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We present computational and experimental results involving instability development in the
gravity-driven flow of thin fluid films on heterogeneous surfaces, with particular emphasis on the
dynamics of the fluid fronts. We show that heterogeneity of the solid surface can have a significant
effect on the flow dynamics. Since the effect of heterogeneity often competes with the basic
instability mechanism that would occur even on macroscopically homogeneous surfaces, the result
is an elaborate interplay of various instability mechanisms. The computational results presented here
outline both the flow on surfaces perturbed by regular patterns, and on surfaces perturbed by
irregular, noiselike perturbations. We relate these computational results to the pattern formation
process in our experiments of gravity-driven flow down an incline. Good qualitative agreement is
found between the simulations and the experiments2@4 American Institute of Physics
[DOI: 10.1063/1.1772732

The flow of thin films is relevant in a number of different smaller angles lead to the formation of triangular sawtooth
fields, such as engineering, biology, and chemistry. Thespatterns.
flows can be driven by gravity, or various other forces of  Theoretically, the fluid film’'s dynamics are typically ap-
mechanical, thermal, or electromagnetic origins. In manyproached by using the lubrication approximation. Within this
situations, the fluid fronts become unstable, leading to théramework, an initial insight into the instability results from
formation of fingerlike or triangular sawtooth patterns, andthe linear stability analysi$LSA). Troian et al’ perform
resulting in uneven or partial surface coverage. Very often.SA for the flow down a vertical plane and show that there is
these instabilities are undesirable in technological applicaa band of unstable modes, with short wavelengths being sta-
tions since they may lead to the formation of dry regions orbilized by surface tension. Spaid and Hofhsyd Bertozzi
other defects. In other applications, however, partial wettingand Brennetextend this analysis to the general case of flow
is actually preferred, since surfaces that are selectively wetdown an inclined plane, and show that the normal compo-
ted on microscale can be used as the base for various micraent of gravity(hydrostatic term shifts the mode of maxi-
electromechanical syste@MEMS) devices. mum growth to longer wavelengths, and also tends to stabi-

In this work, we concentrate on perhaps the simplest ofize the flow by decreasing the instability’s growth rate. This
thin-film flows, namely gravity-driven flow down an inclined stabilizing effect appears to be so strong that it is predicted to
plane. Experiments are usually performed by releasing fluidompletely remove the instability for very small inclination
in some controllable fashion at the top of an incline. Afterangles, in contradiction to experiments. In Ref. 9, a transient
some time, the initially straight contact line, where liquid, growth approach is used to explain this discrepancy, while
gas, and solid phases meet, becomes unstable with respectt® and Chantf use the spectral theory to reach the same
transverse perturbations. It has been conjectured that this igoal. Both works analyze the propagation and amplification
stability is related to the formation of a capillary ridge in the of noise from the substrate to the fluid front, although they
fluid profile, just behind the advancing contact line. Silvi andemploy different methods. Grigoriévanalyzes the transient
Dussar, expanding on the pioneer work by Huppeghow  growth and related effects in the flow of thermally driven
that the fluid wetting properties play an important role in thefilms. A recent paper by Davis and Trofdrclaims that the
instability development and the degree of surface coveragdifluence of a transient growth mechanism is weaker than
Recently, the experiments by Johnson and co-workées  previously thought for gravity-driven thin films. Although
well as computations by Diez and Kondfcshow that an- our paper does not directly address the issue of transient
other important parameter is the inclination angle. The degrowth, we expect that some results presented here will be of
crease of the inclination angle not only reduces the patterndnterest to that problem as well. We note that all computa-
growth rate, but it also modifies their shape: while largertional works necessarily use one of two regularizing models

angles lead to fingers characterized by almost straight sidet) analyze the contact line dynamics: relaxing a no-slip
boundary condition, and/or assuming a numerical precursor
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cently considered by a number of authors. Kalliadastis tinuous, including the modeling of random surface perturba-
al.’® Bielarz and Kalliadasié? and Decré and Bar€tdis-  tions. The influence of boundary conditions, as well as para-
cuss two-dimensiongRD) and three-dimension&BD) flow, metric dependence, are discussed in Sec. V. In Sec. VI we
respectively, over trenches that are of a comparable lengthse the understanding developed in the previous sections to
scale to the film height, similarly to the earlier work by Still- approach a more involved problem of the interaction be-
wagon and Larso® A concept of nonuniform slip coeffi- tween multiple irregulat“noise”) and regulafimposed pat-
cient has been applied to thin-film flows by Hoffmanal’  terng surface perturbations both in simulations and in ex-
and Wangl,8 building upon previous works by Hockiﬁ“band periments. The experiments involve the flow of completely
Miksis and Davi€® Kondic and DieZ" use a varied precur- wetting viscous Newtonian fluid down a prewetted inclined
sor film thickness to explore the instability development inplane in both(macroscopically homogeneous and on pat-
the flow over controlled surface perturbatiqfishannels” of  terned surfaces, prepared by introducing controlled, macro-
varying flow resistange Modifications of the contact angle scopic regions of varied wetting properties. In both groups of
in the spreading of drops on chemically heterogeneous sutgxperiments, the uncontrolled variations of the thickness of
strates are analyzed experimentally by Drelathal,> and  the prewetted film could be thought of as a source of the
computationally by Schwar® Schwartz and Elle§’ and  noise that we introduce in our numerical simulations. Al-
Brandonet al® The effects of random distributions of per- though the physical mechanism by which the imposed per-
turbations at the substrate on the contact angle hysteresis hHagbations modify the flow is different, we show that at least
been discussed using the probability theory by é’ﬁm\ on a macroscopic level, these additional perturbations can
series of papers by Troian and co-workér& considers se-  also be successfully modeled by precursor film perturbations.
lective, controlled wetting of a chemically heterogeneous
substrate. Garnieet al>* propose the use of thermal feed-
back control to suppress the contact line instability. Dewety FORMULATION OF THE PROBLEM
ting of heterogeneous substrates has been also analyzed re-
cently, e.g., by Brusclet al®? and Kargupta and Sharnta. The dynamics of thin liquid films is typically analyzed
We will see later that some results presented in our workwvithin the framework of the lubrication approximation. The
have common features to the results presented in Refs. 3&sumptions of this approach, as well as the details of our
and 33, although the systems considered are rather differerdomputational methods are given elsewhere, see Diez and
In this work, we concentrate on the influence of surfaceKondic®® and the references therein. For completeness, here
heterogeneity on the instability development. The heterogewe give a basic outline, concentrating mostly on the aspects
neity, which in physical systems may be either due to noiserelevant to the main subject of this work.
or due to imposed patterning, is modeled by perturbing the  Within the lubrication approximation, one uses the fact
precursor film thickness. This simplified approach to the arthat the film thickness is much smaller than any in-plane
guably quite complicated dynamics that occurs on a microdimension. After depth averaging the fluid velocity over this
scale is then used to discuss macroscale features of the ishort direction, and using a no-slip boundary condition at the
stability development. This study is partially motivated by ansolid—liquid interface, the continuity equation yields the fol-
earlier work by Kondic and BertoZZi that has shown that lowing equation for the height of the (incompressiblglig-
substrate perturbations can play a role in the development afid film:
the instability. However, that work reached this conclusion
indi_rectly, by recording 'Fhe infl_uence tha_lt a subs_trat_e pertur- oh - 1 V -[yh3V V2h - pgh® V h cosa
bation has on the capillary ridge’s height, which is itself a 3u
related to the instability development. Here, we approach the
instability directly, by performing fully nonlinear simulations
in a 3D system under lubrication approximation. We notewhereV=(d,,d,), x points down the incline, ang points in
that in this work we assume complete wetting, and do nothe transverse direction. Herg,, p, g, v, and a are the
discuss in any detail issues related to nonzero contact anglgiscosity, density, gravity, surface tension, and inclination
An interested reader can find significant material regardingaingle, respectively. The fourth-order term results from sur-
partial wetting in recent works that discuss the disjoining-face tension, and the last two terms are due to gravity.

