC INSTABILITY MECHANISM OF THE FLOW
ON INHOMOGENEOUS SURFACES

We model substrate inhomogeneity by perturbing the
precursor film thickness. While it might appear that imposing
perturbations of this kind is rather restrictive, since a precur-
sor film is not always present in physical experiments or
technological applications, this approach is actually quite
general. Namely, a number of authors, including de
Gennes,45 have shown that the main flow features are not
influenced significantly by the choice of the regularizing
method at the contact line. One could allow for the presence
of a precursor film, include the possibility of fluid slip, or
assume that van der Waals forces at the liquid–solid interface
are important; for the macroscopic flow properties(in par-
ticular, instability development), the main factor is the actual
length scale that is introduced at the front. Since this length
scale determines the degree of energy dissipation, one ex-
pects that its spatial variation can have a significant influence
on the macroscopic flow properties, as shown in the case of
the spatially dependent slip coefficient.17,19

A recent work34 analyzed the influence that a localized
perturbation of the precursor thickness had on the flow in 2D
geometry(the y direction is ignored). Figure 4 shows an
example of these results: as the fluid’s main body flows over
a perturbation(imposed atx=20 in Fig. 4), the capillary
ridge’s height is increased, implying, as pointed out above,
that the flow stability properties may be modified. Corre-
spondingly, it is reasonable to assume that surface inhomo-
geneities might lead to flow instabilities. Figure 4(a) shows

FIG. 3. Development of instability in physical experiments. Here, 25 g of PDMS is released at the top of a glass surface characterized by the inclination angle
a. The rectangles’ width(in the streamwise direction) is 2 cm, and their length is 5 cm.
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the amplification of a perturbation: a precursor’s modifica-
tion on the scale of 1% of the thickness of the fluid’s main
body leads to a large increase of the capillary ridge’s height.
However, this occurs only if the perturbation is sufficiently
wide. This is illustrated by Fig. 4(b), where the perturbation
is of the same depth, but is much more narrow. Here, the
fluid practically does not “see” the perturbation. This result is
consistent with the solutions describing planarization during
spin coating over perturbations(trenches) whose depth is
comparable to the thickness of the fluid’s main body.16

As mentioned in the introduction, 2D simulations de-
duced the influence of surface perturbations on the instability
indirectly, through changing the capillary ridge’s height.
Therefore, 3D simulations are needed to understand this ef-
fect precisely. An issue of particular relevance to applications
is the 2D result that a relatively large extent of a perturbation
in the streamwise direction is needed to significantly influ-
ence the capillary ridge’s height and instability; it is not ob-
vious a priori that this result can be carried over to 3D ge-
ometry.

Therefore, we now proceed to 3D geometry, and analyze
the effect that localized perturbations(dips) of the precursor
have on the flow stability. For simplicity, we present first the
results in large domains, and impose a single perturbation far
away from the boundaries, so as to be able to analyze the
influence of the perturbation on the flow without being con-
cerned with the boundary conditions. Later, in Sec. V, we
consider the interplay between the perturbations of the pre-
cursor and the boundary effects.

These perturbations are 3D extensions of the 2D pertur-
bations used in Fig. 4. Figure 5 shows a typical one: There is
a flat central region of a given depth,d (in units ofb), and a
transition region surrounding the flat part that provides a
smooth change from the perturbation’s bottom to the unper-
turbed precursor. These transition regions are needed, since
lubrication approximation assumes weak gradients of the
fluid thickness, with which a sharp interface between the
perturbations and the unperturbed precursor would not be
consistent. On the perturbation’s sides, the thickness of these
transition regions is specified asbssd=bf1−d exps−Dsss
−scd2dg, wheres=fx, yg, Ds=fDx, Dyg defines the width of

this transition region, andsc is the position of a given per-
turbation’s bottom edge. We note that the results are almost
insensitive to the particular functional form assigned tobssd,
or to the value given toDs. We useDs=4, which gives a
reasonable[O(1)] width. In the presentation that follows, we
report the total effective perturbation widths,wx, wy, as the
widths (in the x, y directions) of the regions where the pre-
cursor thickness is less thanbs1+dd /2.

Figure 6 shows an example of our results for the flow
down a vertical planesD=0d, and for unperturbedb=0.01.
At t=0, the time evolution is started from the initial condi-
tion obtained from 2D simulations. There are no contact
line’s perturbations imposed att=0, in contrast to Fig. 2. The
precursor perturbation is centered atx=12, y=40 (therefore,
far away from the boundaries), and its effective width iswx

=wy=3. We purposely position the perturbation off center so
to avoid imposing any symmetry. In Fig. 6, we see that the
fluid’s main body flows uniformly under gravity until it
reaches the perturbation. There, the flow is slowed down.
This slowdown can be understood by recalling that smallerb
provides more resistance to the flow in the perturbed regions
(note that theb→0 limit is singular; for b=0, the no-slip
boundary condition would not permit any contact line’s mo-
tion). Instead, the fluid escapes to the surrounding, lower
resistance regions. In Fig. 6(b), we see that the fluid in these

FIG. 4. Snapshot of the 2D fluid profile as it flows over a precursor perturbation. The insets show the zoomed-in perturbation region aroundx=20. The
unperturbed precursor thickness isb=0.01, barely visible on the scale of the fluid’s main body.

