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We study the dewetting process of thin fluid films that partially wet a solid surface. Using a
long-wave �lubrication� approximation, we formulate a nonlinear partial differential equation
governing the evolution of the film thickness, h. This equation includes the effects of capillarity,
gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces.
We perform standard linear stability analysis of an infinite flat film, and identify the corresponding
stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a
semi-infinite film of length L in one direction. The numerical simulations show that for long and thin
films, the dewetting fronts of the film generate a pearling process involving successive formation of
ridges at the film ends and consecutive pinch-off behind these ridges. On the other hand, for shorter
and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the
final drops pattern show a competition between the dewetting mechanisms caused by nucleation and
by free surface instability. We find that precise computations, requiring quadrupole precision of
computer arithmetic, are often needed to avoid spurious results. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2749515�

I. INTRODUCTION

The evolution of partially wetting thin liquid films on
solid substrates and the subsequent pattern formation are a
subject of growing importance. This type of flow is of wide-
spread relevance in a variety of technological applications,
ranging from various types of coatings1–3 to new applications
in micro- and nanofluidics.4,5 These films are often unstable
and could break up, leading to the formation of dry spots that
are often undesirable. One important question is, what are
the mechanisms involved in the dewetting and breakup of
unstable thin films?

Numerous theoretical, computational, and experimental
works have addressed this question, and in our brief intro-
duction we discuss only a few works that are closely related
to the topic of this paper. By now it has been generally ac-
cepted that there are basically two instability mechanisms
�see Ref. 6 for a brief review of relatively recent develop-
ments�. These two mechanisms are �i� free surface instability,
sometimes also called spinodal instability due to the similar-
ity to spinodal decomposition of a binary mixture,7 described
by the Cahn-Hilliard equation,8 and �ii� nucleation-type in-
stability �or simply nucleation�, which is due to the presence
of defects of either the film or the solid surface. It is often
unclear which of these two mechanisms is relevant in a par-
ticular experiment, and only during the past decade or so has
a more precise understanding of this problem been
reached.9–21

An important ingredient in all problems involving

dewetting is the model of liquid-solid interaction �see Refs.
22 and 23 for reviews�. Using one of the approaches, the
so-called diffuse interface model,24 recent theoretical works
have discussed in some detail the two instability mechanisms
mentioned above.25–28 In particular, in these works it is
shown that both regimes may appear during the evolution of
a localized perturbation. In the surface instability dominated
regime, lateral and traveling undulations develop at both
sides simultaneously with the growth of the initial perturba-
tion, leading to patterns whose distance is on average close
to the wavelength of maximum growth, �m, resulting from
the linear stability analysis �LSA� of the response of a film to
infinitesimal perturbations. On the other hand, in the
nucleation-dominated regime, the initial disturbance grows
and expands laterally while rims are formed at both sides.
The final structure is a set of drops �connected by thin films�
separated by an average distance unrelated to the wavelength
of maximum growth of the surface instability. Related dis-
cussion can be found in other experimental and theoretical
works �e.g., Refs. 11, 12, 14, 16–18, and 21� that have con-
sidered similar problems. However, it is worth pointing out
that, to our knowledge, the mechanism that determines the
distance between the drops in the nucleation-dominated re-
gime is not well understood.10,11,15–17,21,26,29–32 Particularly in
the experiments, an additional complication is that multiple
nucleation centers exist and therefore the emerging wave-
lengths depend not only on the instability properties of a
film, but also on the properties of the substrate and more
generally on the conditions under which the experiments are
performed �see Ref. 16 and references therein for a review of
this issue�. Some progress has been reached recently by con-
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sidering the details of the film profiles before the breakup
�so-called “satellite-hole” formation15–19,21,33�.

All the works listed so far discuss the instability of
infinite two-dimensional �2D� or 3D liquid films. However,
practical problems commonly involve films and rivulets of
finite extent, in particular in a variety of printing-related ap-
plications such as direct printing for microcircuit
production,34 and so-called microcontact printing.35,36 These
processes are known to be subject to instabilities37,38 and,
furthermore, experimental results clearly point out that the
presence of fronts has a strong influence on the instability
development.

Figure 1 shows an example of experiments where the
end effects are clearly important. This figure shows breakup
and pearling process of a long thin fluid rivulet placed on a
partially wetting substrate.39 The ends of the rivulet dewet
along its axis toward the center while the long side contact
lines remain straight and at rest. At the rivulet ends, ridges of
increasing size develop. The width of the necks connecting
the ridges and the main body of the rivulet decreases until a
drop detaches at each end. As the axial dewetting process
continues, successive ridges and neck breakups give place to
a nearly equidistant linear array of drops.

A problem that is similar to the one shown in Fig. 1 �at
least on the level of experimental photographs� is the
breakup of an initially extended drop in an otherwise quies-
cent fluid.40–42 Features such as the formation of bulges at
the extremes, rupture of the neck connecting a bulge to the

main drop, and drop detachments appear similar in both
problems. Physically, however, the drop breakup problem
differs significantly from the breakup of a rivulet, since there
is no solid surface involved and, therefore, solid-liquid inter-
action including the contact lines is absent. However, both
problems involve pinch-off of liquid drops at the fluid fronts,
and therefore one may expect that some concepts that were
useful in understanding the breakup of a liquid drop could
also be appropriate in the rivulet context. We note that in the
elongated drop problem, the final pattern of drops is mainly
controlled by the ratio of the ambient fluid and drop viscosi-
ties. In the problem illustrated by Fig. 1, however, the wet-
tability properties of the substrate are important.

In the present paper, we concentrate on the role of finite
size of liquid films on instability development in the simpli-
fied geometry that considers a film of finite extent in the
rivulet direction �x axis�, but infinite in the other one. There-
fore, we ignore the transverse curvature that is clearly of
importance in the experiments such as those presented in
Fig. 1. Even in this simplified geometry, we find new and
interesting results regarding the influence of finite film size,
and expect that these results will be crucial for understanding
the breakup of 3D fluid strips. That problem will be consid-
ered in detail in future work.

We perform the study by numerically solving the gov-
erning nonlinear equation for the film thickness within the
lubrication approximation, including capillary effects, grav-
ity, as well as partial wetting via a disjoining pressure model.

FIG. 1. Evolution of a fluid strip �PDMS, viscosity �=20St, surface tension �=19.8 dyn/cm� on a glass substrate previously coated with a fluorinated solution
�Ref. 39�. The equilibrium contact angle is 57° and the black segment corresponds to 4.1 cm.
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Although this work mostly concentrates on finite films, we
also discuss the breakup of infinite ones and the properties of
the resulting patterns. An additional motivation for consider-
ing infinite films is that we find that some important aspects
of finite film dynamics could be understood using the con-
cepts developed for the simpler case of infinite films.

This paper is organized as follows. Section II presents
the basic mathematical model. The linear stability analysis of
an infinite film is presented in Sec. III, where we also discuss
the stability under finite amplitude perturbations, related to
film metastability. Section IV discusses finite films. Here, we
also discuss, compare, and interpret some of the results ob-
tained for the finite films in terms of those obtained for infi-
nite ones. Appendixes A and B discuss the disjoining pres-
sure model and some details of the steady single drop
solution, respectively.