+ pgh®sinai], (1)

pressure model(e.g., Bertozzi et al,* Glasner and To balance viscous and capillary forces in Et), we
Witelski®®) or the relaf[ed dlffusae interface mod@.g., Pis-  scaleh by the fluid thickness far behind the contact litg,
men and Pomeal, Thiele et al*®). and define the scaled in-plane coordinates and time by

This paper is organized as follows. In Secs. | and Il we(x,y t)=(x/X,y/X,t/T), where
formulate the problem and present computational and experi-
mental results that outline the main features of the contact X = ( az_H )1/3 _3u a’X
line instability in the flow on(macroscopically homoge- sina) '’ y H2sina’
neous surfaces. In Sec. Il we show in our simulations how a —
localized surface inhomogeneity, introduced by a perturba@nda=vy/pg is the capillary length. The velocity scale is
tion of the precursor film thickness, leads to the formation ofchosen naturally a8 =X/T, and the capillary number is de-
regular patterns. Section IV concentrates on the dynamics ifined asCa=uU/y. Using this nondimensionalization, Eg.
systems with multiple perturbations, either discrete or con{1) for h=h/H is given by(dropping the bans

(2)
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dh oh® 0.3 D=00
—+ V- [h®VV?h]-D(a)V - [NV h]+—=0, (3 i D-05
ot ox - S/ N\ ----- D=1.0

D=20
where the single dimensionless parametdd(«)

=(3Ca)' cot(@) measures the size of the normal component 82 o1
of gravity. Sor
All theoretical and computational methods require some T |
regularizing mechanism. There are two commonly used ap- © o -7~ -
()} I

proaches. The first one is to assume a small foot of fluid in i
front of the apparent contact line, the so-called precursor 01f
film, see Refs. 7-9. This model is also very well suited for !
the flows on prewetted surfacéss considered in this woyk _023 T
where the numerical precursor film plays the role of the Y 0.2 0.4 0.6 0.8
prewetting film in experiments. The second approach is to
relax the no-slip boundary condition at the fluid—solid inter- kG, 1. Growth rate vs wave number for few different valuesof
face (see, e.g., Greenspah,Dussarf! or Hocking and

Riversf‘z). Diez et al* have recently performed an extensive

analysis of the computational performance of these regulasen dynamically, based on prescribed accuracy, and the ob-
izing mechanisms applied to the spreading drop problem. IRious requirement that the computed solution is strictly
that paper, it is shown that the results are rather insensitive tgositive®
the choice of the model, consistent with, e.g., Ref. 8. How-  The nonlinear system of algebraic equations that results
ever, the computational performance of the precursor filmafter time discretization is linearized by using the Newton—
model is shown to be much better than that of various sligkantorovich method; the linearized problems are then solved
models® This is an additional motivation for the use of a by employing the iterative biconjugate gradient method. As a
precursor film as a regularizing method. We note that theypical grid spacing, we usAx=0.2, Ay=0.25, leading to
particular value of the precursor film thickness(scaled by  about 200-400 grid points in each direction. More details
H), influences the instability and the details of the evolvingregarding efficiency, computational cost, and other issues
patterns. This point has recently been analyzed in some detajlich as convergence and accuracy are given in Ref. 39.
both experimentalf and computationall§.In Ref. 6 we
show that the valué=0.01 is sufficiently small to correctly
reproduce the main features of experimental results; ther
fore, this is the value that we use throughout this work.
The computational domain is chosen as a rectangle de- Linear stability analysis® of the governing Eq(3) has
fined by Osx=<L, and Osy=L,, which is divided intoN, shown that the flow is unstable with respect to fluid front
XN, cells centered at node points;,y;) with i=1,... N,  perturbations in the transverse direction. LSA is performed
andj=1,... N,. Equation(3) is then discretized in space by by expanding to the first order all nonlinear terms about the
using a central finite difference scheme. The boundary corbase state, obtained as théndependent solution of Eg3)
ditions are chosen to model constant fluid flux far behind then a reference frame moving with velocity=1+b+b." It is
fluid front. That is, we assume that there is an infinite streantharacterized by the presence of a capillary ridge, which ap-
of fluid far behind the front, that keeps the fluid height con-pears to be closely related to the onset of the instability.
stant there. Within our nondimensionalization scheme, this  Figure 1 illustrates the results of LSA, obtained by solv-
leads toh(0,y,t)=1. We require that far ahead of the moving ing an eigenvalue problem of the form
front, the fluid height is equal to the precursor thickness, La(8) = og(d)
h(L,,y,t)=b, and also that the streamwise gradients of the 9 791¢),
fluid height vanish at the boundaries, i.eh(0,y,t) whereL is a linear operator whose coefficients depend on the
=hy(Ly,y,t)=0. At the boundarieg=0 andy=L,, it is con-  base solutiorhy(£), and&=x—cqt. We solve this problem by
venient to use hy(x,0,t)=hy(x,L,,)=0, hy,(x,0,) following the method outlined in Ref. 10, and obtain the
=hy,y(x,Ly,t)=0. This choice enforces that there is no flow growth rates as the maximum value of the discretized spec-
across these boundaries. Since the tangential component fim. These calculations are performed with the roukce
the fluid flux is let free(there is no adhesion of the fluid to (EISPACK package for g's in the range G=q=<1.2.
the wallg, these boundaries could be thought of as “slipping  Figure 1 shows that the long wavelengths are unstable,
walls.” while the short ones are stabilized by surface tension, repre-
Time discretization is performed by using implicit sented by the fourth-order term in E(B). Consequently,
Crank—Nicolson scheme. The advantages of an implicithere is a band of unstable modes bounded by the wave num-
scheme for this problem are obvious: the stability requirebersq=0 andq.=2m/\., wherex.~8 for D=0. The wave-
ment for an explicit scheme is thatt<C min[Ax,Ay]%,  length of maximum growth is approximately,,,~12—14,
whereAt is a time step, an@ is a positive constant. Thus, an and it grows as the inclination angle is decreased, or, equiva-
explicit scheme requires very short time steps for a reasorlently, as the paramet& in Eq.(3) is increased. In the same
able spatial accuracy. In our simulations, time steps are chdime, the growth rate of the instability decreaseslass