FIG. 5. Zoom-in view of the perturbation characterized by the depthd
=0.5 (in the units ofb), and by effective widthswx=wy=3, as explained in
the text.
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regions(immediately adjacent to the perturbation) is charac-
terized by an increased height of its capillary ridge, while a
much smaller capillary ridge is present in the root region,
flowing over the perturbation itself. A larger capillary ridge
leads to an increase of the fluid velocity(which is approxi-
mately proportional toh2, see, e.g., Ref. 6), and hence to the
instability. Figure 6(c) shows the evolving profile at later
times, when the instability has already propagated further
away from its source.

The fluid profiles shown in Fig. 6, while expected(given
the similarity to the profile shown in Fig. 2), are not neces-
sarily obvious from the 2D results, where the capillary ridge
is higher as the fluid passes over a perturbation itself(there-
fore, opposite to the 3D results). There is a major difference
between 2D and 3D results: In the 2D case, the fluid does not
have the possibility of forming structures in the transverse

direction in order to find an energetically more favorable
state.

Another interesting question is what determines the
speed,ut, with which information about the presence of per-
turbation propagates in the transverse direction. In order to
answer this question, we analyze first the influence of the
size and depth of the perturbation onut. One could expect
that a stronger “kick” would induce a faster propagation
away from the perturbed region. Additional simulations have
shown, however, thatut is independent of the perturbation
itself. Therefore, it makes sense to explore the connection of
ut to the general, perturbation independent, features of the
flow.

Better insight into this problem can be reached by com-
paring the propagation of the instability in the flow down a
vertical planesD=0d and inclined planesD.0d. Figure 7

FIG. 6. Contour plot of the fluid thickness. The initially
flat fluid front shown in(a) flows over perturbed pre-
cursor and develops an unstable front shown in the
parts(b) and(c). Note how the influence of perturbation
propagates in the transverse,y, direction away from the
perturbed region. HereD=0 andb=0.01.
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shows the respective snapshots of fluid profiles, using iden-
tical parameters, except for the value ofD. These plots allow
for a clear comparison of the propagation of the instability in
the transverse direction. Using the data plotted in this figure,
it is easy to determineut for these two cases:ut<1.8–2 for
D=0, andut<0.5–0.6 forD=1 (illustrated by dashed lines
in the figure). Clearly,ut is a decreasing function ofD.

It turns out thatut can be related to the velocity scaleul

resulting from the LSA of this flow. This velocity is defined
by ul =smaxlmax, i.e., by the product of the maximum value
of the growth rate multiplied by the correspondingl, viz.
Fig. 1. The idea is that the instability propagation at the
edges of the cones shown in Fig. 7 can be approximately
described by the linear picture. Clearly, since this linear ap-
proximation ignores rather strong nonlinear effects, one can-
not hope for the perfect agreement. Indeed, by performing
additional simulations forD’s in the range[0, 2], we find that
althoughut and ul are not identical, they are comparable,
and, more importantly, they follow the same trend as the
value ofD is modified. Typically,ul /ut<2.5–3.0 for allD’s
explored. The fact thatul is larger can be explained by re-
calling that nonlinear effects slow down the growth rate of
the instability for later times.6

Regarding the flow down an inclined plane,sD.0d, we
note few additional features of the results presented in Fig.
7(b). The emerging patterns’ shape is now triangular, as in
the case when instability is induced by perturbing the contact
line. Also, the distance between the tips is increased, leading
to an average wavelength of approximately 16, very similar
to the case when the contact line is perturbed directly5,6 and
to the linear stability results mentioned above. This increase
of the average distance between patterns can be also seen in
the experimental results shown in Fig. 3. We conclude that,
at least for the parameters we explore in this work, the main
emerging patterns’ features—their shape and the distance be-

tween tips—are independent of the nature of the perturbation
that induces the instability.

IV. EFFECTS OF DISCRETE AND CONTINUOUS
PERTURBATIONS

Next, we discuss the instability development in two con-
figurations that are slightly more complicated than a single
point perturbation, but are still characterized by large do-
mains and a relatively weak influence of boundary condi-
tions. First, we show how the presence of a number of dis-
crete perturbations influences the instability development;
then, we consider continuous perturbations.