II. LUBRICATION MODEL

In the study of thin film flows on solid substrates, the
evolution of the fluid thickness, h, is typically described un-
der the framework of lubrication theory. This approach al-
lows us to reduce Navier-Stokes equations to a single non-
linear partial differential equation for h. In addition, finite
contact angles can be included in the model by accounting
for van der Waals forces, as described below. We note that
although lubrication theory is strictly valid only in the prob-
lems characterized by vanishing free surface slopes, it has
been used commonly in partial wetting conditions, therefore
in situations in which the contact angle is not necessarily
small;43–45 see also Refs. 24 and 46–48 for further discussion
regarding involved issues. This approach has been justified
in part by the works that show that even in the case of large
contact angles, only relatively small deviations from more
complete models result. For example, Ref. 49 compares the
solutions for the cross section of a rivulet flowing down a
plane obtained by solving the complete Navier-Stokes equa-
tion with the predictions of the lubrication approximation
�see their Table I�. For a contact angle of 30°, they find that
the differences between the two approaches related with the
shape of the free surface are of the order of a few percent.
Although the accuracy of the lubrication approximation is
not so good regarding the details of the velocity field, they
find that these velocity differences cancel out when the total
flux along the rivulet is computed. The issue of appropriate-
ness of the use of the lubrication approximation was also
discussed earlier.50 In that work, it was shown that there are
some differences in the free surface slope between lubrica-
tion theory and Stokes formulation, but only very close to the
contact line.

Another concern regarding the use of the lubrication ap-
proximation is that one typically �as we do here� approxi-
mates curvature of the free surface by hxx, where x is an
in-plane coordinate. This issue was considered in Ref. 51,
where it is shown that use of the complete nonlinear curva-
ture yields only a few percent difference �see, e.g., Fig. 2�b�
in Ref. 51�. There have been also some attempts52,53 to im-
prove the typical lubrication approximation approach. These
works show that including a correction factor to the flux term

in the continuity equation extends the limits of its validity.
Therefore, it may be appropriate to implement these im-
provements when precise quantitative results are desired. In
the present problem, where we are mainly concerned with
the basic mechanisms involved in the dewetting and breakup
processes, we expect that the standard lubrication approach
is sufficient.

The van der Waals forces are included in the formulation
of a lubrication model via disjoining pressure ��h� �see
Appendix A�. The resulting equation for the fluid thickness,
h, is �see, e.g., Refs. 43, 44, and 54�

3�
�h

�t
+ � � · �h3 � �2h� + � · �h3 � ��h��

− �g � · �h3 � h� = 0, �1�

where � is the viscosity, � is the fluid density, and g is the
gravity. Here, the first term stands for viscous dissipation and
the other three terms account for the driving forces, which
are surface tension, van der Waals, and gravity force, respec-
tively. The disjoining pressure model that we use,

��h� = �f�h� = ���h*

h
�n

− �h*

h
�m� ,

introduces � �proportional to the Hamaker constant� and the
exponents n�m�1 �note that f�h� is a dimensionless func-
tion�. The first term represents liquid-solid repulsion, while
the second term is attractive, leading to a stable film thick-
ness h=h* �related to precursor film thickness, see Appen-
dixes A and B�. Within this model, �=S / �Mh*�, where S is
the spreading parameter, and M = �n−m� / ��m−1��n−1��
�see Appendix A�. The spreading parameter can be related to
the apparent contact angle 	 via Laplace-Young condition
S=��1−cos 	�.

By defining the dimensionless variables ĥ=h /hc,
x̂=x /xc, ŷ=y /xc, t̂= t / tc, with

tc =
3�

�

xc
4

hc
3 ,

Eq. �1� becomes

�h

�t
+ � · �h3 � �2h� + K � · �h3f� � h� − D � · �h3 � h� = 0,

�2�

where f�=df /dh and we have omitted the “hat” symbol for
simplicity. The dimensionless constants are given by

D = G
xc

2

a2 , K =
�

�

xc
2

hc
, �3�

with a=	� /�g being the capillary length. We use G=1
when gravity effects are considered and G=0 when they are
neglected. From now on we take capillary length as the
length scale, so that hc=xc=a. Thus, we have D=G and
K= �1−cos 	� / �Mh*� with h* in units of a. We restrict our-
selves here to the two-dimensional planar case, so that Eq.
�2� reduces to
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�h

�t
+

�

�x
�h3� �3h

�x3 + Kf�
�h

�x
− G

�h

�x
�� = 0. �4�

This is the equation that we analyze in the rest of the paper.
Remark. We note that although we base our length

scales xc and hc on the capillary length, a, our results are
relevant to a wide range of film thicknesses including micro-
metric or nanometric films. Interested readers can simply re-
place the length scales as appropriate to the problem in ques-
tion. It should be noted that some physical effects become
more or less important for different films; e.g., for very thin
films, gravity loses its importance, as can be seen from the
definition of D.

We also note that in what follows, we mostly use the
values of h* in the range �0.001, 0.01�. For films of thickness
comparable to the capillary length, this choice leads to a
relatively thick precursor film �on a micrometer scale�. Pre-
cise comparison to experiments would require carrying out
computations with a thinner precursor, which carries a sub-
stantial increase in the computational cost. However, the lin-
ear stability results that follow in Sec. III A can easily be
extended to smaller values of h*, if so desired.

III. UNIFORM INFINITE FILM

We present here an overview of the standard linear sta-
bility analysis �LSA� of an infinite film of uniform thickness.
Some related results, although for different disjoining pres-
sure models, can be found in Refs. 26 and 27. We will see
that the analysis of infinite films sets a convenient framework
to characterize the dynamics of finite length films discussed
later in Sec. IV.

A. Linear stability analysis of an infinite film

In order to study the stability of a uniform solution, we
perturb it by setting h=h0+
h0eikx+�t, where k=2� /� is the
wavenumber, � is the growth rate, and 

1 is the amplitude.
Upon replacing this expression into Eq. �4�, and considering
only O�
� terms, we obtain

� = h0
3k2�kc

2 − k2� , �5�

where

kc
2 = − G + Kf��h0� = − G −

K

h0
�n�h*

h0
�n

− m�h*

h0
�m� . �6�

If kc
2�0, we have ��0 and the film is linearly stable for all

k. On the other hand, if kc
2�0, the range 0�k�kc leads to

instability. Figure 2 shows kc
2 as a function of h* for two

values of h0, and for G=1, n=3, m=2, and 	=50° �we use
these parameters in what follows except otherwise stated; the
value of the contact angle is motivated by the experiments
shown in Fig. 1�. We see that when the fluid film is thick
enough �e.g., h0=0.5 as in Fig. 2�a��, the film is stable for all
h*. For relatively small h0, there is a range h*

−�h*�h*
+ lead-

ing to instability. The fact that van der Waals forces cannot
destabilize the film for h* less than a threshold value, h*

−, is
due to the fact that the range of the intermolecular forces is
then too short in order to drive the instability of the bulk. On
the other hand, the film also cannot be destabilized by van
der Waals forces for h* greater than a certain value h*

+ due to
the stabilizing effect of gravity. For h*�h0, both gravity and
intermolecular forces stabilize the film.

Specifically, for n=3 and m=2, we have K=2
�1−cos 	� /h* and the condition kc

2=0 reduces to a quadratic
equation, whose roots are

h*
±�h0� =

h0

3
�1 ±	1 −

3Gh0
2

2�1 − cos 	�
� . �7�

Figure 3 shows these two solutions for G=1, which together
determine the region of instability in the �h* ,h0� plane. We
notice that if

h0 � h0,cr =	2�1 − cos 	�
3

, �8�

the film is linearly stable for any h*.
We note in passing that although this result may appear

different from the one obtained when using the diffuse inter-

FIG. 2. Square of the critical wave number, kc
2, as a

function of h* for �a� h0=0.5, �b� h0=0.1 �the inset
shows the region for very small h*�. Here G=1, n=3,
m=2, and 	=50° �we use these parameters in what fol-
lows except when stated otherwise�.
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face potential �see, e.g., Ref. 26�, the difference lies only in
the choice of parameters. Considering next the maximum of
the curve h*

+�h0�, we find that for

h* � h*,cr =	1 − cos 	

2
, �9�

the film is stable for any value of h0, analogously to the
diffuse interface potential.26

Note that for G=0, the roots of Eq. �7� collapse to
h*

−=0 and h*
+=2h0 /3, also shown in Fig. 3. Thus, without

gravity, the film is unstable in the range 0�h*�2h0 /3 for
any h0.