I. MAIN FEATURES OF THE FLOW ON A
OMOGENEOUS SURFACE
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FIG. 2. Contour plot of the fluid thickness. The initial profile is perturbed by a superposition of 100 modes characterized by random amplitudes. Here
=0 andb=0.01. Note that the scale is considerably stretched for presentation purpdsesl44).

increased. Although LSA is valid for short times only, onetimes. These fingers are characterized by nonuniform
expects that the distance between the resulting patterns langths, resulting from the irregular initial conditions. This
actual experiments is close B, and that the initial nonuniformity is also related to the fact that the distance
growth is approximately exponential with the growth rate between the fingers varies, although it is on average close to
close t0omay Amax from LSA. Additional simulations that use different dis-
For future reference, we note here the influence of soméributions of initial wavelengths and different domain size
of the parameters on the LSA results. An increase/decrease show that this average value is close to 12. More details
the precursor film thickness leads to a decrease/increase fgarding the influence of the inclination angdleontrolled
the growth rate of the emerging patterns. This observatiomy the parameteD) on the pattern formation is available
was used in a recent wdrkwhich showed that perturbing elsewhere:® Here, we provide a brief illustration by present-
precursor thickness in a controllable manner could inducéng the results of physical experiments.
instability and the occurrence of regular patterns. The influ-  The experiments are performed on a glass surface of
ence of(noise-induceglprecursor thickness perturbations on dimensions of 100 by 50 cm, using fixed amodmypically,
the flow stability for very small inclination angles was also 25 gy of wetting fluid [polydimethylsiloxane (PDMS),
analyzed in some detail in a number of recent work&*>?*  AlfaAesar Ward Hill, MA], also known as silicon oifvis-
Figure 2 shows an example of our recent computationatosity: 50 cSt; surface tension: 21 dyn/cm, density
results for the flow down a homogeneous verti¢al=0) 0.96 g/cmi). The fluid is released close to the top of the
substrat&:® These results confirm the main predictions of plane by using a simple mechanical “dam” consisting of a
LSA. Here, the initial condition is formulated by perturbing piece of rubber fixed to a metal frame. The surface is pre-
the base statfan example of a base state in 2D can be seepared by cleaning it with soap and water. No efforts are made
in Fig. 6@)] by a superposition oN=100 modes character- to remove PDMS from the previous runs from the glass sur-
ized by wavelengtha,;=2L,/i,i=1,...,100. Each mode is face, which can therefore be thought of as prewetted by the
assigned a random amplitude in the rahg€.1,0.1. This  fluid. This applies to all of our experiments, including the
initial profile is shown in Fig. 2a). In Fig. ZAb) we see the ones performed on patterned surfaces shown later in Figs.
formation of long finger-like patterns that result for later 16—18. More details about experimental techniques, as well
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(a) o = 90°, time = 33 sec. (b) & = 30°, time = 38 sec.

(c) @ =5°, time = 120 sec.

FIG. 3. Development of instability in physical experiments. Here, 25 g of PDMS is released at the top of a glass surface characterized by tmeainglaatio
a. The rectangles’ widtkiin the streamwise directions 2 cm, and their length is 5 cm.

as a pedagogical explanation of the details of the instabilityll. BASIC INSTABILITY MECHANISM OF THE FLOW
development, are available in the paper by Kordic. ON INHOMOGENEOUS SURFACES

Figure 3 shows the developed patterns for three inclina-
tion angles: e.g(a «=90°,(b) «=30°,(c) anda=5°. These
results clearly show how the inclination angle influences th
instability development: for smallex (larger D), the insta-

We model substrate inhomogeneity by perturbing the
Qrecursor film thickness. While it might appear that imposing
perturbations of this kind is rather restrictive, since a precur-

sor film is not always present in physical experiments or

bility .develops slower, the wavelengths mcreage, an.d th‘;t\echnological applications, this approach is actually quite
evolving pattern shape changes smoothly from finger-like tcbeneral. Namely, a number of authors, including de

triangular. These main features are in qualitative agreemetenned® have shown that the main flow features are not
with the computational results presented in Fig. 26¢0,  influenced significantly by the choice of the regularizing
and in Refs. 5 and 6 fdd > 0. For a more precise agreement, method at the contact line. One could allow for the presence
the simulations need to be adjusted for the fact that the exsf a precursor film, include the possibility of fluid slip, or
periments are performed using a finite amount of fluid. Weassume that van der Waals forces at the liquid—solid interface
analyze these issues elsewhere, and concentrate here on &ie important; for the macroscopic flow properti@s par-
constant flux flow on inhomogeneous surfaces. ticular, instability developmentthe main factor is the actual
Before proceeding, we note that LSA, as well as thelength scale that is introduced at the front. Since this length
computations such as those yielding the results presented fif@le determines the degree of energy dissipation, one ex-
Fig. 2, assume the presence of small perturbations of thRects that its spatial variation can have a significant influence

contact line in the transverse direction. These perturbation n the macroscopic flow properties, as shown in the case of

are necessarily present in any physical experiment Howevetr e spatially dependent slip coefficient.”
yp y phy P ' " Arecent workR* analyzed the influence that a localized

for SImP“C'ty Of. presentatu_)n, anq since in th|_s_work WE ar€ yerturbation of the precursor thickness had on the flow in 2D
predominantly interested in the inhomogeneities of S“rfacgeometry(the y direction is ignoregl Figure 4 shows an
itself, we mostly ignore these perturbations, and refer (Q,ample of these results: as the fluid’s main body flows over
them only briefly in connection to the experimental resultsy perturbation(imposed atx=20 in Fig. 4, the capillary
presented in Sec. VI. Most of the computational results argidge’s height is increased, implying, as pointed out above,
obtained assumin®=0 (i.e., flow down a vertical plang that the flow stability properties may be modified. Corre-
with the influence of nonzer® briefly outlined where ap- spondingly, it is reasonable to assume that surface inhomo-
propriate so as to relate computations to experiments. geneities might lead to flow instabilities. Figuréayshows
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(a) Wide perturbation. (b) Narrow perturbation.

FIG. 4. Snapshot of the 2D fluid profile as it flows over a precursor perturbation. The insets show the zoomed-in perturbation regicr 200Uttt
unperturbed precursor thicknesshis 0.01, barely visible on the scale of the fluid’s main body.

the amplification of a perturbation: a precursor’s modifica-this transition region, and. is the position of a given per-
tion on the scale of 1% of the thickness of the fluid’s mainturbation’s bottom edge. We note that the results are almost
body leads to a large increase of the capillary ridge’s heightinsensitive to the particular functional form assignedbts),
However, this occurs only if the perturbation is sufficiently or to the value given td\s. We useA =4, which gives a
wide. This is illustrated by Fig. @), where the perturbation reasonabl¢O(1)] width. In the presentation that follows, we

is of the same depth, but is much more narrow. Here, theeport the total effective perturbation widths,, w, as the
fluid practically does not “see” the perturbation. This result iswidths (in the x, y directiong of the regions where the pre-
consistent with the solutions describing planarization duringcursor thickness is less thdul +6)/2.

spin coating over perturbationgrencheg whose depth is Figure 6 shows an example of our results for the flow
comparable to the thickness of the fluid’s main b&dly. down a vertical planéD=0), and for unperturbeth=0.01.