A. Discrete perturbations

Figures 8(a) and 8(b) show the fluid profiles’ snapshots
for the flow, where the precursor thickness is modified by
random perturbations. These perturbations are characterized
by the widths wx=wy=3.0±1.0, the x positions xp

=12.0±1.0, the depthsd=0.5±0.1, and the distances be-
tween perturbations in they direction 7.0±1.0. We choose a
relatively small average distance between perturbations so
that the system is not excited by the wavelengths close to
lmax. This relatively high-frequency noise forces the system
to decide on the emerging wavelengths on its own.

The resulting patterns shown in Fig. 8(a) are very similar
to the ones shown in Fig. 2 that resulted from simulations
where the contact line itself was perturbed. Additional simu-
lations in which the seed for the random number generator
has been modified, confirm that the patterns’ shapes, the av-
erage wavelengths, and even the wavelengths’ variances are
very similar in these two kinds of simulations.

In Fig. 8(b), which shows the results for the flow down
an inclined planesD=1d, the resulting patterns are again
very close to those obtained in the simulations where the

FIG. 7. Snapshots of the fluid profiles indt intervals. A single perturbation(wx=wy=3, d=0.5) of the substrate is imposed atx=12, y=40. Note different
x-length scales in(a) and (b). The dashed lines are the guides for an eye showing how the instability spreads in the transverse direction.
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contact line has been perturbed.5,6 We note that for longer
times, the profiles have almost reached a steady state in an
appropriate reference frame. This growth saturation has been
found for all exploredD.0, and will discussed in more
detail in a separate publication. Similar results have been
recently also observed in experiments where thermally
driven flows are perturbed by laser pulses, leading to the
formation of regular patterns.46

B. Continuous perturbations

Until now, we have explored the effect of isolated, point-
like perturbations. Here, we briefly discuss instabilities that
develop when a nontrivial continuous perturbation that
crosses the domain in the transverse direction is present. We
will see that the basic picture of the instability development
presented so far can be used successfully to understand the
formation of rather complex patterns in the configurations
that follow.

Figure 9 shows the results for a perturbed region of fixed
width swx=3d, where the perturbation is given a sinusoidal
shape in they direction. Althoughwx is constant, and it cov-
ers the whole domain’s width, an instability is still produced,
since different film’s parts are perturbed at different times.
Here, we see three examples of instability caused by these
wave-like perturbations. We address first the patterns shown
in Fig. 9(b), where the imposed waves period isp=96/5
<19. Here, roots develop in the regions where the film
reaches the perturbation first, while the tips form in between.
Hence, the emerging pattern’s wavelength equals the period
of imposed perturbation. However, this may not hold in gen-
eral. For example, in Fig. 9(a), wherep=96, the roots loca-
tion is determined by a rather involved interplay between the
perturbation and the boundary conditions that requires the
formation of a root or a tip at the boundaries(this point is
discussed further in Sec. V). Since the fluid is first perturbed
(slowed down) close to the boundariessy=0,48d, roots form

there. Then, two fingers form near the boundaries at a dis-
tance determined by the capillary forces. Since the distance
between these fingers is large enough to allow for a second-
ary instability, an additional finger then forms in the do-
main’s center.

Figure 9(c) shows a case where the perturbations’ period,
p=96/13<7.4, is short enough to cause the formation of
patterns that only occasionally follow the rule that the sur-
face perturbation’s parts that are reached first and the emerg-
ing patterns roots should match. Again, the interplay between
the imposed perturbation and boundary conditions leads to a
final placement of fingers characterized by an average dis-
tance between tipsl=12.

Figure 10 shows a different kind of perturbation that can
lead to instability. Here, a transverse perturbation is kept
straight, but its width is modified. This width is varied be-
tween 2 and 4, and the period changes fromp=6 (a) to 12
(b), and 24(c). First, we note that in the casep,lc, insta-
bility cannot develop, since the fluid cannot break the im-
posed symmetry(similar observation was made in the case
of instability imposed by “channels” of low resistance flow
in our earlier work21). If p.lc, we generally observe forma-
tion of tips in regions with narrow perturbation, and of roots
where the perturbation is wide[viz. Fig. 10(b)]. If p is as
large as in Fig. 10(c), a secondary instability develops(at y
=12, 36). This is similar to the results shown later(next
section) in Fig. 11, where we concentrate more precisely on
understanding the influence of boundary conditions.

V. THE INFLUENCE OF BOUNDARY CONDITIONS AND
PARAMETRIC DEPENDENCE

There are a number of factors that influence the instabil-
ity development. First, there are factors related to the basic
flow configuration: inclination angle, precursor film thick-
ness, and domain size in the transverse direction. Next, there
are parameters introduced by the perturbations: their size,

FIG. 8. Snapshots of the fluid profile, where the precursor is perturbed by random perturbations, as explained in the text.
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shape, depth, and distribution. For simplicity and brevity, we
discuss here in some detail only two factors: the boundary
conditions and the inclination angle. The influence of the
other parameters is summarized at the end of this section. If
not specified differently, in this section we useD=0, b
=0.01,wx=wy=3, andd=0.5.