Within the unstable region, the dispersion relation, Eq.
�5�, gives maximum growth rate

�m = 1
4h0

3kc
4, �10�

at the wavenumber

km =
2�

�m
=

kc

	2
.

We note that Eq. �10� shows a strong dependence of � on h0.
In addition, variation of h* for fixed h0 can also lead to a
wide range of �’s. To illustrate this, Fig. 4 shows ��k� for
h0=0.1 and two different values of h*. Note that one order of
magnitude variation on h* yields a ratio of maximum growth
rates close to 103. Furthermore, smaller h* leads to instability
at significantly longer wavelengths. We will use these results
to compare to the numerical simulations that follow.

We mostly focus our study on a given pair of exponents
�n ,m�, that is, e0= �3,2�. However, other values can be used
to account for different types of intermolecular interactions.
Thus, we show briefly the effect of varying �n ,m�, concen-
trating on e1= �4,3� and e2= �9,3�, which have been used
extensively in the literature �see, e.g., Refs. 43, 55, and 56�.
Figure 5 shows that as the exponents vary from e0 to e2, the
unstable region for G=1 becomes narrower with larger val-
ues of both h*,cr and h0,cr. For G=0, Eq. �6� shows that the
unstable range reduces to 0�h*� �m /n�n−mh0.

Let us now consider the effect of contact angle, 	. Figure
6 shows that the unstable area, as well as the corresponding
value of h0,cr, decreases as 	 decreases, which implies that
the unstable region collapses as 	→0, i.e., the film is stable
for a completely wetting fluid.

B. Absolute stability analysis

In this section, we analyze the absolute stability of an
infinite film by discussing the Gibbs free energy of the sys-
tem, following the approach put forward recently.7,26,57 We
give a short overview of this approach applied to the disjoin-
ing pressure model outlined in Appendix A.

A linearly stable uniform film is absolutely stable �to
finite amplitude perturbations� only if there is no thickness
profile with smaller energy. Otherwise, under finite perturba-
tions, the uniform state h0 evolves to a nonuniform configu-
ration; this state is called metastable.

Let us assume that in a domain �0,X�, the film is flat
everywhere except in a finite region of length L where there

FIG. 3. Curve of marginal stability �solid line� as given
by Eq. �7� for G=1. The dash-dotted lines correspond
to Eqs. �8� and �9�, respectively, and the dotted line is
h*=2h0 /3.

FIG. 4. Dispersion relation ��k� for h0=0.1 and �a� h*=0.01, �b�
h*=0.001.
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is a higher �or lower� plateau of thickness h0 with transition
regions of negligible width with respect to L. The equilib-
rium configuration of the system must minimize the free
energy

E = 

0

X �hx
2

2
+ ��h� + G

h2

2
�dx , �11�

with the constraint of constant area, defined by A=�0
Xhdx.

Here, ��h� is the �nondimensional� energy density due to
van der Waals forces given by �see Eq. �A6� for the dimen-
sional version�

��h� = Ku�h� + s , �12�

where s=S /�=1−cos 	, and

u�h� = h*� 1

n − 1
�h*

h
�n−1

−
1

m − 1
�h*

h
�m−1� . �13�

We note that the use of a more complex form for disjoining
pressure may lead to �=��h ,hx , . . . �.58–61 Minimizing the
free energy is equivalent to minimizing the functional

F = 

0

X �hx
2

2
+ Ku�h� + s + G

h2

2
− p�h̄�h�dx , �14�

where p is a Lagrange multiplier. Note that p is also the
dimensionless pressure corresponding to an equilibrium flat

configuration of thickness h̄=A /X. In fact, by setting �h /�t
=0 in Eq. �4� and integrating twice, we obtain

p�h̄� = − Kf�h̄� + Gh̄

for a uniform film of thickness h̄ �see also Appendix B�.
By neglecting the energy in the narrow transition regions

at the extremes of the plateau region of thickness h0 and
length L, the energy per unit length can be calculated from
Eq. �14� as

FIG. 5. Curves of marginal stability for 	=50° and dif-
ferent pairs of exponents �n ,m�. The cross corresponds
to the case �h* ,h0�= �0.01,0.1�, discussed later in the
text.

FIG. 6. Curves of marginal instability for �n ,m�
= �3,2� and different contact angles 	. The cross corre-
sponds to the case �h* ,h0�= �0.01,0.1�.
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g�h0� = Ku�h0� + s + G
h0

2

2
− p�h̄�h0.

Figure 7 shows the values of h0 that lead to local minima of

g�h0� for given h̄. Note that the inflection points of these
curves satisfy

d2g

dh0
2 = − K

df

dh0
+ G = 0,

a condition that is coincident with kc
2=0 as given by Eq. �6�.

Consequently, the two inflection points �marked h0
− and h0

+ in
Fig. 7� represent the lower and upper linearly stable thick-

nesses. As a matter of fact, h0= h̄ also satisfies dg /dh0=0,
and it is a local maximum of g�h0�.

The two minima of g�h0�, h1 ��h*�, and h2 correspond
to absolutely stable film thicknesses, and are specified by

dg

dh0
= K

du

dh0
+ Gh0 − p�h̄� = − Kf�h0� + Gh0 − p�h̄� = 0.

The metastable thickness range is limited by the values of h0

where the two minima have the same energy and the same
pressure �see Ref. 26 for details�. Therefore, the upper and

lower limits of h0, namely h1 and h2, as well as h̄ are given
by the roots of


 dg

dh0



h1

= 0,


 dg

dh0



h2

= 0,

g�h1� = g�h2� .

Figure 8 shows the values of h1 and h2 that define a

FIG. 7. Energy per unit length, g�h0�−s, as a function
of plateau thickness, h0, for h*=0.01 and different av-

erage thicknesses h̄. The values of h0 at the inflection
points and at minimum and maximum points are

marked for h̄=0.08.

FIG. 8. Regions of stability, metastability, and linear
instability of infinite flat films in the parameter space
�h* ,h0�. The cross indicates the typical case �h* ,h0�
= �0.01,0.1�.
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metastable regime in �h* ,h0� space �dashed line in Fig. 8�. In
Sec. IV, we use this diagram as a framework to describe the
results of the evolution of a uniform film of finite length.

Note that the lower boundary of the metastable regime
shown in Fig. 8 is either coincident or above the line
h0=h* �dotted line in Fig. 8�. Therefore, infinite films thinner
that h* are absolutely stable for any perturbation.

C. Computational results for infinite films

Here we discuss the stability of infinite films via numeri-
cal simulations, and compare the results to the LSA from
Sec. III A. The details of our computational method are
given in Ref. 62; a very brief outline follows here.

The computational domain �0�x�X� is divided into nx

cells of size �x centered at node points xi �i=1, . . . ,nx�.
Equation �4� is then discretized in space by using a central
finite-difference scheme, while time discretization is per-
formed by employing an implicit Crank-Nicolson method.
The time step is controlled by imposing a tolerance equal to
10−3 of the maximum relative error.62 Regarding spatial reso-
lution, we use �x=0.01, which yields converged results.

To compare to the LSA, we carry out the computations
for a uniform film of thickness h0, which is perturbed as
follows:

h�x,0� = h0�1 + 
 cos�2�x/��� , �15�

with 
=10−3. The numerical simulation is performed using
hx=hxxx=0 at x=0,X, which leads to no-flow conditions
across the domain boundaries. Thus, by using X=n�, with n
an integer, these conditions function as periodic boundary
conditions and are consistent with the assumption of an infi-
nite film.

