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Spreading of a thin two-dimensional strip of fluid on a vertical plane: Experiments and modeling
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We study the thin-film flow of a constant volume of silicon @ilolydymethilsiloxang spreading down a
vertical glass plate. The initial condition is generated from a horizontal fluid filament of typical diameter
0.4 mm. Two optical diagnostic methods are used: One based on an anamorphic system, and the other on the
Schlieren method. The first one allows for a detailed characterization of the early stable stage of the spreading
which is used to estimate the thickness of the precursor film needed to model the flow. The second one captures
the bidimensional pattern of the transversal film instability. We use these techniques to determine the film
thickness profiles, and the evolution of the moving contact line, including its shape and Fourier spectra. The
numerical simulations of the stable stage of spreading are in good quantitative agreement with the experimental
results. We develop a model based on linear stability theory that predicts the evolution of the modes present in
the linear stage of the instability.
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[. INTRODUCTION analysis of the instability has only been done for the constant
flux (CF) case, in which the fluid thickness far behind the
The scenario where a solid surface is being coated by @ontact line is kept constarithus providing an unlimited
thin liquid film is ubiquitous in nature, and it also appears insupply of fluid. In this case, the analysis exploits a key
a variety of technological problem@nicrochip production feature of the CF flow, namely, the translational invariance
and microfluidic devices Basically, the coating process de- which allows for the existence of a traveling wave solution.
velops as a balance between viscous and surface tensiém contrast, the CV case loses this property and then the
forces plus possibly a body force. The latter is often the mairanalysis presents additional difficulties, as outlined below.
driving force and, depending on the configuration, it may beThus, it is still not clear what determines the long-time na-
represented by gravity fordd,2], centrifugal force[3,4], or ~ ture of the instability, in particular the main features of the
thermocapillary forcg5—7]. Coating flows exhibit two main final patterns, such as their distances and the shapes.
features: One is the existence of a free surface, whose posi- IN recent years, many researchers have paid attention to
tion must be calculated as a consequence of the balan¢BiS problem. On the experimental side, except for the work
among the acting forces, and the other one is the presence By Johnson8,9], most of the authors have considered the
a contact line, which defines the boundary between the filnfV case[1,10-12. This is understandable considering that
(bulk) and the uncoated surface. The combination of thesfpe CF case involves a more complex setup in order to assure

two features may give place to complex topologies of stabl e constant fluid |anOV\_/. It must be noted that in the CV
or unstable flows, with nontrivial shapes of the free surfac case, rather than the fluid volume, the cross-sectional area of

and corrugations of the contact line She initial condition is the characteristic parameter of the
H 9 rat th ) £ a thin film flowi flow. The transversal extension is irrelevant since it is usually
ere, we concentrate on the case of a thin fiim Towing, ,qp, larger than the flow extension in the streamwise direc-
down a vertical planar substr.ate.' In pgrtlcula}r, we CcmSIdefion. In contrast to above mentioned experiments for the CV
the constant volume(CV) situation, in which a two- . 56 "here we use much smaller areas, and thus the fluid
dimensional fluid strip is placed at the top of the plane. Pre'spreads as a micrometric film. As a consequence, the flow
8tudied here is more representative of the coating processes
used in applications, and the corresponding experimental re-
ults are then also of particular interest to this field. More-

time the initially straight advancing front line, where the lig-
uid, gas, and solid phases meet, becomes unstable with r:

spect to perturbations along the strip. It is generally accepte ver, the lubrication theory is valid to a high degree of ac-
that this instability is related to the formation of a capillary curacy for such thin films. For example, the possibility of

ridge just behind the advancing contact line. However, therolling motion at the advancing fronfd2], that may occur

for thicker (millimetric) films, is surely ruled out in the
present experiments.
*Also at: CONICET, Argentina. Electronic address: The initial condition is a horizontal viscous filament

aggonzal@exa.unicen.edu.ar [polydymethilsiloxang PDMS) oil of cross sectiorA of the
TAlso at: CONICET, Argentina. order of 10% cn?] placed near the top of a vertical glass
*Also at: CONICET, Argentina. plate, which spreads down the plane under complete wetting
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conditions. As the initially straight front line advances, it oy A
becomes corrugated and, after some time, the flow evolve: (a) 4 (b)
by forming well-defined rivuletscalled fingerg separated by le e o
troughs.
The main goal of this work is to achieve a quantitative
description of the spreading by performing controlled experi- . y d y
ments, detailed optical diagnostics, and numerical simula- =
tions in a coordinated fashion. This description is necessar;H/
[