As mentioned in the introduction, 2D simulations de- At t=0, the time evolution is started from the initial condi-
duced the influence of surface perturbations on the instabilityion obtained from 2D simulations. There are no contact
indirectly, through changing the capillary ridge’s height. line’s perturbations imposed &t 0, in contrast to Fig. 2. The
Therefore, 3D simulations are needed to understand this efrecursor perturbation is centeredxat12, y=40 (therefore,
fect precisely. An issue of particular relevance to applicationgar away from the boundarigsand its effective width isv,
is the 2D result that a relatively large extent of a perturbation=w,=3. We purposely position the perturbation off center so
in the streamwise direction is needed to significantly influ-to avoid imposing any symmetry. In Fig. 6, we see that the
ence the capillary ridge’s height and instability; it is not ob-fluid’s main body flows uniformly under gravity until it
vious a priori that this result can be carried over to 3D ge-reaches the perturbation. There, the flow is slowed down.
ometry. This slowdown can be understood by recalling that smaller

Therefore, we now proceed to 3D geometry, and analyz@rovides more resistance to the flow in the perturbed regions
the effect that localized perturbatiofdips) of the precursor (note that theb— 0 limit is singular; forb=0, the no-slip
have on the flow stability. For simplicity, we present first the boundary condition would not permit any contact line’'s mo-
results in large domains, and impose a single perturbation faron). Instead, the fluid escapes to the surrounding, lower
away from the boundaries, so as to be able to analyze thesistance regions. In Fig(l§, we see that the fluid in these
influence of the perturbation on the flow without being con-
cerned with the boundary conditions. Later, in Sec. V, we
consider the interplay between the perturbations of the pre-
cursor and the boundary effects.

These perturbations are 3D extensions of the 2D pertur-
bations used in Fig. 4. Figure 5 shows a typical one: There is
a flat central region of a given depth(in units ofb), and a
transition region surrounding the flat part that provides a
smooth change from the perturbation’s bottom to the unper-
turbed precursor. These transition regions are needed, since
lubrication approximation assumes weak gradients of the
fluid thickness, with which a sharp interface between the
perturbations and the unperturbed precursor would not be
conS|-s.tent. On. the p_erturbatllgn's sides, the thickness of the%?G. 5. Zoom-in view of the perturbation characterized by the depth
transition regions is specified as(s)=b[1-5exp(~As(S  =0.5(in the units oft), and by effective widthsv,=w,=3, as explained in
-5)?)], wheres=[x, y], As=[A,, A,] defines the width of the text.
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FIG. 6. Contour plot of the fluid thickness. The initially
flat fluid front shown in(a) flows over perturbed pre-
cursor and develops an unstable front shown in the
parts(b) and(c). Note how the influence of perturbation
propagates in the transversg direction away from the
perturbed region. HerB=0 andb=0.01.

(c) t = 20.

regions(immediately adjacent to the perturbatjds charac- direction in order to find an energetically more favorable
terized by an increased height of its capillary ridge, while astate.
much smaller capillary ridge is present in the root region,  Another interesting question is what determines the
flowing over the perturbation itself. A larger capillary ridge speedy;, with which information about the presence of per-
leads to an increase of the fluid velocityhich is approxi- turbation propagates in the transverse direction. In order to
mately proportional t&?, see, e.g., Ref.)6and hence to the answer this question, we analyze first the influence of the
instability. Figure ¢c) shows the evolving profile at later size and depth of the perturbation ap One could expect
times, when the instability has already propagated furthethat a stronger “kick” would induce a faster propagation
away from its source. away from the perturbed region. Additional simulations have
The fluid profiles shown in Fig. 6, while expectggiven  shown, however, that, is independent of the perturbation
the similarity to the profile shown in Fig.)2are not neces- itself. Therefore, it makes sense to explore the connection of
sarily obvious from the 2D results, where the capillary ridgeu, to the general, perturbation independent, features of the
is higher as the fluid passes over a perturbation i(¢edfre-  flow.
fore, opposite to the 3D resujtsThere is a major difference Better insight into this problem can be reached by com-
between 2D and 3D results: In the 2D case, the fluid does ngitaring the propagation of the instability in the flow down a
have the possibility of forming structures in the transversevertical plane(D=0) and inclined plangD >0). Figure 7
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FIG. 7. Snapshots of the fluid profiles @ intervals. A single perturbatiotw,=w,=3, 6=0.5 of the substrate is imposed xt 12, y=40. Note different
x-length scales irfa) and(b). The dashed lines are the guides for an eye showing how the instability spreads in the transverse direction.

shows the respective snapshots of fluid profiles, using idenween tips—are independent of the nature of the perturbation
tical parameters, except for the valuelxfThese plots allow that induces the instability.
for a clear comparison of the propagation of the instability in
the transverse direction. Using the data plotted in this figurely. EEFECTS OF DISCRETE AND CONTINUOUS
it is easy to determineg; for these two cases;~1.8—2 for PERTURBATIONS
D=0, andu;=0.5-0.6 forD=1 (illustrated by dashed lines
in the figure. Clearly,u; is a decreasing function @.

It turns out thatu; can be related to the velocity scalg
resulting from the LSA of this flow. This velocity is defined
by U =0matmax 1-€-, Dy the product of the maximum value

Next, we discuss the instability development in two con-
figurations that are slightly more complicated than a single
point perturbation, but are still characterized by large do-
mains and a relatively weak influence of boundary condi-

of the growth rate multiplied by the corresponding viz. tions. First, we .ShOW. how the presence Of. a number of dis-
Fig. 1. The idea is that the instability propagation at theCrete perturbations influences the instability development;