Figure 9 shows the results for the unstable case �the LSA
result is shown in Fig. 4�a��, where we take the domain size
equal to the wavelength of maximum growth, i.e., X=�m

=2.66. In agreement with the LSA, we see that the flow is
unstable, with the long time evolution leading to the forma-
tion of two half drops, which represent a single drop within

the wavelength �m. Therefore, this infinite flat film evolves to
a steady-state configuration with drops separated by a dis-
tance D=�m.

Figure 9�b� shows the time evolution of the amplitude
��t�, defined as

��t� = h0 − h�X/2,t� . �16�

We observe a very good agreement between the numer-
ical solution and the LSA result, which predicts
��t�=
 exp��mt� with �m=0.03105. We note that the
asymptotic value ��t→�� is slightly different from h0−h*;
this difference is explained in Appendix B.

Figure 10 shows the response of the film in a much
larger computational domain, X=60, initially perturbed by a
number of wavelengths �i=2X / i �i=1, . . . ,50� in the form

h0�x,0� = h0�1 + 
�
i=1

50

Ai cos�2�x/�i�� ,

where the amplitudes Ai are chosen randomly in the range
�−1,1�. The resulting steady pattern is formed by drops sepa-

rated by an average distance D̄�2.71, which is very close to
�m. We will discuss this result further in the context of finite
films in Sec. IV.

As an example of a stable film, we consider �h* ,h0�
= �0.07,0.1�, and take �=7 for which the LSA predicts
�=−5.48�10−3. Figure 11�a� shows consistently that the
free surface, specified by Eq. �15� at t=0, recovers the flat
profile as t→�. Figure 11�b� confirms that the time evolu-
tion of the amplitude ��t� is in very good agreement with the
growth rate predicted by the LSA.

We proceed now by considering the action of finite dis-
turbances. Therefore, we consider a localized disturbance at
x=x0 of the form26

h�x,0� = h0�1 − d exp�− �x − x0�2/�2�� , �17�

where d controls the maximum amplitude of the perturba-
tion, and � measures its width �we use d=0.2 and �=0.2�m�.

FIG. 9. Evolution of an unstable infinite film for
h0=0.1, h*=0.01, and 
=10−3.
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Within the linearly unstable region, we find, in agree-
ment with the analysis carried out for the diffuse interface
potential,26,27 two regimes: surface instability dominated and
nucleation instability dominated. Figure 12 shows a typical
case of the evolution in the surface instability dominated
regime �h0=0.05�: it evolves by forming a deep hole, and
then traveling perturbations �in the form of undulations�
emerge. Consequently, a finite-amplitude wave packet of in-
creasing intensity expands in both directions, thus leading to
a sequence of equispaced droplets. In this regime, the drops
are separated by a distance very close to �m.

Figure 13 shows an example of nucleation dominated
instability �h0=0.1�. It also evolves by initially forming a
deep hole with rims at both sides, but here, as the hole ex-
pands, the depressions behind the rims eventually lead to
another nucleation event, and then the process repeats again.
In general, the distance between consecutive drops is differ-
ent from �m, and in this case it is approximately 2�m. We
discuss later in the context of finite films other differences
between the two regimes.

In the metastable region, as expected, the amplitude of
the imposed localized perturbation must exceed a certain
threshold in order to achieve a breakup. Our simulations
show that for a large enough perturbation, the film breaks up
and develops two diverging dewetting fronts. The film thick-
ness at the fronts grows monotonically as they move apart
without film breakup behind them. Of course, if multiple
finite-size perturbations �nucleation centers� are present,
multiple drops will form.17–19 We note that future work is
needed to find out whether the boundary between metastable
and unstable regime is exactly the boundary relevant to film
breakup via secondary nucleation or the formation of “satel-
lite holes.”15,17,33

Remark 1. Our numerical simulations do not find a well
defined boundary between surface instability dominated and
nucleation dominated regimes within the linearly unstable
region of the parameter space. Instead, we find that there
exists a “mixed” region so that for h0 near the upper bound-
ary line of the linearly unstable regime �see Fig. 8�, the in-
stability is mostly of nucleation type, while closer to the

FIG. 10. Evolution of an unstable infinite film for
h0=0.1 and h*=0.01, perturbed by a set of random per-
turbations. The last configuration shown �t=240� is
steady on the considered time scales.

FIG. 11. Evolution of a stable infinite film for h0=0.1
and h*=0.07.
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lower boundary, surface instability is dominant.
Remark 2. Note that the response of an infinite linearly

unstable film to infinitesimal and to finite-size perturbations
in the nucleation dominated regime is significantly different.
When perturbed by a number of modes of infinitesimal am-
plitude, the film chooses the wavelengths centered around �m

from the LSA �viz., Fig. 10�. However, a finite-size pertur-
bation leads to a much larger average distance between the
drops. We will find this result important when considering
finite films in Sec. IV.

IV. FILM OF FINITE LENGTH

In this section, we consider a uniform film of finite
length, L. To carry out a numerical study, we define a smooth
initial profile as

h�x,0� = �h0 − h*��arctan�q�x − x1��

− arctan�q�x − x2���/� + h*, �18�

where x1 and x2 are the coordinates of the end points of the
bulk, so that the fluid length is L=x2−x1. The computational
domain is 0�x�X=L+10, and the fluid bulk is centered in
this interval. The value of q determines the width of the
transition region between the flat bulk of height �h0 and the
regions �0�x�x1 and x2�x�X� of thickness �h*. We use
a relatively large q �typically, q=100� to obtain an initial
condition resembling a step function connecting h0 and h* at
the end points of the bulk.

We note that, unlike in the infinite film case, the initial
condition given by Eq. �18� does not correspond to an equi-
librium configuration. Therefore, the flow evolves without
any additional perturbation. First, we present the results for

FIG. 12. Time evolution of a localized perturbation on
an infinite film for h0=0.05 and h*=0.01, for which the
LSA gives �m=0.99 �surface instability dominated
regime�.

FIG. 13. Time evolution of a localized perturbation on
an infinite film for h0=0.1. Here, the LSA gives
�m=2.66 �nucleation dominated regime�.
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this configuration, and then in Sec. IV B we consider also the
presence of imposed surface perturbations. Thus, the cases
shown in Sec. IV A analyze an ideal system, while those in
Sec. IV B are closer to a physical one where surface pertur-
bations are unavoidably present.

A. Evolution without surface perturbations

We first analyze films of finite length characterized by
the values �h* ,h0� within the linearly unstable region of the
corresponding infinite film. Then, we consider the values
�h* ,h0� leading to metastable and stable infinite films.

1. Linearly unstable regime

Figure 14 shows a representative case of the evolution of
a film whose initial condition is specified by Eq. �18�. Be-
hind each dewetting front, a ridge formed by the fluid vol-
ume swept by the front appears. The connection of the ridges
to the remaining film is established via a damped oscillatory
region, as also observed in experiments and simulations with
nanometric polymer films.17–19,63 As each front recedes, the
minimum film thickness decreases until it reaches a value
close to h*, see Fig. 14�b�, so that a virtual pinch-off occurs.
This pinching process leads to the detachment of the reced-
ing ridges, which finally evolve into steady drops connected
only by a thin film, see Fig. 14�c�. The dewetting and pinch-
ing process continues until the whole bulk splits into a cer-
tain number of drops, see Figs. 14�d�–14�f�.

Before proceeding to discuss the detail of the breakup
process, we note that the mechanism described above is
qualitatively similar to the experimental results presented in
Fig. 1. In both cases, the instability propagates from the ends
leading to an array of stationary drops. However, for a de-
tailed comparison between theory and experiments, one
needs to consider also the flow structure in the transverse
direction �i.e., a rivulet in place of an infinite film�. This
problem is left for future work.