]
l

to test the validity of the assumptions made in the usua
modeling of the flow. One of these assumptions is the exis-
tence of an ultrathin precursor film at the moving contact
line. An experimental issue is that the setups commonly usec
to detect and measure the precursor fjth3] preclude the X x¥
study of the global spreading dynamics. Instead, in this
work, we indirectly determine the precursor film thickness,
h;, that quantitatively describes the macroscopic flow, and
we also measure the evolution of the free surface. Regardin
the unstable stage of the spreading, a detailed study of th
spatial spectra of the contact line as done in this work is
needed to validate the theories and numerical simulations
performed to understand the mechanisms involved in the de
velopment of the instability.

We use two simultaneous optical techniques to analyze
the problem. The first ongSec. Il A) is based on the use of
an anamorphic lens which processes a vertical light shee
that passes through the flow region. This technique allows
one to obtain the thickness profile from which we accurately
determine the ared (for the early stable stagieand thus the
volume of the fluid. By using these profiles and the evolution
of the width of the fluid strip, we determine the value of the  FIG. 1. Sketch of the mechanical system to place the fluid on the
precursor film thickness needed to perform numerical simusubstrate(a) Initial setup and capture of the filament by the sub-
lations which quantitatively account for real situations. Thestrate. (b) Filament on the substrate and intermediate position
other techniqu&Sec. IV A) consists of a Schlieren method (dashed arrows indicate previous rotajioft) Final position.(d)
with an iris diaphragm stopping the deflected rays of an il-Sketch of the constant volume spreading down the vertical
luminating parallel beam. This method produces imagesubstrate.
which show most of the relevant features of the instability,
such as the shape of the contact line and the free surfa
topography. In particular, from digitized pictures, we obtain
for the first time the evolution of the Fourier spectrum of the
contact line at the f.IUid frongiront line). I.n Sec. V, we de- movements take about 1-2 s, i.e. a time interval which is
velop a semianalytical model thgt predlc_ts tf’1e value of thg,ery short compared to the time scale of the experiniesi
dominant wavelength of the spatial front lines’ spectrum. Theye|ow). In order to obtain a good horizontal positioning of
results of this model are in very good agreement with thepe fluid strip, it is necessary to carefully control the direc-
experimental time evolution of the spectrum in the linéarijons of the rotating shafts. The mechanical adjustments are
stage of the instability, and the model also predicts theyptically checked by analyzing a digitized Schlieren image
growth rates of the normal modes. of the spreadingsee Sec. IV A for details This experimen-

tal procedure allows one to obtain a fluid strip with contact
Il. BASIC DESCRIPTION OF CONSTANT VOLUME Iine; which are both horizontal and straight, so that the initial
PROBLEM configuration has a constant cross-sectional area along the

direction [see Fig. 1d)]. After each experiment, the oil is

The initial fluid configuration is a vertical filament flow- removed and the glass is cleaned by immersion in a bath of
ing out from a small nozzle at the bottom of a vessel filledsulphochromic acid for several days, in order to ensure the
with silicon oil [see Fig. 1a)]. Both the nozzle diameter and removal of any oil residual on the glass surface. Before a
the fluid properties allow one to control the value of the areanew experiment, the glass is washed with distilled water and
A of the filament. The lower limit of the attainabl¥s is  dried with hot air.
given by the Rayleigh instability of the jet which may lead to  In the following sections, we show that both contact lines
the formation of beads for small enough radius. We usgrear/upper and frontal/lower onegmain straight during an
PDMS with kinematic viscosity »=20 St, density p early stage of the experiment. At this stage, due to capillary
=0.96 g cm?, and surface tensiop=19.8 dyn/cm, so that effects, the rear line climbs uphill a short distan@auch

(d)

’ége capillary length ie= V’Ty/ pg)=0.145 cm.

The filament is captured on a glagcm wide by per-
forming suitable rotations of its frame before reaching the
final vertical position[see Figs. (b) and Xc)]. All of these
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smaller than the width of the film in the streamwise direc- ™
tion), while the front moves downhill significantly. These
movements are concurrent with a deformation of the shape
of the cross section. A second stage starts when the fronte
contact line appreciably departs from the straight line shape
Later on, experiments show the growth of corrugations
which evolve into a pattern of rivule{®r fingers.