edges of the cones shown in Fig. 7 can be approximatelymn’ we consider continuous perturbations.
desqubeq by the linear picture. Clearly, since this linear aP% Discrete perturbations
proximation ignores rather strong nonlinear effects, one can-
not hope for the perfect agreement. Indeed, by performing Figures 8a) and &b) show the fluid profiles’ snapshots
additional simulations foD’s in the rangd0, 2], we find that  for the flow, where the precursor thickness is modified by
althoughu, and u, are not identical, they are comparable, random perturbations. These perturbations are characterized
and, more importantly, they follow the same trend as theoy the widths w,=w,=3.0+1.0, the x positions X,
value ofD is modified. Typically,u;/u;=2.5-3.0 for allD’s  =12.0+1.0, the depth$=0.5+0.1, and the distances be-
explored. The fact tham, is larger can be explained by re- tween perturbations in thg direction 7.0+1.0. We choose a
calling that nonlinear effects slow down the growth rate ofrelatively small average distance between perturbations so
the instability for later time§. that the system is not excited by the wavelengths close to
Regarding the flow down an inclined pla®>0), we  \na This relatively high-frequency noise forces the system
note few additional features of the results presented in Figio decide on the emerging wavelengths on its own.
7(b). The emerging patterns’ shape is now triangular, as in  The resulting patterns shown in FigaBare very similar
the case when instability is induced by perturbing the contacto the ones shown in Fig. 2 that resulted from simulations
line. Also, the distance between the tips is increased, leadinghere the contact line itself was perturbed. Additional simu-
to an average wavelength of approximately 16, very similadations in which the seed for the random number generator
to the case when the contact line is perturbed dir@ét&nd has been modified, confirm that the patterns’ shapes, the av-
to the linear stability results mentioned above. This increaserage wavelengths, and even the wavelengths’ variances are
of the average distance between patterns can be also seerviery similar in these two kinds of simulations.
the experimental results shown in Fig. 3. We conclude that, In Fig. 8b), which shows the results for the flow down
at least for the parameters we explore in this work, the mairan inclined plane(D=1), the resulting patterns are again
emerging patterns’ features—their shape and the distance beery close to those obtained in the simulations where the
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(a) Flow down a vertical plane, D = 0; §t = 2. (b) Flow down an inclined plane, D = 1; §¢ = 10.

FIG. 8. Snapshots of the fluid profile, where the precursor is perturbed by random perturbations, as explained in the text.

contact line has been perturblr‘e?jWe note that for longer there. Then, two fingers form near the boundaries at a dis-
times, the profiles have almost reached a steady state in aance determined by the capillary forces. Since the distance
appropriate reference frame. This growth saturation has bedretween these fingers is large enough to allow for a second-
found for all exploredD>0, and will discussed in more ary instability, an additional finger then forms in the do-
detail in a separate publication. Similar results have beemain’s center.

recently also observed in experiments where thermally Figure 9c) shows a case where the perturbations’ period,
driven flows are perturbed by laser pulses, leading to th@=96/13~=7.4, is short enough to cause the formation of

formation of regular pattern‘?. patterns that only occasionally follow the rule that the sur-
face perturbation’s parts that are reached first and the emerg-
B. Continuous perturbations ing patterns roots should match. Again, the interplay between

the imposed perturbation and boundary conditions leads to a
tfmal placement of fingers characterized by an average dis-
ance between tips=12.
Figure 10 shows a different kind of perturbation that can
ead to instability. Here, a transverse perturbation is kept

Until now, we have explored the effect of isolated, point-
like perturbations. Here, we briefly discuss instabilities tha
develop when a nontrivial continuous perturbation that!
crosses the domain in the transverse direction is present.
will see that the basic picture of the instability development
presented so far can be used successfully to understand t ga|ght but its width is modified. This width is varied be-
formation of rather complex patterns in the configurations ween 2 and 4, and the period changes fp® (a) to 12
that follow. (b), and 24(c). First, we note that in the cage<\., insta-

Figure 9 shows the results for a perturbed region of fixeubIIIty dcannot dtevelopl, smge thetflwd cannotdbreaI:hthe im-
width (w,=3), where the perturbation is given a sinusoidal posed symmetrysimilar observation was made in the case

shape in they direction. Althoughw, is constant, and it cov- of instability imposed by “channels” of low resistance flow

. . 1
ers the whole domain’s width, an instability is still produced, in our earlier work"). If p> X, we generally observe forma-

; ; T ; ; tion of tips in regions with narrow perturbation, and of roots
since different film’'s parts are perturbed at different times. L . .
P P here the perturbation is widgriz. Fig. 1Qb)]. If p is as

Here, we see three examples of instability caused by the K o . I
wave-like perturbations. We address first the patterns shovjr‘?rge as in F!g. .1@:).’ a secondary instability develogat y
=12, 36. This is similar to the results shown latenext

in Fig. 9b), where the imposed waves period ps96/5 SN .
g. by P P p section in Fig. 11, where we concentrate more precisely on

~19. Here, roots develop in the regions where the film derstanding the infl ¢ bound giti
reaches the perturbation first, while the tips form in betweent/Nderstanding the influence of boundary conditions.

Hence, the emerging pattern’s wavelength equals the period

of imposed perturbation. However, this may not hold in gen- V. THE INFLUENCE OF BOUNDARY CONDITIONS AND
PARAMETRIC DEPENDENCE

eral. For example, in Fig.(8), wherep=96, the roots loca-

tion is determined by a rather involved interplay between the  There are a number of factors that influence the instabil-

perturbation and the boundary conditions that requires th&y development. First, there are factors related to the basic

formation of a root or a tip at the boundari@his point is  flow configuration: inclination angle, precursor film thick-

discussed further in Sec.)VSince the fluid is first perturbed ness, and domain size in the transverse direction. Next, there

(slowed down close to the boundarigg=0,48, roots form  are parameters introduced by the perturbations: their size,
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FIG. 9. Snapshots of the fluid profile ift=2 intervals of the flow down a vertical plane where we impose the continuous perturbations, of thevyidth
=3, and of various periods in the domdip=48.

shape, depth, and distribution. For simplicity and brevity, wethe fact that our boundary conditions respect “mirror” sym-
discuss here in some detail only two factors: the boundarynetry and plot results for € y<32, with the understanding
conditions and the inclination angle. The influence of thethaty=16 is the line of symmetry.

other parameters is summarized at the end of this section. If ~Figure 11 shows how the instability is being modified as
not specified differently, in this section we ug®=0, b  the distance between perturbations is decreased fro¥

=0.01,w,=w, =3, and6=0.5. (a) to 4 (d) (or, equivalently, as the distance from the pertur-
_ _ _ bation to the domain boundary is modifjed
A. The interaction between perturbations and First, we realize that the distance between emerging pat-

boundary conditions terns is influenced not only by the spaciddetween pertur-

So far, we have mostly avoided discussing the influencdations, but also by the boundary conditions, which require
of the boundary conditions on the instability development.the formation of either a tip or a root at the boundaries. The
This influence can indeed be mostly ignored as long as thiterplay between these two factors leads to variatss
domain sizel is large compared to the typical distance be-which may or may not be equal tb However, these emerg-
tween the patterns, i.e\y,from LSA. However, as soon as iNg \'s do center around,,, In the examples shown in Fig.
L,~Amax the boundaries need to be taken into account. W1, the “primary” wavelengthgthat develop firstvary be-
illustrate this point in our computations, but note that thetweenh=32/3(a) andA=16 (b, ¢, 9. In some cases, addi-
discussion also applies to experiments, where the boundariéional (secondary instability develops, such as=8 in Fig.
are physical walls which typically influence the flow by 11(d). If the distance between the surface perturbations falls
slowing down the fluid there. below \.~8, there is no pattern formation in betwepiiz.