We note that even though the infinite film �Figs. 9 and
10� and the finite film �Fig. 14� share the same parameters,

the resulting patterns are very different. For infinite films, the
rupture process develops simultaneously everywhere, and the
instability is triggered by small �imposed� perturbations
driven by van der Waals forces �gravity as well as surface
tension have stabilizing effects�. Instead, for finite films, the
receding fronts and the consequent formation of ridges intro-
duce an additional mechanism of instability, without any im-
posed perturbations. Here, the rupture process does not occur
simultaneously all along the bulk, but it proceeds from the
ends toward the center.

Another important difference between finite and infinite
films, which is particularly obvious if one compares Figs. 10
and 14, concerns the resulting wavelengths. While for infi-
nite films one obtains wavelengths close to �m, for the finite
film the resulting average distance between the drops is
much larger, and close �in this example� to 2�m. The fact that
this average distance is similar to the one resulting from the
response of an infinite film to a finite-amplitude perturbation
�viz. Fig. 13� strongly suggests that an insight into the insta-
bility development of finite films can be reached by relating
finite and infinite films. To discuss this idea more precisely,
we consider next the emerging distance between the drops as
the thickness, h0, of �finite� films is varied.

Figure 15 shows the initial and final configurations for
L=50, h*=0.01, and h0’s in the range �0.05,0.15�, corre-
sponding to the linearly unstable interval for this value of h*,
see Fig. 8. We see that the number of drops strongly depends
on h0, with thicker films leading to a much smaller number
of drops.

Table I shows the ratio of the distance, D, between the
drops and �m for given h0. We show the results both for
L=50, presented in Fig. 15, and for L=200. The motivation
for considering such a large domain is relatively large stan-
dard deviations of D for small L’s, in particular if the result-
ing number of drops is small. We show only the results for
h0�0.11, where there is still a sufficient number of drops, in
order to be able to estimate accurately the average distance.

FIG. 14. Evolution of a finite fluid film of extension
L=50 for h0=0.1 and h*=0.01.
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The results in Table I clearly show that as h0 is in-
creased, there is also a gradual increase of D /�m. For thin
films, this ratio is approximately unity, suggesting that the
surface instability mechanism is relevant, similarly to the
response of an infinite film to a finite-size perturbation,
shown in Fig. 12. For large h0, one obtains the values of
D /�m that are characteristic of the nucleation dominated re-
gime, resembling the evolution of infinite film shown in
Fig. 13. For intermediate values of h0 �e.g., h0=0.075, viz.
Fig. 15�, one sees a transition between these two regimes.

Figure 16 illustrates this transition by presenting the dis-
crete Fourier spectra of the thickness profiles. This figure
shows that in the surface dominated regime there is a well
defined peak in the Fourier spectrum very close to �m

�dashed vertical lines�. This peak is absent for the thicker
films, in the nucleation dominated regime.

To conclude, we find strong evidence that instability of
fluid films of finite extent can be explained by considering
the response of an infinite film to finite-amplitude perturba-
tions. The end effects act, at least to some degree, as finite-
amplitude perturbations.

Remark 1. Recent experiments carried out with nano-
metric films18 consider film evolution after the formation of a
hole in a flat film. These experiments consider the radii of the
holes at which film breakup �and so-called “satellite holes”�

occurs. It is found that these radii increase with film thick-
ness. Although the emerging length scales �distance between
drops, or rings in 3D� were not related in Ref. 18 to the
wavelength of maximum growth from LSA, this observation
appears to be consistent and can be explained based on the
results presented here.

Remark 2. Figure 17 shows that the thickness of the
thin film connecting the central drops is constant and a bit
larger than h* �see Appendix B�. In addition, the film at the
sides of the external drops is not uniform, indicating that the
pressure is not completely balanced in this region. However,
on the time scales considered here �up to 104−105 in our
units� we do not observe coarsening effects such as those
discussed recently.64,65

Remark 3. We note that the size of the drops and the
distance between them is often not uniform, with the drops at
the extremes and in the very center of an unstable film being
slightly different from the rest. Thus, we consider also the

FIG. 15. Initial and final states of the evolution of a
fluid bulk for different fluid thicknesses h0. Here,
L=50 and h*=0.01.

TABLE I. Ratio of the distance between final drops, D, and �m �mean value
and the standard deviation�, for different fluid thickness h0. The wavelength
of maximum growth, �m, for a corresponding infinite film is also shown. The
results are obtained for the initial film lengths of L=50 and 200.

h0 �m D /�m �L=50� D /�m �L=200�

0.05 0.99 0.94±0.14 0.94±0.09

0.075 1.74 1.34±0.42 1.26±0.29

0.09 2.27 1.72±0.64 1.65±0.41

0.10 2.66 2.05±1.06 1.93±0.52

0.11 3.09 1.97±1.38 2.56±0.62 FIG. 16. Discrete Fourier transforms of the final states shown in Fig. 15.
The vertical dashed lines indicate the corresponding values of �m.
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individual values of Di as well as those of the drops widths,
wi, where the index i counts the drops starting from the cen-
ter. Figure 18 shows these quantities. We observe that for
h0=0.05, the instability mechanism yields an array of many
quasi-equidistant and almost identical droplets, while for
h0=0.075, the parameters �wi /�m ,Di /�m� alternate between
two values. For larger h0, both wi and Di increase monotoni-
cally with i.

2. Metastable and stable regimes

Figure 19 shows the evolution of a finite film inside the
metastable region �and very close to the boundary of the
linearly unstable region� for �h* ,h0�= �0.01,0.2� and L=50.
Similarly to the configurations considered in the preceding
section, the film evolves by forming receding ridges behind
the dewetting fronts. However, no breakup occurs behind the
ridges. Thus, the evolution leads to the development of a
single central drop after the coalescence of both ridges in the
middle of a finite film. Additional simulations show that a
single drop forms independently of the film length. These
results suggest that the amplitudes of the perturbations on the
flat region of the film due to the damped oscillations behind
the ridges are not strong enough to destabilize uniform film,
at least for the cases considered here.

In the stable region, the numerical results have basically
the same features as in Fig. 19, i.e., they show a single cen-
tral drop for any value of L. Therefore, in both regions,
stable and metastable, the final single drop contains the total
mass of the fluid. The drop width increases for larger L’s, but
the maximum height is bounded by h0,max=tan 	, as dis-
cussed in Appendix B. Thus, for very large L the central drop
is basically a pancake, whose width and height are such that
the drop is in equilibrium. The addition of imposed surface
perturbations, which we consider in the following section,
does not play any role in these regimes, since they fade out
during the evolution.

3. Parametric dependence

Film length. Figure 20 shows the resulting drops for a
wide range of film lengths. We see that if L is sufficiently
small, very few or just a single drop result. For sufficiently
large L, the average distance between the drops saturates to a
value that is L-independent. This is illustrated further in Fig.

21, which shows the average area of a drop, Ā, the number of

drops, N, and the average distance between the drops, D̄. We

see that for large L, Ā and D̄ tend to constant values, while N
increases linearly with L.

Disjoining pressure: Equilibrium thickness h*. So far, we
have considered a fixed value of the van der Waals equilib-
rium thickness, h*=0.01. As expected from the stability
analysis of the infinite film, summarized in the stability dia-
gram shown in Fig. 8, variations of h* lead to significant
changes in the evolution of a finite film. Figure 22 shows this
effect: smaller h* �while keeping h0 fixed� brings us close to
the boundary of the metastable regime and strongly de-
creases the number of resulting drops. Larger values of h*

result in a much larger number of drops, as also illustrated in
this figure.

Disjoining pressure: The exponents n and m. Figure 23
shows the effect of varying the exponents �n ,m� entering the
disjoining pressure model. For the considered case, the evo-
lution of the finite length film leads to an array of droplets
only for �3,2�, while a single drop results for both �4,3� and

FIG. 17. Close up of the film region connecting the drops in the pattern of
Fig. 14�f�. The dashed and solid lines correspond to t=0 and 1000,
respectively.