A. The interaction between perturbations and
boundary conditions

So far, we have mostly avoided discussing the influence
of the boundary conditions on the instability development.
This influence can indeed be mostly ignored as long as the
domain sizeLy is large compared to the typical distance be-
tween the patterns, i.e.,lmax from LSA. However, as soon as
Ly<lmax, the boundaries need to be taken into account. We
illustrate this point in our computations, but note that the
discussion also applies to experiments, where the boundaries
are physical walls which typically influence the flow by
slowing down the fluid there.

To illustrate the effect of boundaries on pattern forma-
tion, we now consider the instability development in a rela-
tively small domain of the widthLy=16, and perturb the flow
by a single perturbation. For presentation purposes, we use

the fact that our boundary conditions respect “mirror” sym-
metry and plot results for 0øyø32, with the understanding
that y=16 is the line of symmetry.

Figure 11 shows how the instability is being modified as
the distance between perturbations is decreased fromd=24
(a) to 4 (d) (or, equivalently, as the distance from the pertur-
bation to the domain boundary is modified).

First, we realize that the distance between emerging pat-
terns is influenced not only by the spacingd between pertur-
bations, but also by the boundary conditions, which require
the formation of either a tip or a root at the boundaries. The
interplay between these two factors leads to variousl’s,
which may or may not be equal tod. However, these emerg-
ing l’s do center aroundlmax. In the examples shown in Fig.
11, the “primary” wavelengths(that develop first) vary be-
tweenl=32/3 (a) andl=16 (b, c, d). In some cases, addi-
tional (secondary) instability develops, such asl=8 in Fig.
11(d). If the distance between the surface perturbations falls
below lc<8, there is no pattern formation in between[viz.
Fig. 11(d)]. These perturbations do, however, induce insta-
bility in the rest of the domain. Since both perturbations are
here very close to each other, the mechanism that triggers the
instability in this case is somewhat similar to the one ob-

FIG. 9. Snapshots of the fluid profile indt=2 intervals of the flow down a vertical plane where we impose the continuous perturbations, of the widthwx

=3, and of various periods in the domainLy=48.
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served with the single perturbation in Sec. IV A. However,
now the resulting pattern is modified by the boundary effects.

Still basing our argument on LSA, we can also estimate
the growth rates of various patterns. Since, to the leading
order, the growth rate is determined byl, one can predict
that the emerging patterns shown in Fig. 11(c) should grow
faster than the ones in Fig. 11(a), since the growth rate of
l=16 is larger than the one ofl=32/3. Also, the patterns
shown in Figs. 11(b) and 11(c), grow faster than the ones in
Fig. 11(d), since the latter is slowed down by the secondary
l=8 instability.

It is also interesting to note the competition between
different l’s in Fig. 11(b). Here, d=20 excites the initial
formation of two patterns in between the perturbations.
These patterns merge into one eventually. However, this
merge does not happen in Fig. 11(a), whered=24. Therefore,
Figs. 11(a) and 11(b) show that the minimum distance for
formation of multiple patterns is between 20 and 24, which is
comparable to 2lc. These results are consistent with the
simulations of the dewetting process on chemically hetero-
geneous substrates, where the formation of stable patterns is
observed when the imposed perturbation is characterized by
a lengthscale betweenlc and 2lc.

33 Additional simulations
(and experiments such as those presented in Sec. VI B) have
shown that the exact “critical” distance is influenced by a

number of factors, including noise in experiments, and the
computational domain’s size. See also Ref. 21 for additional
discussion regarding this issue.

B. The inclination angle and delayed instability

It is known that changing the inclination angle has a
strong influence on the development of the instability.3,5,6

The patterns’ growth is reduced, their shape is changed from
finger-like to a triangular sawtooth shape, and the distance
between patterns is increased; see Fig. 3 for experimental,
and Figs. 7(b) and 8(b) for computational results. Here, we
point out one additional feature of the flow down an incline.

Figure 12 shows snapshots of the developed patterns for
D=0, 1, 2 andwx=wy=3. Obviously, an increase inD has a
strong effect; in particular, forD=2, on the considered time
scale, the instability is all but completely removed. The
weakening of instability asD is increased is as expected
from the 2D simulations34 and experiments.3 However, care-
ful inspection of Fig. 12(c) shows an interesting additional
effect that cannot be deduced from the 2D simulations. For
these largerD’s, a precursor’s perturbation leads to a local-
ized disturbance of the front[barely visible in Fig. 12(c)
about timet=20], which “disappears” for an extended period
of time, only to start growing again aboutt=150. This effect

FIG. 10. Snapshots of the fluid profile indt=2 intervals of the flow down a vertical plane where we impose continuous perturbations of the widthwx=2
−4, and of various periods in the domainLy=48.
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can be also seen forD=1 in Figs. 7(b) and 12(b), although
the delay is shorter. We hope that this observation of delayed
instability will also provide some insight into the still open
question of the source of instability for very small inclination
angles.