To illustrate the effect of boundaries on pattern forma-Fig. 11(d)]. These perturbations do, however, induce insta-
tion, we now consider the instability development in a rela-bility in the rest of the domain. Since both perturbations are
tively small domain of the width.,= 16, and perturb the flow here very close to each other, the mechanism that triggers the
by a single perturbation. For presentation purposes, we udastability in this case is somewhat similar to the one ob-
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FIG. 10. Snapshots of the fluid profile Bi=2 intervals of the flow down a vertical plane where we impose continuous perturbations of theadh
-4, and of various periods in the domdip=48.

served with the single perturbation in Sec. IV A. However,number of factors, including noise in experiments, and the

now the resulting pattern is modified by the boundary effectscomputational domain’s size. See also Ref. 21 for additional
Still basing our argument on LSA, we can also estimatediscussion regarding this issue.

the growth rates of various patterns. Since, to the leading

order, the growth rate is determined hy one can predict B. The inclination angle and delayed instability

that the emerging patterns shown in Fig(&lshould grow

faster than the ones in Fig. (), since the growth rate of . .
\=16 is larger than the one of=32/3. Also, the patterns strong influence on the development of the mstab?lﬁf?.

shown in Figs. 1tb) and 11c), grow faster than the ones in The patterns’ growth is reduced, their shape is changed from

Fig. 11(d), since the latter is slowed down by the secondaryﬁnger'"ke to a triangular sawtooth shape, and the distance
A=8 instability. between patterns is increased; see Fig. 3 for experimental,

It is also interesting to note the competition between@nd Figs. ) and §b) for computational results. Here, we
different \’s in Fig. 11(b). Here, d=20 excites the initial pomt_out one additional feature of the flow down an incline.
formation of two patterns in between the perturbations. ~ Figure 12 shows snapshots of the developed patterns for
These patterns merge into one eventually. However, thi®=0, 1, 2 andw,=w,=3. Obviously, an increase id has a
merge does not happen in Fig.(&j, whered=24. Therefore, ~Strong effect; in particular, fob=2, on the considered time
Figs. 11a) and 11b) show that the minimum distance for scale, the instability is all but completely removed. The
formation of multiple patterns is between 20 and 24, which igveakening of instability a® is increased is as expected
comparable to 2. These results are consistent with the from the 2D simulatioris and experiment$ However, care-
simulations of the dewetting process on chemically heteroful inspection of Fig. 1&) shows an interesting additional
geneous substrates, where the formation of stable patternsé#ect that cannot be deduced from the 2D simulations. For
observed when the imposed perturbation is characterized dese largeD’s, a precursor’s perturbation leads to a local-
a lengthscale between, and 2..** Additional simulations ized disturbance of the frorfbarely visible in Fig. 1&)
(and experiments such as those presented in Sec) Wage  about timet=20], which “disappears” for an extended period
shown that the exact “critical” distance is influenced by aof time, only to start growing again about 150. This effect

It is known that changing the inclination angle has a
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FIG. 11. Snapshots of the fluid front as it flows over the perturbations, which are shown by dark areas. The distance between the pediutasioad,
as shown in the figures. The fluid front’s positions are plottedtin2 intervals.

can be also seen f@=1 in Figs. 7b) and 12b), although ~ C. The parametric dependence
the delay is shorter. We hope that this observation of delayed
instability will also provide some insight into the still open
guestion of the source of instability for very small inclination
angles.

We have analyzed in some detail the influence of the
various perturbation properties on the instability develop-
ment. For brevity, here we report only the main points:
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(a) D=10; 0 < t < 140. (b) D=1;0 < t < 200.
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FIG. 12. Snapshots of the fluid profile B1=10 intervals for different surface’s inclination angles.
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(1) Perturbation width and depth Based on the 2D lem is more complicateand characterized by much shorter
results® we expect a rather strong influence of the per-length scales than the gravity-driven flow outlined here.
turbation width and depth on the instability. This is However, due to the similar nature of the instability in these
really the case: Increasing the perturbed regions’ widthtwo problems, one expects that it should be possible to pre-
(both in thex andy directiong and the depth speeds up pare a macroscopic experiment where the stripes are imposed
the development of instability. This effect saturates foron a(macroscopicallyhomogeneous surface in some simple
large widths and depths, in particular for late times.  manner that allows for relatively straightforward experi-

(2) Cumulative effect of multiple perturbatiankicreasing ments. Examples of such experiments are presented below in
the number of perturbations that follow each other in theSec. VI B.
streamwise direction has expected influence on the in-  We need to point out that in both thermally driven flows,
stability development: More perturbations lead to an in-and in the experiments presented here, the figttingprop-
creased instability. This effect, however, is not veryerties are modified by the externally imposed perturbations.
strong, in particular for late times. The limiting case, In our simulations, we perturb thgrecursor film thickness
where all perturbations are touching each other, leadingssentially modifying the local resistance to the flow, but
to continuous channels, has already been briefly disimplicitly assuming complete wetting. Therefore, the manner
cussed in a separate publication. in which the perturbations are imposed in our simulations is

a simplified version of the physical problem. These precursor
film perturbations are also used to simulate additional uncon-

VI. INFLUENCE OF RANDOM SURFACE trolled perturbationgnoise in experiments that could lead

PERTURBATIONS (NOISE) ON INSTABILITY to, for example, modifications of the prewetting layer’s

DEVELOPMENT IN SIMULATIONS AND EXPERIMENTS thickness.

The simplest way to understand the influence of noise is

In physical experiments, one may expect the presence Qf, aqq 4 “weak” perturbation to otherwise well-defined flow
random surface noise, due to either mechanical or chemicgfy,aiion. Following this idea, Fig. 13 shows the results that
inhomogeneities. Furthermore, the contact line itself is typiyj,sirate some of the effects that noise can have on the flow.

cally noisy, leading to instabilities, as shown in Fig. 2. So farthe main goal of this figure is to analyze how the “strength”
we have shown that both types of noise lead to the formatiops gise influences the pattern formatiofiThe terms

of indistinguishable patterns. Therefore, it is sufficient to“strength " as well as “strong” and “weak” below are used in

concentrate on the influence of random surface perturbationg,q descriptive sense only. We do not attempt to analyze in

on the flow stability and pattern formation. We note that ingeaj| the relative influence of the parameters characterizing
our simulations these perturbations are characterized by @ perurbation(its length, width, deptfi. In Fig. 13 we im-

spatial extend that is much larger than the one that may bgegiately notice that the flow is very sensitive to the im-
expected in the experiments on uniform, carefully preparedysseqd noise’s details. This point is made clear already by a
surfaces. While it is beyond the scope of this work to analyzg;jmple visual inspection of the different parts of this figure,
computationally any realistignicroscopig noise, we make a i \hich most perturbations appear rather similar. However,
step in this direction by analyzing the influence of randomly;,o resulting fluid configurations can be very different.
distributed perturbations. We show that despite obvious sim- A} simulations presented in Fig. 13 are performed in a
plifications, these simulations do provide significant insightyomain of width L,=24, and have imposed two regular

into the main features of the experimental results. strong perturbation§we refer to them as the perturbations

In this section we concentrate on the following tagis: nos. (2) and (3)] characterized byv,=3 (w, is variablg, &
Analyze an interplay between random and regular perturbaz 5 5 and centered 4K, y) coordina{esﬂ?, 8, (17, 18, re-
tions. In particular, show how_ “better” control may k_)e usedspectively. Without any additional perturbatict2) and (3)
to prevent surface perturbations from producing irregulaggq to fingers’ formation characterized ky: 12, very simi-
patternsy2) show experimental results that illustrate the fact|5; 5 the ones shown in Fig. i&8. In addition to these two
that there exists a minimal distance between the imposeﬂerturbations, there is an additional weak perturbaion
perturbations such that the fluid still follows the imposed(l)] imposed ak=10, y=12, that is typically more shallow
surface features; an@) illustrate the effect of noise in ex- (5=0.25, and of decreased widtw,=w,. We think of this
periments. perturbation as the “noise” which is of lesser strength than
regular perturbation&) and(3).