FIG. 18. The drop width, wi, and the distance between the drops, Di, in
terms of �m for the ith drop and different fluid thicknesses, h0. Here,
L=50 and h*=0.01. Only the right half of the drop pattern is considered
�i=0 corresponds to the central drop�, and the total number of drops, N, is
indicated between parentheses. The arrow indicates additional drops for
h0=0.05.

FIG. 19. Thickness profile evolution for h0=0.2, h*=0.01, and L=50. This
case falls in the metastable region of Fig. 8.
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�9,3�. We can explain this variation by recalling the linear
stability diagram, Fig. 5. The configurations that fall deep
inside the unstable region lead to breakup, and consequently
to several drops, while the configurations that are close to the
upper boundary with the stable region lead to a single drop.

Disjoining pressure: The contact angle. As expected, the
variation of the contact angle �related to the parameters en-
tering disjoining pressure model� also affects the final pat-
tern. Figure 24 shows that an increase of 	 yields a larger
number of drops. We note that as 	 increases, the considered
�h* ,h0� configuration falls deeper inside the unstable region
�see Fig. 6�. However, for small 	, the considered configura-
tion is close enough to the upper boundary with the
�meta�stable regime, so that it yields a single central drop.
For even smaller 	’s, the resulting drop is more extended
and, consequently, lower. This is in agreement with the ex-
pectation that in the limit 	→0 the fluid does not dewet the
substrate but spreads out instead.

B. Finite film with surface perturbations
in the nucleation dominated regime

In this section, we analyze the influence of externally
imposed surface perturbations on the dewetting process of a
finite film. We add sinusoidal perturbations of the film free
surface in the form prescribed by Eq. �15�, with h0 replaced
by h�x ,0� as given by Eq. �18�. The perturbations are of
wavelength, �, that is close to �m, so that an integer number
of �’s fits in a given film length. In this section, we concen-
trate on the nucleation dominated regime, since imposed per-
turbations in the surface dominated regime do not influence
the dynamics significantly—that is, the resulting distances
between the drops are almost the same with and without
imposed perturbations.

Figure 25 shows the effect that surface perturbations
have on the configurations previously considered in Fig. 20,
which illustrated the influence of the fluid length on drop
formation in the nucleation dominated regime. First we note
that for small L ��20 or so�, the results shown in these two

FIG. 20. Initial and final states of the evolution of a
fluid bulk for different fluid extensions, L. Here,
h0=0.1 and h*=0.01.

FIG. 21. Effects of the fluid length, L: �a� Average drop area, �b� number of
final drops, �c� average distance between drop apexes. The error bars corre-
spond to the standard deviations. Here, h0=0.1 and h*=0.01.

FIG. 22. Initial and final states of the evolution of a fluid bulk for different
equilibrium thicknesses, h*. Here, L=50 and h0=0.1.
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figures are coincident. A natural explanation �which we
quantify below� is that for L�20, the unstable mode of
wavelength � has no time to grow before the dewetting
fronts meet at the center. For larger L’s, the perturbation is
able to grow, with the consequence that the number of drops,

N, as well as their average distance, D̄, strongly differ from
the unperturbed case. Figure 26 illustrates the time evolution
of the instability for L=50. The comparison with Fig. 15

shows that N increases from 7 to 15 and D̄ decreases from
5.46 to 2.55 ���m� due to the presence of surface
perturbations.

Another significant influence of imposed perturbations is
that since the internal drops start to form almost immediately
after the beginning of the evolution, the time needed for the
flow to reach the final configuration is much shorter, com-
pared to the unperturbed case. The reduction can be as large
as an order of magnitude for the imposed perturbations of
initial amplitude of 10−3h0.

In order to find the parameter region where surface in-
stability prevails, we compare the time, �n, needed to dewet

half the film length, with the time, �s, for a surface perturba-
tion to grow enough to produce film breakup. Basically, we
expect that if �s��n, surface instability determines the main
properties of the final pattern. Otherwise, nucleation instabil-
ity is responsible.

To estimate �s, we assume that the LSA can be used even
when a perturbation becomes large. Recalling that the initial
amplitude of a perturbation is ��t=0�=
h0, and since a
breakup occurs when ���s��h0, the LSA for a perturbation
of wavelength �m predicts

�s = −
ln 


�m
. �19�

An estimate of �n requires knowledge of the dewetting
front dynamics. Although the issue of the speed of the
dewetting front has been discussed in the literature,16,15,66

results of general validity do not exist. For our purposes, we
extract this information from the numerical results. Figure 27
shows the front position xf�t� for different combinations of
h0, h*, and L. The data that form horizontal lines on this

FIG. 23. Initial and final states of the evolution of a fluid bulk for different
pairs �n ,m�. Here, h0=0.1, h*=0.01, and L=50.

FIG. 24. Initial and final states of the evolution of a fluid bulk for different
contact angles, 	. Here, L=50, h0=0.1, and h*=0.01.

FIG. 25. Initial and final states of the evolution of the
fluid films previously shown in Fig. 20, now with free
surfaces perturbed at t=0 by �=2.5.
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figure correspond to the breakup of the film behind the ridges
due to nucleation instability and the consequent stopping of
that particular front. Behind the detached drop, a new front
forms, whose velocity is similar to that of the preceding
front. However, this new front starts propagating inward a
certain distance ahead of the stopping point of the preceding
front. This distance is approximately the width, w, of the
drop that was formed. Thus, the effective distance traveled
by the dewetting front is ��L−Nw̄� /2.

For the time period shown in Fig. 27, we find that xf�t� is
independent of L �circles and crosses�, basically insensitive
to the equilibrium thickness h* �crosses and stars�, and that
an increase of h0 only leads to a delay in reaching a long-
time behavior �triangles and crosses�. For the late times, all
the results collapse onto a single curve �solid line in Fig. 27�,
which can be fitted by

xf�t� = � ft
�,

with � f �0.05 and ��0.9. By using this formula to estimate
�n, we obtain

�n = �L − Nw̄

2� f
�1/�

. �20�

Figure 28 shows the resulting �n �horizontal lines on this
figure� and �s, following from Eq. �19�. We see that for
h0=0.1 and 
=10−3, corresponding to the results shown in
Fig. 25, the surface perturbations have time to grow before
the side dewetting fronts coalesce at the middle of the film,
provided that L�Lcr�20. Therefore, this result quantifies
our earlier conjecture that the patterns obtained for larger
values of L in Fig. 25 are due to the growth of surface
perturbations.

Remark. Let us consider the results obtained for very
small values of 
, also shown in Fig. 28. Since �s increases
for smaller 
, the corresponding Lcr increases as well. We
note that 
=10−16, which yields Lcr�100, is of the order of
the double-precision roundoff error. Consistently, we may
expect that simulations carried out without imposed surface
perturbations, performed using double-precision arithmetic
for L�100, may lead to growth of perturbations caused by
this roundoff error. Figure 29 shows that this is indeed the
case. For L=200, and without imposed perturbations, the flat
central portion of the film destabilizes. As a result, the drop
size and the distance between drops corresponds to the sur-
face instability dominated regime, instead of to the nucle-
ation dominated regime. For this reason, all simulations re-
ported in this paper for L�100 were performed using
quadruple precision arithmetic. Assuming that quadruple-
precision corresponds to 
=10−32, from Fig. 28 we have
Lcr�200. Therefore, any calculation beyond this length can

FIG. 26. Evolution of a finite fluid film of extension
L=50 for h0=0.1 and h*=0.01. A sinusoidal perturba-
tion of �=2.5 is imposed on the film free surface.

FIG. 27. Position of one of the dewetting fronts, xf�t�, with respect to its
initial position for several values of h0, h*, and L. Note that crosses and
circles, which differ only in the value of L, are coincident.
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possibly lead to unreliable results. Of course, if additional
perturbations are imposed in the �meta�stable regime, the
growth of these spurious perturbations is not of concern.