C. The parametric dependence

We have analyzed in some detail the influence of the
various perturbation properties on the instability develop-
ment. For brevity, here we report only the main points:

FIG. 11. Snapshots of the fluid front as it flows over the perturbations, which are shown by dark areas. The distance between the perturbations,d, is varied
as shown in the figures. The fluid front’s positions are plotted indt=2 intervals.

FIG. 12. Snapshots of the fluid profile indt=10 intervals for different surface’s inclination angles.
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(1) Perturbation width and depth. Based on the 2D
results,34 we expect a rather strong influence of the per-
turbation width and depth on the instability. This is
really the case: Increasing the perturbed regions’ width
(both in thex andy directions) and the depth speeds up
the development of instability. This effect saturates for
large widths and depths, in particular for late times.

(2) Cumulative effect of multiple perturbations. Increasing
the number of perturbations that follow each other in the
streamwise direction has expected influence on the in-
stability development: More perturbations lead to an in-
creased instability. This effect, however, is not very
strong, in particular for late times. The limiting case,
where all perturbations are touching each other, leading
to continuous channels, has already been briefly dis-
cussed in a separate publication.21

VI. INFLUENCE OF RANDOM SURFACE
PERTURBATIONS (NOISE) ON INSTABILITY
DEVELOPMENT IN SIMULATIONS AND EXPERIMENTS

In physical experiments, one may expect the presence of
random surface noise, due to either mechanical or chemical
inhomogeneities. Furthermore, the contact line itself is typi-
cally noisy, leading to instabilities, as shown in Fig. 2. So far
we have shown that both types of noise lead to the formation
of indistinguishable patterns. Therefore, it is sufficient to
concentrate on the influence of random surface perturbations
on the flow stability and pattern formation. We note that in
our simulations these perturbations are characterized by a
spatial extend that is much larger than the one that may be
expected in the experiments on uniform, carefully prepared
surfaces. While it is beyond the scope of this work to analyze
computationally any realistic(microscopic) noise, we make a
step in this direction by analyzing the influence of randomly
distributed perturbations. We show that despite obvious sim-
plifications, these simulations do provide significant insight
into the main features of the experimental results.

In this section we concentrate on the following tasks:(1)
Analyze an interplay between random and regular perturba-
tions. In particular, show how “better” control may be used
to prevent surface perturbations from producing irregular
patterns;(2) show experimental results that illustrate the fact
that there exists a minimal distance between the imposed
perturbations such that the fluid still follows the imposed
surface features; and(3) illustrate the effect of noise in ex-
periments.

A. Interaction between noise and regular surface
perturbations: Computational results

In an earlier work, we have shown that it is possible to
control the instability development by imposing infinite
channels of low resistance flow.21 That result is consistent
with the experiments performed using thermally driven
flows.27 In these experiments, a patterned surface(alternating
stripes of bare and coated SiO2) is prepared in a rather elabo-
rate fashion, and the flow is driven by thermocapillary shear
stress at the air–liquid interface. Correspondingly, the prob-

lem is more complicated(and characterized by much shorter
length scales) than the gravity-driven flow outlined here.
However, due to the similar nature of the instability in these
two problems, one expects that it should be possible to pre-
pare a macroscopic experiment where the stripes are imposed
on a(macroscopically) homogeneous surface in some simple
manner that allows for relatively straightforward experi-
ments. Examples of such experiments are presented below in
Sec. VI B.

We need to point out that in both thermally driven flows,
and in the experiments presented here, the fluidwettingprop-
erties are modified by the externally imposed perturbations.
In our simulations, we perturb theprecursor film thickness,
essentially modifying the local resistance to the flow, but
implicitly assuming complete wetting. Therefore, the manner
in which the perturbations are imposed in our simulations is
a simplified version of the physical problem. These precursor
film perturbations are also used to simulate additional uncon-
trolled perturbations(noise) in experiments that could lead
to, for example, modifications of the prewetting layer’s
thickness.

The simplest way to understand the influence of noise is
to add a “weak” perturbation to otherwise well-defined flow
situation. Following this idea, Fig. 13 shows the results that
illustrate some of the effects that noise can have on the flow.
The main goal of this figure is to analyze how the “strength”
of noise influences the pattern formation.[The terms
“strength,” as well as “strong” and “weak” below are used in
the descriptive sense only. We do not attempt to analyze in
detail the relative influence of the parameters characterizing
a perturbation(its length, width, depth)]. In Fig. 13 we im-
mediately notice that the flow is very sensitive to the im-
posed noise’s details. This point is made clear already by a
simple visual inspection of the different parts of this figure,
in which most perturbations appear rather similar. However,
the resulting fluid configurations can be very different.