Figure 13a) shows the case wher@d) is specified by
w,=w,=2.0, and2, 3) by w,=3.0. The distance between the

In an earlier work, we have shown that it is possible toperturbationgmore precisely, the distance in the streamwise
control the instability development by imposing infinite direction between the center ¢f) and the starting point of
channels of low resistance fldW.That result is consistent (2, 3] is x4=6. Here,(1) is not strong enough to modify the
with the experiments performed using thermally drivenflow significantly, so the long time flows development is al-
flows? In these experiments, a patterned surf@dernating most the same as ifl) were not there. In Fig. 1B), we
stripes of bare and coated Si0s prepared in a rather elabo- slightly increase the strength afl) by choosingw,=w,
rate fashion, and the flow is driven by thermocapillary shear2.25, and keeping everything else the same. This change is
stress at the air-liquid interface. Correspondingly, the probsufficient to completely modify the flow: in this casg,)

A. Interaction between noise and regular surface
perturbations: Computational results
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(a) Weak first perturbation: (1) (z = 10): wz = 2.0,
6 =0.25; (2, 3) (x =17): wy =3.0,5 =0.5.
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(c) Long second perturbation: (1) (x = 10):
we = 2.25, § = 0.25; (2, 3) (z =19): wy =7.0,
§=0.5.
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(e) Large first perturbation: (1) (x = 10): wy = 2.5,
6 =0.25; (2, 3) (x =17): wy =3.0,5 =0.5.
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(b) Strong first perturbation: (1) (x = 10):
wyg = 2.25, § = 0.25; (2, 3) (z = 17): w, = 3.0,
5

24r

0 25

(d) Deep first perturbation: (1) (z = 10): w, = 2.0,
6 =20.5 (2, 3) (x =17): wy =3.0,5 =0.5.

(f) Short distance between perturbations: (1)
(z = 10): wy = 2.25, § = 0.25; (2, 3) (z = 12):
wgy = 3.0, § = 0.5.

FIG. 13. Snapshots of the fluid profile #t=2 intervals. Here, the flow is perturbed by three perturbations. The firdrefegred to agl)] is always centered
atx=10 and its widths in thet andy directions are the san@v,=w,). The other two perturbatiorigeferred to ag2) and(3)] are identical, havev,=3.0,
6=0.5, and are centered gt 6, 18, and at variablg’s.

leads to the formation of a root downstream from its posi-in the case wher¢l) was weaker. This is an example of a
tion, in contrast to Fig. 1®&). However, the configuration situation where longer perturbatiot@milar to the channels
shown in Fig. 18b) is energetically unfavorable, since the analyzed in Ref. 2lllead to the formation of regular patterns
distance between the patterns is much larger than(2ee that were not achieved by “weaker” pointlike perturbations.
Fig. 11). Therefore, we expect the formation of an additional Figure 13d) returns to the pointlik€2, 3) and explores
finger which would reduce. to 12. The initiation of this the influence of the depth afl). Here, §=0.5, while the
splitting process can be seen for the latest times shown iwidths are the same as in Fig. (&8 This depth’s increase
Fig. 13b). has a dramatic influence, and completely modifies the emerg-

Figure 13c) illustrates that “strengthening” @2, 3) can
balance a stronger perturbatioh). Here,(1) is the same as
in Fig. 13b), but the length of2, 3) is increased tav,=7,

ing patterns. The result is almost identical as2f 3) were
absent: two symmetrically positioned fingers develop, the
distance between themis=12, and roots form at the bound-

keepingxy the same. As a result, we reach similar patterns aaries(y=0,24. This configuration is favorable if strond)
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(c) Random perturbations of perturbed flow: x4 = 3.

FIG. 14. Snapshots of the fluid profile =2 intervals. The fluid is perturbed by a combination of regular perturbafiggsw,=3.0, §=0.5, at the distance
d=12 apart in they direction, positioned at=26, 13, 10 in(a), (b), (c), respectively, and random perturbations on averagg=a10, 10, 13 respectively. Other

details are specified in the text.

prevents the formation of a finger tip in the domain’s centerearlier (x4 is decreased fromy=6 to x4=1). Since(1) has

aty=12. The same result can be obtainedLlifis kept at the

less time and space to modify the flog,3) take over and

same depth, but its size is increased. This is illustrated in Figead to the formation of different patterns, compared to the

13(e), where the size ofl) is increased tav,=w,=2.5, but
its depth is6=0.25. Figures 1@l) and 13e) therefore illus-
trate how the spatial exten@v,,w,) and the depthg, com-

bine to determine the total strength of a perturbation and its

influence on the pattern formation process.

Figure 13f) shows the case where the impact(@f is
weakened by reducing its range of influence. Héte 2, 3
are identical to the ones used in Fig(lg3 but the centers of
(2, 3) are shifted closer t@l), therefore affecting the flow

case where the distance between perturbation is larger. A
similar effect is also illustrated later in Sec. VI B, regarding
the experimental results.

Next, we proceed to more realistic examples of the in-
fluence of noise on pattern formation. Figures 14 and 15
combine random perturbations, similar to the ones used in
Fig. 8, and perturbations separated in thélirection by a
regular distance that is decreased frdm12 in Fig. 14 to
d=10 in Fig. 1%a), and tod=7 in Fig. 18b). The random
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FIG. 15. Snapshots of the fluid profile #1=2 intervals. The fluid is perturbed by a combination of regular perturbatiggrsw,=3.0, §=0.5 positioned at
x=13), and of random perturbations identical to the ones in Fig&)lahd 14b).

perturbations are weaker than the regular ones and are posiem perturbations. These random perturbations are placed
tioned at an average distancedat7 (<X, i.e., in the lin-  close to the regular ones, so that the fluid does not have the
early stable regime These simulations will be used to di- time or space to develop long fingers. However, even though
rectly relate our simulations to experimental results. the regular patterns are not yet fully formed, they are very
In Fig. 14 we usel=12 that is close to the wavelength of stapje with respect to this additional disturbance. These re-

maximum growth. Therefore, we expect that these perturbag s show a quite remarkable stability of the already-formed
tions will strongly influence the flow, leading to regularly fluid patterns with respect to surface noise
spaced patterns characterized by the wavelength that coin- '

; . . . Figure 1%a) shows that it is not only the streamwise
cides withd. Indeed, this is the case if the random perturba- . 9 43 y .