We have implemented two optical techniques in order to
observe and probe the relevant features of the flow in botr
stages. One of these techniques is aimed at measuring tt
thickness profile of the spreading as well as the position of
both contact lines. During the early stage, this technique al-
lows an accurate determination of the fluid volume. The
other one is intended to describe the topography of the free
surface and also the irregular shape of the contact line.

Usually, this type of flow is studied within the lubrication
approximation, i.e., small Reynolds number and small free \
surface slope. These hypotheses are satisfied in our exper
ments since PDMS oil is very viscous, and the strip is of a
small aspect ratigtypically, height/width<<0.1). Thus, under
the action of gravity and surface tension, the governing equa-
tion for the fluid thicknes$(x,y,t) is [14]:

FIG. 2. Scheme of the anamorphic system.

contact line. This is done in the following section by com-
Jh Jgh3 paring numerical results for different values lof with the
StV (h*V (V2h) + P9~ =0, (1) experimental thickness profiles for a given afeaviost im-
portantly, the resulting value turns out to be independent of
A. Therefore, the simulations that we perform to describe
other experiments for different areas using the samalso
lead to very good agreement.

whereu=wvp is viscosity, andj is gravity. The three terms in
Eq. (1) stand for the viscous, capillary, and gravitational
forces, respectively. Herg,is the downhill coordinate.
Equation(1) includes the nonslip boundary condition at
the substrate surface. Due to the well-known contact line
paradox(macroscopic divergence of the viscous dissipation
rate), all theoretical and computational methods require some A. Anamorphic lens technique
regularizing mechanism: Either assuming the existence of a
thin precursor film of thicknesk; in front of the apparent

Ill. STABLE STAGE

The early stages of the spreading, whreis almost inde-
pendent of the transversghorizonta) y coordinate, are stud-

contact line[2,15,14, or relaxing the no-slip boundary con- . . X
o ST . X ied by employing the optical system reported by Thoragas
dition at fluid—solid interface{14,17,1§ by introducing & "o “thejiquid film is probed by a parallel light sheet

slipping lengthls. We have performed an extensive compari- | h : direction impinai dicul
son of these regularizing mechanisms applied to the spreal long the(vertica) x direction impinging perpendicular to
e glass substrate. A lerls of focal length F=20.1 cm

ing drop problem[19). In that paper, it is shown that the forms a magnified image of the spreading region with a mag-
precursor film model leads to the results that are very similar 9 g b greg 9

. . . . nification factorM=6.25 (see Fig. 2 Then, at the focal
to the ones obtained using slip model for=1s. Since the . .
. . lane ofL, we place an anamorphic lens,, equivalent to
computational performance of the precursor model is muc L
two crossed cylindrical lensésne convergent and the other

\tl)v%t:Er, we use this model as a regularizing method in thl%ivergen) with focal lengths of an equal magnitude

. =120 cm, and their axes at £45° with respect toxttaxis (a
We have recently developed a numerical metfia@ to o ) ; )
i .~ . cylindrical-spherical ophthalmic lens, conveniently chosen
solve Eq.(1), and used it to analyze the pattern formation in

CF flows[21-23. Nevertheless, we report here only the re—and oriented, does this jpliTherefore, a bright curvgy(x;)

sults of one-dimensional humerical simulation that study théPpears on the screen, whose coordinates satisfy:
y-independent stage of the flow. We leave the comparison of 2 ah
the y-dependent numerical solutions of @) with CV ex- Xs=MX, ys= MT(H - 1)5,
periments for a forthcoming paper.

Within the framework of a precursor film model, a certain wheren=1.4 is the refraction index of the silicon oil, and we
value ofh; must be assumed in order to perform the numeri-have assumed that tlyegradients oh are negligible. There-
cal simulations. Typically, one choosksto be one or two fore, this technique is particularly valuable as a tool to ana-
orders of magnitude smaller than the average bulk thicknes$yze the early stages of the spreading. In later stages, the
However, in order to produce results gquantitativeagree- method becomes more difficult to use due to the presence of
ment with the experiments, we must first determine the aptransverse gradients, except in particular positions with high
propriate value ot that reflects the actual physics of the symmetry, such as troughs or fingers. In fact, we will show