All simulations presented in Fig. 13 are performed in a
domain of width Ly=24, and have imposed two regular
strong perturbations[we refer to them as the perturbations
nos. (2) and (3)] characterized bywy=3 (wx is variable), d
=0.5 and centered atsx,yd coordinates(17, 6), (17, 18), re-
spectively. Without any additional perturbation,(2) and (3)
lead to fingers’ formation characterized byl=12, very simi-
lar to the ones shown in Fig. 13(a). In addition to these two
perturbations, there is an additional weak perturbation[no.
(1)] imposed atx=10, y=12, that is typically more shallow
sd=0.25d, and of decreased widthwx=wy. We think of this
perturbation as the “noise” which is of lesser strength than
regular perturbations(2) and (3).

Figure 13(a) shows the case where(1) is specified by
wx=wy=2.0, and(2, 3) by wx=3.0. The distance between the
perturbations[more precisely, the distance in the streamwise
direction between the center of(1) and the starting point of
(2, 3)] is xd=6. Here,(1) is not strong enough to modify the
flow significantly, so the long time flows development is al-
most the same as if(1) were not there. In Fig. 13(b), we
slightly increase the strength of(1) by choosingwx=wy

=2.25, and keeping everything else the same. This change is
sufficient to completely modify the flow: in this case,(1)
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leads to the formation of a root downstream from its posi-
tion, in contrast to Fig. 13(a). However, the configuration
shown in Fig. 13(b) is energetically unfavorable, since the
distance between the patterns is much larger than 2lc (see
Fig. 11). Therefore, we expect the formation of an additional
finger which would reducel to 12. The initiation of this
splitting process can be seen for the latest times shown in
Fig. 13(b).

Figure 13(c) illustrates that “strengthening” of(2, 3) can
balance a stronger perturbation(1). Here,(1) is the same as
in Fig. 13(b), but the length of(2, 3) is increased towx=7,
keepingxd the same. As a result, we reach similar patterns as

in the case where(1) was weaker. This is an example of a
situation where longer perturbations(similar to the channels
analyzed in Ref. 21) lead to the formation of regular patterns
that were not achieved by “weaker” pointlike perturbations.

Figure 13(d) returns to the pointlike(2, 3) and explores
the influence of the depth of(1). Here, d=0.5, while the
widths are the same as in Fig. 13(a). This depth’s increase
has a dramatic influence, and completely modifies the emerg-
ing patterns. The result is almost identical as if(2, 3) were
absent: two symmetrically positioned fingers develop, the
distance between them isl=12, and roots form at the bound-
ariessy=0,24d. This configuration is favorable if strong(1)

FIG. 13. Snapshots of the fluid profile indt=2 intervals. Here, the flow is perturbed by three perturbations. The first one[referred to as(1)] is always centered
at x=10 and its widths in thex andy directions are the sameswx=wyd. The other two perturbations[referred to as(2) and (3)] are identical, havewy=3.0,
d=0.5, and are centered aty=6, 18, and at variablex’s.
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prevents the formation of a finger tip in the domain’s center
at y=12. The same result can be obtained if(1) is kept at the
same depth, but its size is increased. This is illustrated in Fig.
13(e), where the size of(1) is increased towx=wy=2.5, but
its depth isd=0.25. Figures 13(d) and 13(e) therefore illus-
trate how the spatial extendswx,wyd and the depth,d, com-
bine to determine the total strength of a perturbation and its
influence on the pattern formation process.

Figure 13(f) shows the case where the impact of(1) is
weakened by reducing its range of influence. Here,(1, 2, 3)
are identical to the ones used in Fig. 13(b), but the centers of
(2, 3) are shifted closer to(1), therefore affecting the flow

earlier (xd is decreased fromxd=6 to xd=1). Since(1) has
less time and space to modify the flow,(2,3) take over and
lead to the formation of different patterns, compared to the
case where the distance between perturbation is larger. A
similar effect is also illustrated later in Sec. VI B, regarding
the experimental results.

Next, we proceed to more realistic examples of the in-
fluence of noise on pattern formation. Figures 14 and 15
combine random perturbations, similar to the ones used in
Fig. 8, and perturbations separated in they direction by a
regular distance that is decreased fromd=12 in Fig. 14 to
d=10 in Fig. 15(a), and tod=7 in Fig. 15(b). The random

FIG. 14. Snapshots of the fluid profile indt=2 intervals. The fluid is perturbed by a combination of regular perturbations[wx=wy=3.0,d=0.5, at the distance
d=12 apart in they direction, positioned atx=26, 13, 10 in(a), (b), (c), respectively], and random perturbations on average atx=10, 10, 13 respectively. Other
details are specified in the text.
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perturbations are weaker than the regular ones and are posi-
tioned at an average distance ofd=7 (,lc, i.e., in the lin-
early stable regime). These simulations will be used to di-
rectly relate our simulations to experimental results.