V. SUMMARY AND CONCLUSIONS

We study the time evolution of a finite length film on a
horizontal substrate under the action of surface tension, grav-
ity, and van der Waals forces. Since the initial condition does
not correspond to an equilibrium configuration, the film
evolves by dewetting the surface. This receding motion of
the fronts leads to the formation of ridges at the film ends,
where the fluid thickness increases as more mass is swept
inwards. Depending on the original film thickness, h0, con-
tact angle, 	, and the type of intermolecular van der Waals
force, the film just behind the ridges may break up, thus

producing a detached drop and a new dewetting front. This
mechanism repeats itself until the whole film breaks up into
a steady array of droplets.

We base our analysis of the results on the stability prop-
erties of an infinite film. We find that the finite films whose
infinite counterparts are stable or metastable do not break up,
but instead collapse to a single central drop generated by the
coalescence of the dewetting fronts. However, the finite films
whose infinite counterparts are linearly unstable break up

into a pattern of droplets. The average distance, D̄, between
these droplets does not, in general, correspond to the wave-
length of maximum growth, �m, resulting from the linear
stability analysis of an infinite film. Only for relatively thin

films �of thickness h0� we find D̄��m. As h0 increases, D̄
increases as well relative to �m. For intermediate values of
h0, the distance between drops may oscillate, indicating the
presence of a mixed regime. The resulting wavelengths for
finite films are generally similar to the ones resulting from a
finite-amplitude perturbation of a corresponding infinite film,
therefore suggesting that the fronts could be considered as
finite-amplitude perturbations.

The length of the film, L, plays a role in determining the
final pattern. For L sufficiently small, the breakup behind the
receding ridges does not take place, and their coalescence at
the middle of the domain leads to a single central drop. For
larger L’s, an increasing number of droplets is generated in
the successive breakups. For these L’s, we find that very
careful simulations including the use of quadrupole-precision
computer arithmetic are needed, since numerical noise can
lead to spurious instabilities.

In addition to understanding experiments performed on a
microscale, we expect that the presented results will be use-
ful for understanding experiments and simulations performed
with nanometric films perturbed by finite-size perturbations.
Similar effects observed in these systems suggest that analy-
sis of finite films could help explain instability mechanisms
for a wide range of problems.

FIG. 28. Time �s necessary for a surface perturbation to
grow up to breakup as a function of film thickness, h0.
The horizontal lines show the time to dewet half a film,
�n, for various L’s. The arrow shows the direction of
increasing L �and �n�. The vertical dashed line indicates
h0=0.1, a typical case considered here.

FIG. 29. Evolution of a finite fluid film without externally imposed surface
perturbations under double-precision computer arithmetic, using L=200 for
h0=0.1 and h*=0.01; viz. Fig. 25 for quadruple-precision results. Roundoff
errors O�10−16� introduce spurious surface perturbations for this relatively
long film.
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APPENDIX A: PARTIAL WETTING
WITH VAN DER WAALS FORCES

When a fluid partially wets the substrate, the thickness
profile near the contact line can be represented mathemati-
cally by using the Frumkin-Deryaguin model.67 Within this
model, the substrate region near the fluid front is covered
with a submicroscopic layer of liquid. This wetting layer
�usually called precursor film� is maintained in a state of
stable equilibrium through the action of intermolecular
forces. In this frontal film, there is excess or “disjoining”
pressure that is due to the fact that the intermolecular forces
experienced by a volume element in the interior of the pre-
cursor film are different from those acting on an identical
element in the interior of the bulk phase of the same fluid.
These forces are customarily divided into long-range mo-
lecular, ionic-electrostatic, and structural components. The
first group includes dispersion forces between pairs of non-
polar molecules, and also induction forces �mainly dipole-
dipole interaction� when one of them is a polar molecule
�see, e.g., Ref. 68 for a complete survey�.

The length scale on which disjoining pressure is signifi-
cant is typically less than the wavelength of visible light.
Thus, even when the fluid wets the substrate, the meniscus at
observable distances may appear to intersect the solid at a
nonzero contact angle. The observed angle, whether by the
naked eye or through the usual microscope, is called the
apparent contact angle, 	.

The actual liquid-air interface h�x� �solid line in Fig. 30�
near the contact line satisfies

p = − �c − ��h� = const, �A1�

where p is the total pressure, � is the surface tension, � is
the disjoining pressure, and

c = −
d

dh
��1 + hx

2�−1/2�

is the curvature �for a quasi-2D problem, c�hxx for hx
1�.
The dashed line in Fig. 30 is the extrapolated profile h̃�x� that
results when the intermolecular forces at the contact line are
ignored, i.e., when � is set to zero,

p = − �c�h̃� = const. �A2�

Integrating Eq. �A1� from far away of the substrate, say
h=H�h*, to some equilibrium �to be discussed below�

thickness h*, and similarly integrating Eq. �A2� down to the

solid surface �h̃=0�, and then taking the limit H→�, we
obtain

cos 	 = 1 −
limH→� ��h*,H�

�
, �A3�

with

��h*,H� = − h*��h*� − 

h*

H

��h�dh , �A4�

where we have replaced p=−��h*� from Eq. �A1�, and used

h̃x�H�=hx�H� and c�h*�=0. This is the disjoining-model
equivalent of the Young-Laplace equation, sometimes re-
ferred to as the “augmented” equation. Recalling the defini-
tion of the spreading coefficient

cos 	 = 1 −
S

�
,

we note the simple connection between ��h* ,H� and S=�
+�SL−�SV, where �SL and �SV denote the solid-liquid and
solid-vapor interfacial energies, respectively.

If ��h* ,H��0 �and correspondingly S�0�, only com-
plete wetting is possible, and 	=0. In particular, this occurs
when ��h��0 for all h. In contrast, we have partial wetting
if ��h��0 for some h, since ��h* ,H� may become positive.
Here, h* is defined as the equilibrium thickness when the
fluid is under the action of intermolecular forces only, and so
��h*�=0 and, consequently, p=0 for h=h*. The value of h*

depends on the particular form of ��h�, and it is a charac-
teristic of the molecular interaction between the liquid, solid,
and vapor.

Several forms for the disjoining pressure, ��h�, can be
found in the literature.54 Here, we use a general expression
for the apolar van der Waals intermolecular solid-liquid in-
teractions in the form

��h� = �f�h� = ���h*

h
�n

− �h*

h
�m� , �A5�

where � �proportional to the Hamaker constant� and the ex-
ponents n and m are positive constants with n�m�1. The
first term represents liquid-solid repulsion, while the second
term is attractive, leading to a stable film thickness h=h*;
thus, ��0 if h�h* and ��0 otherwise. We note that more
complex models for disjoining pressure are available.58–61

For the model considered here, the stability of the thickness
h=h* is clear if one considers the stored energy per unit area,

��h� = − 

h*

h

��h�dh = ��u�h� − u�h*�� ,

where u�h� is given by Eq. �13�. Recalling that ����=S, the
constant � is given by

� = S/�Mh*� ,

with M = �n−m� / ��m−1��n−1��. Thus, we can write

FIG. 30. Assumed shape of the free surface near the contact line.
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��h� = �u�h� + S . �A6�

As a consequence, the prefactor for the disjoining pressure,
�, is determined by the value of the macroscopic contact
angle, 	, the equilibrium thickness, h*, and a pair of expo-
nents, �n ,m�, which characterizes the solid-liquid interaction.
The pair �3,2� is suggested in Ref. 55, while the pair �9,3�
results from volume integration of molecular forces arising
from Lennard-Jones 6–12 potential.56

We note that the disjoining pressure formulation natu-
rally introduces a precursor film, whose thickness is close to
h*. In Appendix B, we discuss, among other issues, the rela-
tion of the actual precursor film to the van der Waals equi-
librium thickness, h*, arising from the fact that H used above
needs to be given a large �but finite� value.