2)
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(a) (b) I is using an appropriate value of the precursor film thickness,
g1 mm] h;. As mentioned in Sec. |, this film is very thin and therefore
S its measurement requires a technique, such as ellipsometry
[13], which is not compatible with our probing methods to
measure the macroscopic flow. To circumvent this difficulty,
we perform numerical simulations of tlyeindependent ver-
sion of Eq.(1). Clearly, this approach requires very careful
01 - and well resolved computations, since a very thin precursor
—d g film also demands a very small computational step size,
in order to achieve numerical convergence. However, as we
FIG. 3. Snapshots of the originally vertical light sheet after be-will see below, the use of the corrdatin this work leads to
ing refracted by the spreading and deflected by the anamorphitull agreement between computed and measured time scales,
system forA=6.75x 107* cn?. The thickness gradients along the therefore eliminating the need for time-scale adjustment
line are responsible for the horizontal deflectiof®.t=1.97 min,  [25,26.
(b) t=20.07 min. The vertical segment shows the spatial scale at the \We obtainh; by performing an iterative procedure. First,
substrate, and the horizontal one corresponds to the scalg@f.  we choose two experimental thickness profiles, one close to
the beginning of the spreadin,), and the other at a later
thickness profiles in the following section along these partime t, (chosen small enough to ensure that the front is not
ticular lines. yet corrugateyl Then, we use the experimental profiletat
In Fig. 3, we show two images of the observed curveas an initial condition in the numerical simulation, and we
ys(Xs). They correspond to early stages of the spreading of étegrate it forward in time using appropriate initial guess for
filament with an approximate diameter of 0.4 mm placed ini-h;. We then compare the computed and the experimental pro-
tially near the top of the vertical glass. Images are invertedile att,. Based on the difference between these two profiles,
upside down by the optical system, so that the upper discorwe choose the next iterate fb and repeat this procedure
tinuity corresponds to the front falling down, and the lower until convergence. The result of this iterative procedure is the
discontinuity represents the rear front. According to &),  Value ofh; which produces very googuantitativeagreement
the amplitude of the curvey, is related to the slope of the between computed and observed profiles: 43 nm (or hy
thickness profile. Clearly, the steepest slope is at the front3X 10°a). Such a small value also requires very well re-
falling down (dynamic contact angleThe right and left de- solved computations: We find that the results are fully con-
flections indicate that there are zones with slopes of oppositéerged forAx=10"%a. We have also verified that this value
sign and, as a consequence, a point of zero sloximum  of h; remains unchanged if we choose a differgniVe note
thickness$. Figure 3a) corresponds to an almost symmetric that thish; is in the range of the thicknesses measured and
early configuration, while Fig. (®) shows two distinguish- reported in literature for precursor filnj27,2§. From now
able regions: One around the zero slope pdimp regiopn  on, we use this value for the comparisons between experi-
and the other in the rear, where the slopes are much smallégnents and simulations performed using different fluid cross-
According to Eq.(2), an integration of the curveh/dx  sectional areas.
versusx yields the thickness profila(x), and a further inte- In Fig. 4, we show the experimental results #+=6.75
gration gives the ared. Since the optical technique assumes < 10 cn¥ (black dots. The evolution of the thickness pro-
a paraxial approximation for the rays of the light sheet, thefile starts with a shape resembling a cylindrical cap whose
contact line region must be considered in more detail. In thignaximum is moving downwarfsee Fig. 43)]. During this
zone, the steepness of the profile produces a much greatgiage, the front line is practically straight. Later on, we ob-
deviation angle than in the rest of the film. If the assumedserve the appearance of two regigsee Figs. &) and 4c)]:
approximation fails, the end of the deflected curve is disthe rear region, which acquires an almost parabolic shape,
placed in the verticak direction with respect to the corre- and the front region which evolves by developing a large
sponding end of the straight line. Thus, a gap or an overlappump. Once this structure is formed, corrugations of the
ping might appear on the screen. Although this effect doe§ont line may start developingsee Sec. Y. Figure 4c)
not alter the determination of the width of the film, the un-shows a well developed profile when the front line is about
certainty in the values of the slopes close to this criticalto start corrugating. Note that in this stage, the regions men-
region affects the calculation & This effect becomes more tioned above are connected by a zone of almost flat thickness
critical asA increases, posing a limit to the method. We pay(“plateau’). Similar profile evolution is also observed in the
special attention to minimize this problem by a careful posi-€xperiments carried out by Tann@9]. He obtained the pro-

tioning of the anamorphic lens, and when processing thélles by scanning a two-dimensional droplet with a light
digitized images. beam. However, his method yields only around ten points per

profile, whereas our technique probes the fluid instanta-
neously and provides a continuo(sirface slopgecurve.