In Fig. 14 we used=12 that is close to the wavelength of
maximum growth. Therefore, we expect that these perturba-
tions will strongly influence the flow, leading to regularly
spaced patterns characterized by the wavelength that coin-
cides withd. Indeed, this is the case if the random perturba-
tions are placed close to the regular ones, as in Fig. 14(a).
Here, the average distance in the streamwise direction be-
tween the two rows of perturbations isxd=3. Therefore, the
contact line does not have enough time to develop well-
defined patterns prior to reaching the layer of regular pertur-
bations. These regular perturbations then lead to patterns
characterized by uniform distance and length. Perhaps sur-
prisingly, these regular patterns are formed rather fast at a
relatively short distance downstream from the zone of regu-
lar perturbations. If the distancexd is increased, however, the
fluid has more time to develop irregular patterns, and the
regular perturbations’ influence is not so strong. This effect is
shown in Fig. 14(b), wherexd=16. Here, the patterns are less
regular compared to Fig. 14(a), although the regular pertur-
bations’ influence is still significant. The average wavelength
(distance between patterns) is slightly larger than in Fig.
14(a).

Figure 14(c) shows that the fluid that has already been
perturbed by regularly spaced surface patterns is much less
sensitive to random perturbations, compared to the unper-
turbed flow. Here, we invert the order of the rows of pertur-
bations and impose regular perturbations first and then a
group of random perturbations identical to the ones in Figs.
14(a) and 14(b). The first regular array of perturbations pro-
duces uniformly spaced patterns which then reach the ran-

dom perturbations. These random perturbations are placed
close to the regular ones, so that the fluid does not have the
time or space to develop long fingers. However, even though
the regular patterns are not yet fully formed, they are very
stable with respect to this additional disturbance. These re-
sults show a quite remarkable stability of the already-formed
fluid patterns with respect to surface noise.

Figure 15(a) shows that it is not only the streamwise
distance between random and regular perturbations that de-
termines the eventual set of patterns. Here, although the
regular perturbations follow the random ones very closely
[xd=3, as in Fig. 14(a)] the influence of these regular pertur-
bations is weakened by the fact that their distance in they
direction is onlyd=10. Going back to LSA(viz., Fig. 1), we
recall that the wavelengthl=10 is only weakly unstable.
Therefore, these perturbations cannot win against already-
formed patterns characterized by, on average, larger(and
more unstable) wavelengths. The average distance between
patterns is the same as in Fig. 14(b), despite the fact that the
regular perturbations are spaced closer to each other.

Figure 15(b) shows the resulting patterns where the dis-
tance between regular perturbations isd=7. Sinced=7 is
less thanlc, the fluid does not follow the imposed regular
perturbations at all, and instead develops randomly distrib-
uted patterns. The average distance between the patterns is
close to the wavelength of maximum growth, and in this case
is the same as in Figs. 14(b) and 15(a).

These computational results allow us to gain better un-
derstanding of the influence of noise on the instability devel-
opment. Next, we use this understanding to explain the re-
sults of physical experiments involving flow over patterned
surfaces.

FIG. 15. Snapshots of the fluid profile indt=2 intervals. The fluid is perturbed by a combination of regular perturbations(wx=wy=3.0,d=0.5 positioned at
x=13), and of random perturbations identical to the ones in Figs. 14(a) and 14(b).
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FIG. 16. Snapshots of the PDMS front on 5° incline as it flows over 2.5 cm wide stripes(oil paint), with a spacing of 2.5 cm in between. The fluid is released
at time t=0, 8 cm above the stripes’ start. The amount of fluid is 25 g. Note that the fluid actually flows on the stripes but it is slowed down significantly.

FIG. 17. Snapshots of the PDMS front as it flows over 0.65 cm wide stripes(oil paint), with a spacing of 0.65 cm in between. The setup is the same as in
Fig. 16, except for the configuration of stripes.
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B. Interaction between noise and regular surface
perturbations: Experimental results

Figures 16–18 show the experimental patterns that result
as PDMS flows over a surface that is modified by the pres-
ence of stripes. These stripes are prepared by covering some
glass plate’s portions with an oil-based paint. Since the ap-
parent contact angle of the PDMS on the stripes is signifi-
cantly larger than on the glass not covered by the paint,
PDMS tries to avoid flowing on the painted stripes and flows
in the low-resistance regions instead. The experimental setup
is otherwise identical to the one used to obtain the data
shown in Fig. 3; therefore, the substrate can be still thought
of as covered by a thin prewetted layer. The setup is charac-
terized by small inclination anglea=5°, so that the “natural”
contact line instability(that would develop on a macroscopi-
cally homogeneous surface without any imposed surface per-
turbations) grows rather slowly and the contact line is only
weakly corrugated by the time the fluid reaches the striped
region. The imposed stripes modify the flow due to the varia-
tion of wetting properties: We have confirmed that wetting
properties are relevant by repeating the experiment using
identical, but water-based paint stripes—in this case, the
fluid flow is unperturbed by the stripes’ presence. We note
that the fluid actually flows over the stripes(this may not be
obvious from the figures due to the insufficient contrast),
eventually completely covering the whole domain.