APPENDIX B: SINGLE DROP SOLUTION

Since the final pattern after breakup of both finite and
infinite films consists of an array of drops at rest, here we
study the steady-state solution of Eq. �4� corresponding to a
steady single drop. The main result is that the length of a
single drop increases as its mass is increased, but its thick-
ness is bounded by a maximum value as discussed in Sec. IV
�see also Ref. 69�. This result is independent of the intermo-
lecular potential, and it is a direct consequence of the balance
between gravity and surface tension forces. Only the exact
value of this maximum thickness depends on the intermo-
lecular potential considered in the calculation. To show this,
we will discuss the solutions with and without gravity, and
with and without van der Waals forces.

After setting �h /�t=0 in Eq. �4�, the resulting equation
is integrated twice. By using the boundary conditions
h�=h�=0 at x= ±�, where the primes stand for x deriva-
tives, we obtain

h� + Kf�h� − Gh + p = 0, �B1�

where the constant p is the equilibrium pressure.64,70 Note
that for h�h*, both the curvature h� and disjoining pressure
Kf�h� are negative, so that p�0.

At infinity, where h�=0, the film has a minimum thick-
ness, hmin �precursor film thickness�. It is of the order of h*

and satisfies

Kf�hmin� − Ghmin + p = 0. �B2�

An insight regarding the value of hmin can be reached
by considering G=0 and expanding f�h� �see Eq. �A5��
around h*,

FIG. 32. Plot of the left-hand side and right-hand side of Eq. �B4�. The inset
shows a blowup of the region close to hmin.

FIG. 31. Sessile drop properties as a
function of equilibrium pressure p for
n=3, m=2, 	=50°, and h*=0.01: �a�
thickness of the film far away from the
drop, �b� thickness at the center of the
drop, �c� drop area, �d� angle at the
inflection point, 	i �G=1, black thick
lines; G=0, thin lines with crosses�.
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hmin � h* +
ph*

K�n − m�
.

Since p�0, hmin is always greater than h*, i.e., the actual
precursor film is thicker than the equilibrium film resulting
from van der Waals forces.

Figure 31 presents a number of single drop results, and it
is central to this appendix. Figure 31�a�, which shows the
numerical solution of Eq. �B2�, illustrates that hmin essen-
tially does not depend on G, and that hmin→h* as
p→0. For the considered values of 	, n, and m, the differ-
ence between h* and hmin is at most few percent.

Next we discuss the maximum thickness of the drop,
hmax. Upon integrating Eq. �B1�, we have

h�2/2 − Ku�h� − Gh2/2 = − ph + C , �B3�

where u�h� is given by Eq. �13� and

C = − Ku�hmin� − Ghmin
2 /2 + phmin.

At the center of the drop, h=hmax and h�=0, so that hmax is a
solution of

Ku�h� = − Gh2/2 + ph − C . �B4�

Thus, hmax is given by the intersection of the curve Ku�h�
and the parabola P�h ; p�=−Gh2 /2+ ph−C. Figure 32 shows
these curves for two values of p �it is easy to verify that these
curves are tangent at hmin, see Eqs. �B2� and �13��. For
G=1, we find that, for sufficiently small �p� pc�0.84517
for our choice of parameters�, the only contact between these
curves occurs at hmin. For G=0, P�h ; p� reduces to a straight
line, and it always intersects Ku�h�. Then, there is no such
lower bound of p. The physical interpretation of this result is
discussed below.

The drop profile itself can be written implicitly as �see
Eq. �B3��

x�h� = 

h

hmax dh
	R�h�

,

where

FIG. 34. �a� Drop width, w, �b� equilibrium pressure, p,
and �c� thickness at the apex, hmax, for the bulk solution
�without van der Waals forces� as a function of the drop
area, A, for 	=50°.

FIG. 33. �a� Profile of thickness h�x�, �b� slope h��x�,
and �c� curvature h��x� for p=1 with van der Waals
forces included �solid lines� and excluded �dashed
lines� �n, m, h*, and 	 are as in Fig. 31�.
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R�h� = h�2 = 2Ku�h� + Gh2 + 2�− ph + C� .

Figure 33 shows h�x� and its derivatives �solid lines� for the
parameters as in Fig. 31 with p=1. As expected, the thick-
ness profile in Fig. 33�a� resembles that of a cylindrical cap,
with a linear slope �Fig. 33�b�� and constant curvature �Fig.
33�c��. At the drop edges, the slope smoothly goes to zero,
the curvature reaches a maximum, and then decreases
abruptly �not shown in the figure�. We note that the slope at
the inflection point, tan 	i �the maximum in Fig. 33�b��, is
always less than tan 	 �following from the van der Waals
model, discussed in Appendix A�.

With x�h� given, the area of the drop can be calculated as

A = 2

hmin

hmax

x�h�dh .

Figure 31�c� shows A versus p for G=0 and 1. With gravity
effects excluded �G=0�, both A and hmax increase monotoni-
cally as p decreases. For G=1, similar behavior is found,
except that A and hmax are not well defined for p� pc. Con-
sequently, for drops with area A larger than some critical
value Ac, the pressure saturates at pc independently of the
drop size.

Figure 31�d� shows the actual contact angle of the solu-
tion, 	i �the angle at the inflection point�, as a function of p
for G=0 and 1. As expected, gravity effects do not influence
	i. We note in passing that 	i is smaller than 	 defined by the
van der Waals model. This difference is another consequence
of the fact that maximum drop thickness is bounded by hmax.

We next consider the solution without van der Waals
forces, since we expect that in the bulk region, sufficiently
inside the drop, these forces are not relevant. If that is the
case, the profile can be described by h�−Gh+ p=0, with the
boundary conditions h=0 and �h��= ±tan 	 at the drop edges
�xf. For G=1, this equation yields the analytical solution

hb1�x� = p�1 +
sinh�x − w/2� − sinh�x + w/2�

sinh w
� , �B5�

where w=2xf is the width of the drop, given implicitly by

A = 2 tan 	� w/2

tanh�w/2�
− 1� , �B6�

and the equilibrium pressure p�w� is obtained as

p =
tan 	

tanh�w/2�
. �B7�

Figure 33 shows a comparison between hb1 and the solution
that includes van der Waals forces. The main differences are
in the contact regions where the slope and curvature are sig-
nificantly affected.

Finally, the thickness at the apex is calculated from p
and w as

hmax = p�1 −
2 sinh�w/2�

sinh w
� .

The quantities w, p, and hmax are plotted in Fig. 34 as a
function of A for 	=50°. We note that while w increases

monotonically with A, both p and hmax asymptote to the
value tan 	, since Eqs. �B6� and �B7� can be rewritten as

w = 2 arg tanh� tan 	

p
� ,

A = pw − 2 tan 	 .

Thus, we see that p is bounded from below, analogously to
the result obtained when van der Waals forces are included.
This result shows that the existence of both a minimum pres-
sure and a maximum drop thickness is not a consequence of
the intermolecular forces at the contact line, but it is an effect
related only with the balance between gravitational and sur-
face tension forces. The details of intermolecular interaction
only influence the value of minimum pressure. Thus, we
have pc�0.84517 for our van der Waals force, while
pc=tan 	�1.1917 when no intermolecular force is taken into
account and a contact angle 	 is imposed at h=0.

For completeness, let us consider the bulk solution for
G=0. In this case, the thickness profile is described by
h�+ p=0, so that the solution is

hb0 =
p

2
�x2 − xf

2�, 0 � x � xf .

The area A=2�0
xfh�x�dx and the width w of the drop are

given by

w =
2 tan 	

p
, A =

pw3

12
.

Similarly to the case when van der Waals forces are included,
no lower bound exists for p when gravity is not considered.
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