The gray lines in Fig. 4 correspond to the numerical simu-
lations. We see that the results are in excellent agreement
A crucial element in reaching not only qualitative, but with the experimental data. The simulations are performed

also quantitative agreement between experiment and theostarting from the initial conditioricylindrical cap,

B. Experimental results and comparison with numerical
simulations
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FIG. 5. Comparison of the width of the film between experi-
ments (black dot$ and numerical simulations foh;=3x 10%a
(gray solid ling andh{=3x 10™a (gray broken ling for A=6.75
X 1074 cn?.

The comparison of the numerical width of the filisolid
gray line with the experimental resuli®lack dot3, w(t), is
shown in Fig. 5. We define

W= X = X, (4)

wherex;, X, are the positions of the front and rear contact
lines, respectively. We use the width, instead ofk; in order
to consider a quantity independent of the reference frame
(except for the very first stagesg, does not vary appreciably
during the spreadingIn order to show the sensitivity of the
simulations with respect to the precursor film thickness, we
also show in Fig. 5 the numerical width obtained with
=3X%10“a=430 nm (dashed gray line Even though this
value is still within the range expected for a precursor film,
we clearly see that the predicted behaviornwgf) strongly
differs from experiments, while the results for=43 nm are
in very good agreement.

We have carried out a series of experiments wWithrang-
ing from 3x10* to 15x10“cn?. In order to show the
characteristic features of the problem, we discuss here only
two more cases, one for a larger area, and another for a
smaller one. The general behavior of all other experiments is
similar to that of these three examples.

The results for a larger are@A=10.3xX 10 cn¥) are

times. Black dots correspond to experimental data and the graghown in Figs. 6—-8. We observe that the numerical results
lines to the numerical simulations witiy=3x 10"%a.

wherew,=w(0) is the width of the strip in the streamwise
direction att=0, andh, is its maximum thickness. Since both
the values ofn, and the are@ are given by the anamorphic
technique, we calculatie; ashy=3A/2w,. We have verified

x \2
h(X,O):ho{l—(F./J ],

obtained by using the value df; determined for the case
A=6.75X 10" cn? also show very good agreement for these
experiments. As mentioned above, for a large area, we expect
some effects related to the presence of higher slopes at the
moving contact line. In fact, the overlapping at the upper
discontinuity in Fig. €a) is due to this effect. This deviation
from the expected behavior affects only a small portion of
the curve, and does not modify the precision of the rest of it.
Upon integration, we minimize the contribution from that
region in order to obtain a reliable thickness profile. Note

that this initial shape leads to results that are in full agreethat the overlapping diminishes as time progregses Fig.

ment with those obtained by using an experimental profiles(b)], because the dynamic contact angle is lower at this later
for a givent>0. Therefore, we use the initial condition as time. In practice, we calculate the profiles and their corre-
given by Eq.(3) for all the simulations that follow.

sponding areas at several time instances, and find that the
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(a) 3 ] (b) , t=2.23 min
; 1 mm
80 (a G\
_. 60 \
= 40 ¢
2 \
20 %
FIG. 6. Snapshots of the originally vertical light sheet after be- |

ing refracted by the spreading and deflected by the anamorphic 1 1 P >
system forA=10.3x 107* cnm?. The thickness gradients in the di- b &is 61 0418 e 05 48
rection of spreading generate the horizontal deflections of the line. X (cm)

(@) t=2.23 min,(b) t=8.7 min. t= 4.73 min

measured areas have a fluctuation which is at most 5%. 80
Then, the reported value @& is obtained by performing an

appropriate average. Naturally, we do not use this procedure 60

for times too close to the onset of the instability, since the £
assumption of constant cross section no longer holds. We 3
verify that an area calculated for a certain time corresponds < 40