. S distance between random and regular perturbations that de-
tions are placed close to the regular ones, as in Fi¢p)14

Here, the average distance in the streamwise direction pdermines the evgntual set of patterns. Here, although the
tween the two rows of perturbationsss=3. Therefore, the regular perturbations follow the random ones very closely
contact line does not have enough time to develop well{X«=3, as in Fig. 148)] the influence of these regular pertur-
defined patterns prior to reaching the layer of regular perturbations is weakened by the fact that their distance inythe
bations. These regular perturbations then lead to patterrf§rection is onlyd=10. Going back to LSAviz., Fig. 1), we
characterized by uniform distance and length. Perhaps surecall that the wavelengtihh=10 is only weakly unstable.
prisingly, these regular patterns are formed rather fast at @herefore, these perturbations cannot win against already-
relatively short distance downstream from the zone of reguformed patterns characterized by, on average, la(gad

lar perturbations. If the distaneg is increased, however, the more unstablewavelengths. The average distance between
fluid has more time to develop irregular patterns, and thgyatterns is the same as in Fig.(li4 despite the fact that the
regular.per.turbations’ influence is not so strong. This effect isegular perturbations are spaced closer to each other.
shown in Fig. 14b), wherex,=16. Here, the patterns are less  — rjgre 15b) shows the resulting patterns where the dis-
regular compared to Fig. 14, although the regular pertur- .o hatween regular perturbationsdis7. Sinced=7 is

bations’ influence is still significant. The average wavelengtr]ess thank,, the fluid does not follow the imposed regular
. . . . . C
(distance between pattejnis slightly larger than in Fig. perturbations at all, and instead develops randomly distrib-

14(a). ) .
Figure 14c) shows that the fluid that has already beenuted patterns. The average distance between the patterns is

perturbed by regularly spaced surface patterns is much le&0se to the wavelength of maximum growth, and in this case
sensitive to random perturbations, compared to the unpefS the same as in Figs. @ and 1%a).

turbed flow. Here, we invert the order of the rows of pertur- ~ These computational results allow us to gain better un-
bations and impose regular perturbations first and then gerstanding of the influence of noise on the instability devel-
group of random perturbations identical to the ones in Figsopment. Next, we use this understanding to explain the re-
14(a) and 14b). The first regular array of perturbations pro- sults of physical experiments involving flow over patterned
duces uniformly spaced patterns which then reach the rarsurfaces.
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(c) t = 60 sec. (d) t = 180 sec.

FIG. 16. Snapshots of the PDMS front on 5° incline as it flows over 2.5 cm wide stopegmint), with a spacing of 2.5 cm in between. The fluid is released
at timet=0, 8 cm above the stripes’ start. The amount of fluid is 25 g. Note that the fluid actually flows on the stripes but it is slowed down significantly.

(c) t = 60 sec. (d) t = 180 sec.

FIG. 17. Snapshots of the PDMS front as it flows over 0.65 cm wide sttkpaint), with a spacing of 0.65 cm in between. The setup is the same as in
Fig. 16, except for the configuration of stripes.
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(d) t = 180 sec.

FIG. 18. Snapshots of the PDMS front as it flows over 2.5 cm wide st(piépaint), with spacing of 2.5 cm in between. The fluid is released at time
=0, 12 cm above the stripes’ start. The configuration is identical to the one shown in Fig. 16, except for the release point.

B. Interaction between noise and regular surface bations are naturally provided in experiments by microscopic
perturbations: Experimental results surface inhomogenities that, for example, may lead to the

Figures 16—18 show the experimental patterns that resutfariations in the thickness of the prewetting film.
as PDMS flows over a surface that is modified by the pres- _ Figure 16 shows that the stripes’ preseri@adth of
ence of stripes. These stripes are prepared by covering songe> M, and a distance between neighbors of 2.pisrsuf-
glass plate’s portions with an oil-based paint. Since the apficient to induce instability and formation of long fingers in
parent contact angle of the PDMS on the stripes is signifibetween the stripesimilar to the simulations shown in Fig.
cantly larger than on the glass not covered by the paintl4@]. This particular configuration is chosen since the im-
PDMS tries to avoid flowing on the painted stripes and flowsPosed wavelength is close to the natural wavelength that de-
in the low-resistance regions instead. The experimental setuflops in the case of the flow on plane glass, see K. &
is otherwise identical to the one used to obtain the datds also close to the estimate that goes back to Hugpehio
shown in Fig. 3; therefore, the substrate can be still thougheredicts that the emerging wavelength is given by
of as covered by a thin prewetted layer. The setup is characs 7.5 VAol (pgsina)]*3, where A is the cross-sectional
terized by small inclination angle=5°, so that the “natural” fluid area. With our flow and fluid parameters, this estimate
contact line instabilitythat would develop on a macroscopi- givesAe~4.2 cm. One can show that a similar estimate also
cally homogeneous surface without any imposed surface pefesults from LSA.
turbationg grows rather slowly and the contact line is only ~ Figure 17 shows that if the distance between stripes is
weakly corrugated by the time the fluid reaches the stripedlecreased, and everything else is left the same, very different
region. The imposed stripes modify the flow due to the variapatterns are obtained. Here, the stripes are 0.65 cm wide, and
tion of wetting properties: We have confirmed that wettingthe distance between them is also 0.65 cm. In this case, the
properties are relevant by repeating the experiment usinfjuid follows the imposed perturbations only partially, similar
identical, but water-based paint stripes—in this case, théo the computational results shown in Fig(p Clearly, the
fluid flow is unperturbed by the stripes’ presence. We noteaverage wavelength is much larger than the imposed pat-
that the fluid actually flows over the stripgfis may not be terns’ periodicity.
obvious from the figures due to the insufficient confrast Next we proceed to discuss the influence of noise on the
eventually completely covering the whole domain. flow. This influence was already discussed computationally

We think of the experiments shown in Figs. 16—18 as arin Fig. 14, which shows that if the contact line is perturbed
experimental analog of the simulations shown in Figs. 14y random noise, and then it flows over a striped region, the
and 15. The stripes in experiments play the role of strongputcome depends on the distance between the release point
regular perturbations in simulations, while irregular pertur-and the beginning of this striped region. Figure 18 illustrates
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this effect in the experiments. Here, the fluid’s release pointdirection of developing a better understanding of the relevant
is 4 cm further upstream from the striped region’s beginningjssues that determine the dynamics of microflows, including
compared to Fig. 16. Clearly, the patterns that form are nowheir control and applications.

much more irregular. Since the instability has more time to

develop prior to reaching the striped region, the stripes’ in-ACKNOWLEDGMENTS
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