We think of the experiments shown in Figs. 16–18 as an
experimental analog of the simulations shown in Figs. 14
and 15. The stripes in experiments play the role of strong,
regular perturbations in simulations, while irregular pertur-

bations are naturally provided in experiments by microscopic
surface inhomogenities that, for example, may lead to the
variations in the thickness of the prewetting film.

Figure 16 shows that the stripes’ presence(width of
2.5 cm, and a distance between neighbors of 2.5 cm) is suf-
ficient to induce instability and formation of long fingers in
between the stripes[similar to the simulations shown in Fig.
14(a)]. This particular configuration is chosen since the im-
posed wavelength is close to the natural wavelength that de-
velops in the case of the flow on plane glass, see Fig. 3(c). It
is also close to the estimate that goes back to Huppert,2 who
predicts that the emerging wavelength is given byle

<7.5fÎAs / srg sinadg1/3, where A is the cross-sectional
fluid area. With our flow and fluid parameters, this estimate
givesle<4.2 cm. One can show that a similar estimate also
results from LSA.

Figure 17 shows that if the distance between stripes is
decreased, and everything else is left the same, very different
patterns are obtained. Here, the stripes are 0.65 cm wide, and
the distance between them is also 0.65 cm. In this case, the
fluid follows the imposed perturbations only partially, similar
to the computational results shown in Fig. 15(b). Clearly, the
average wavelength is much larger than the imposed pat-
terns’ periodicity.

Next we proceed to discuss the influence of noise on the
flow. This influence was already discussed computationally
in Fig. 14, which shows that if the contact line is perturbed
by random noise, and then it flows over a striped region, the
outcome depends on the distance between the release point
and the beginning of this striped region. Figure 18 illustrates

FIG. 18. Snapshots of the PDMS front as it flows over 2.5 cm wide stripes(oil paint), with spacing of 2.5 cm in between. The fluid is released at timet
=0, 12 cm above the stripes’ start. The configuration is identical to the one shown in Fig. 16, except for the release point.
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this effect in the experiments. Here, the fluid’s release point
is 4 cm further upstream from the striped region’s beginning,
compared to Fig. 16. Clearly, the patterns that form are now
much more irregular. Since the instability has more time to
develop prior to reaching the striped region, the stripes’ in-
fluence is not sufficient to reorganize the flow. By perform-
ing additional experiments(not shown here for brevity) with
different fluid volumes, we have verified that the difference
between Figs. 16 and 18 does not result from the change of
the fluid thickness at the moment of arriving at the striped
region.

Additional experiments have shown that, in some cases,
longer stripes could stabilize the flow better than shorter
ones, similar to that illustrated in Fig. 13. This applies, in
particular, when the imposed distance between the evolving
patterns is close to the critical wavelength. We have also
analyzed the influence of changing fluid volume. Decreased
volume leads to thinner films and shorter length scales, as
expected based on simple scaling arguments. This allows, for
example, the fluid to follow the stripes as imposed in Fig. 17.
This observation is also consistent with the analysis32 of the
dewetting process on heterogeneous substrates.

We conclude this section by noting that we have found
very good qualitative agreement between the results of our
simulations and experiments. Therefore, the simulations can
now be used to predict the main features of the pattern for-
mation, including the effects of noise.

VII. CONCLUSION

Using computational and experimental techniques, we
outline the results that allow us to connect natural instability
of gravity-driven thin fluid films on macroscopically homo-
geneous surfaces, and the flow of thin films on patterned
surfaces. The natural instability is initiated in simulations by
varying, in random fashion, the precursor film thickness,
therefore mimicking the surface heterogeneity(noise) in ex-
periments. We find that the patterns that form in the systems
where the precursor film is modified are very similar to the
ones resulting from contact line perturbations. The flow on
patterned surfaces is also modeled by modifying, now in
controlled fashion, the precursor film thickness. By imposing
local, point-like perturbations, similar results can be pro-
duced as in the case of long, channel-like perturbations.

Unperturbed fluid fronts are found to be very sensitive to
noise, although significant time can be needed for the front
corrugations to start developing, in particular for small incli-
nation angles. However, if fluid has already-formed patterns,
they are almost insensitive to the random perturbations of the
surface. This conclusion has been reached both in simula-
tions and in experiments.

Our theoretical and computational methods are currently
being developed to include the modeling of the details of
(possibly heterogeneous) surface chemistry. However, the
present model already shows a lot of potential, since it has
successfully reproduced the qualitative features of experi-
mentally observed pattern formation in the experiments re-
ported here, as well as of the experiments involving ther-
mally driven thin films. Our future work will proceed in the

direction of developing a better understanding of the relevant
issues that determine the dynamics of microflows, including
their control and applications.
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