to the stable stage by simultaneously observing the shape of
the front line for that timgsee Sec. IV A 20
A feature of this experimenttA=10.3x 10™* cn?) is that
the flow evolution is much faster than the previous case
whereA is smaller. Note that formation of the structure com- 0 005 01 015 02 025 03
posed of a bump region and a parabolic rear region occurs x (cm)
now for times as early as*5 min [see Fig. {b)] compared .
with 20 min in the smaller area cagsee Fig. 4c)]. t= 8.7 min
Figure 9 shows a typical case of one of the smallest areas
studied in this workA=3.6x 1074 cn? Though there is no 80 ©)
overlapping now, the main difficulty here is the smallness of
the deviation of the light beams. Since for late tinjegy. 60
9(b)], the mean amplitude of the deviation becomes compa-
rable with the thickness of the line, the relative error intro-
duced by this effect is more important than in the previous
cases. In all experiments, we determine the curve from the %)

a

7

40

h (um)

average of the horizontal positions of the pixels weighted <0 :

with their intensities. This procedure yields the coordinates *

of a one-pixel line, which minimizes the just mentioned ef- 0 005 01 015 02 025 0.3

fact. ; ; . ; : .
Figures 10 and 11 show that the numerical simulations, % (em)

performed with the samleg; as before, are also in good agree- g, 7. Thickness profiles foA=10.3x 104 cn? for different
ment with this experiment. Note that the small differences inimes. Black dots correspond to experimental data and the gray
the thickness profiles are not larger thap@. The fact that  |ines to the numerical simulations with =3 x 10°5a.
a single value oh; allows one to adjust the calculations to
experiments in a significant range of areas, is consistent witallows one to switch between one technique and the other.
the assumption thdi; is a characteristic feature of the par- The Schlieren technique is used with a diaphragm centered at
ticular interaction between our PDMS and the glass subthe focus of lend. (see Fig. 2 and an expanded probing
strate, and it does not depend on the amount of spreadirgser beam. This expansion is achieved by a collimating sys-
fluid. tem which includes a pinhole for spatial filtering. This sys-
tem generates a 6 cm wide beam of parallel rays, which il-
luminates the substrate from behind. The setup is adjusted to
IV. UNSTABLE STAGE produce an illumination as uniform as possible.
. The images thus obtained show a pattern of dark and
A. Schlieren method . . .
bright zones, which correspond to regions where the modu-
In addition to the previous technique, we also use dus of the gradient of the thickness is greater or smaller than
Schlieren method to probe the spreading. A sliding mirrora cutoff value, respectively. The cutoff varies with the diam-
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0.4 t=2.53 min
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FIG. 8. Comparison of the width of the film between experi- t=13.5 min

ments (black dot$ and numerical simulations with;=3X 10"%a
(gray lineg for A=10.3x 107 cn?.

(b)

eterd of the diaphragm(all photos presented here hate
~1 mm). From these patterns, it is possible to reconstruct
the thickness of the film. The results of this procedure and
the comparison with the numerical solution of E&) will be
reported in a forthcoming paper. In this work, we restrict our
analysis to the study of the shape of the front line. Figure 12
shows four typical images obtained by using this technique
for areaA=6.75X 104 cn? (the images are inverted by the
optical system We clearly see the formation of a pattern of
fingers and troughs. In order to obtain a well resolved shape
of the front line, we filter the Schlieren image to correct the
remaining lack of uniformity in the illumination. Then, we
increase the contrast of the image and obtain the coordinates
of hundreds of pixels corresponding to the front line.

-

0.05 0.1 0.15

X (cm)

02 025

t=18.1 min

©

B. Unstable contact line: Spectra, fingers, and troughs

The analysis of the instability pattern is performed by
calculating the discrete Fourier transfo(@FT) of the front
lines. Here, we employ the following definition to make this
transformation:

1 n
vs= =2, Uy expg2mI(r - 1)(s- 1)/n],
V=1

5

0.2

0.05

0.1 0.15
x (cm)

0.25
wheren is the number of sampling points withcoordinates

u,, r denotes they ordering of the pixel, and is an integer

(a) T

FIG. 10. Thickness profiles foh=3.6x 107 cn? for different

lines to the numerical simulations witij=3X 10%a.

with 1<s=n. Here, we obtain the power spectrin] as a
function of A=nP/(s—1), whereP is the scale of the picture
(in units of cm/pixe), since the dominart can be related to
the average distance between fingers.

Mg

q

™

times. Black dots correspond to experimental data and the gray

0.1
]|

FIG. 9. Snapshots of the originally vertical light sheet after be-

By processing the images of the front line for different
times as shown in Fig. 12, we obtain the Fourier spectra
presented in Fig. 13. For times close to the beginning of the
instability [see Fig. 12a)], one can distinguish two peaks in

ing refracted by the spreading and deflected by the anamorphit€ spectrunit=38.2 min, lowest gray line in Fig. 33How-

system forA=3.6x 1074 cn?. The thickness gradients in the direc-
tion of spreading generate the horizontal deflections of the (&e.
t=2.53 min,(b) t=18.1 min.

ever, for later times, the shorter-wavelength pegk
~0.55 cm grows faster and finally dominates the spectrum.
Later, for times greater than 200 min, a secondary peak ap-
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FIG. 11. Comparison of width of the spreading between experi-
ments (black dot3 and numerical simulations forA=3.6
X 107* c?. The solid and dashed gray lines correspondite3
X 107%a and 3x 10™%a, respectively.

FIG. 13. Fourier spectra of the front lines shown in Fig. 12.
Darker lines correspond to later timas:38.2, 101.2, 207.5, and
343.7 min.

trough. For the sake of completeness, we add to the figure
pears for even shorter wavelengir 0.4 cm. the data obtained using the anamorphic system for early
We note that the details of the emerging patterns varfimes. For comparison, we also plot the trajectory of the
from experiment to experiment. For example, the experimendnPerturbedstraighy front line as given by the numerical
tal results shown in Fig. 12 are characterized by a rather slo imulation (solid line). Figure 14'_allows one to estimate a
evolution of the patterns in the middle of the domésee time for the onset of the instability, which is here about

Fig. 12b)]. However, repeating the experiment, using thezso min. This time is an upper limit, since corrugations

. might appear for earlier times at differeptpositions.
same glass and the same cleaning procedure, leads to a dif In Figs. 15-17, we show the corresponding results for the

ferent pattern distribution. Although the details of the emerg'largest areaA=10.3x 10°* ci®. The Schlieren pictures in
ing patterns vary, the value of the dominant wavelength issjg 15 show a very regular pattern of fingers and troughs.
highly reproducible for a given fluid area. We further discussth;s s apparent in the corresponding spe¢Fig. 16), since
the aspects of the spectral evolution in Sec. V. there is an outstanding peak ®t=0.51 cm from the very
~ In Fig. 14, we show the widthw, of the film along two  early stages of the instability. This suggests that the nonlinear
lines[see arrows in Fig. ¥&)]: One going through the tip of  stage of instability development is imprinted by the mecha-
a finger and the other through the central point of an adjaceriisms involved in the linear stage. In Fig. 17, we show an
expansion of Fig. 8 for later times by including the positions
of the fingers and troughs marked with arrows in Fig. 15
from the Schlieren pictures. Just after the onset of the insta-
bility, the fingers and troughs clearly depart from the straight
front numerical solutior{gray line).

The smallest area resultd=3.6x 10°* cn¥), are reported
in Figs. 18-20. The spectra have a more complicated struc-

14
.
.
1.2 °
.
1 .
—_ .
E3 > & ¥ o .
0.6 e ¢ °
S
0.4 Vol
[
¢
0.2 f
100 200 300 400 500
t (min)

FIG. 12. Evolution of the film using the Schlieren technique for
A=6.75x 10 cn? at: (a) t=38.2, (b) 101.2, (c) 207.5, and(d) FIG. 14. Positions of a finger and trougbee arrows in Fig. 12
343.7 min. Arrows point to the coordinates chosen to track the with respect to the rear front from experimental dédats, and
positions of a finger and a trougkee Fig. 14 The white segments evolution of the unperturbed front line from simulati¢solid line),
stand for the length scal@d cm) at the substrate. corresponding to the experiment wilte6.75x 1074 cn?.
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25 50 75 100 125 150 175 200
t(min)

FIG. 17. Positions of a finger and trougéee arrows in Fig. 15
with respect to the rear front from experimental dédats), and
evolution of the unperturbed front line from simulatigolid line),
corresponding to the experiment with=10.3x 1074 cn?.

glass, so that the light sheet probes the spreading along this
line. The frame is moved with a sliding device and the use of

FIG. 15. Evolution of the film using the Schlieren technique for a micrometric screw. A similar procedure is followed to ob-
A=10.3x10“cn? at: (a) t=17.8, (b) 54.4, (c) 104.7, and(d)  tain the profile along the symmetry line of a trough. To our
192.9 min. Arrows point thg coordinates chosen to track the po- knowledge these are the first reported simultaneous micro-
sitions of a finger and a trough, see Fig. 17. metric profiles of a finger and its adjacent trough for the CV

case(on the other hand, the profiles for the CF case of
ture (see Fig. 19 for early timgsFor later times, however, thicker millimetric films are available in literaturi®,9,3Q).
there is a well-defined pedkere at\ ~0.46 cm), similar to A further analysis of these results and the comparison with
the ones observed in the cases of larger areas. The existeng@@merical simulations is left for a future work.
of persistent secondary peaks close to the dominant one is In summary, the experimental results suggest the exis-
directly related to the shape of the early unstable spectruntence of stages in the development of the instability. These
(t=133 min. The reason why this other peak also growsstages can be defined as follows:
relatively fast is due to its proximity to the dominant wave- (1) The first stage(Oststg) is characterized by a tran-
length. sient behavior in which the flow evolves from an initial con-

It is interesting to show that the anamorphic technique is
also useful in the unstable stage to measure thickness prd
files. The measurement must be done along lines where th
transverse gradients are negligible, as it occurs along a finge
or a trough. In Fig. 21, we show the profile along the sym-
metry line of a finger from an experiment with ardx5.5
X 107% cn?. It is obtained by lateral displacements of the

4

35

25

vl (cm)
n

0.2 0.4 0.6 0.8 1 1.2 1.4
A (cm)

FIG. 18. Evolution of the film using the Schlieren technique for
FIG. 16. Fourier spectra of the frontlines shown in Fig. 15. A=3.6X10*cn? at: (a) t=0.83, (b) 133.5, (c) 256.1, and(d)
Darker lines correspond to later times:17.8, 54.4, 104.7, and 430.6 min. Arrows point thg coordinates chosen to track the po-
192.9 min. sitions of a finger and a trouglsee Fig. 20
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FIG. 21. Thickness profiles along a fingédack dots and a
“trough (gray dotg from an experiment withA=5.5X 107 cn? at
time t=52.5 min.

FIG. 19. Fourier spectra of the front lines shown in Fig. 18
Darker lines correspond to later times:0.83, 133.5, 256.1, and
430.6 min.

dition (close to a cylindrical capto a structure with a para- lubrication approximation is only marginally satisfied, while
bolic Shape in the rear region and a bump deve|0ped in thg is Complet6|y fulfilled in our micrometric films. As a con-
frontal region. Also, in this stage, the front line is still sequence, those experiments may have a different sequence
Straight and does not show any appreciab|e Corrugation_ Rf stable and unstable stages. Thicker films often include a
more precise definition (1% will be given be|ow_ rO”ing motion (“nose") at the adVanCing front, which stabi-

(2) Once the bump structure is clearly attained, the smallizes the flow and is responsible for the initial stable stage
perturbations tend to groWnstab|e prof”;\' In other WOde, [31] If the film is not too th|Ck, surface tension effects be-
the presence of the bump is a key feature for the develop=0me increasingly important as the fluid thins, and the nose
ment of the instability. For this stage>t;, we develop, in ~ changes its shape to a wedge-shaped pr{Si#. Later on,
next section, a model for the growth of the amplitude of thethe front region grows a bump and the flow becomes un-
perturbations within the linear approximation. stable. Instead, in our experimgnts, there is no rolling stage,

(3) When the amplitude of the perturbations exceeds #ut the bump of the front region is present from the very
certain limit, the nonlinear effects become significant€arly stages. The instability is not observed at once, but it
(t>ty.). However, in our experiments, these effects do not€comes apparent only after a certain time. We discuss this
change the mean separation between fingers. delay in the next section.

We emphasize that for all cross-sectional areas explored
here, the instability developafter the formation of the
bump. In particular, aé is increased, the instability develops ) . ) o
faster, but the formation of the bump proceeds on a faster In th'$ section, we aim to deve_lpp a model for predicting
time scale as well. This observation constitutes an importarif€ spatial spectrum of the instability, the growth rates of the
difference with respect to other experiments performed witrPerturbations and the value of the dominant wavelength

V. INSTABILITY ANALYSIS

millimetric (or even thicker films [1,12]. In those cases, the At present, there is no thorough analysis of the contact line

0.8 .
.
P
E 0.6 .
3 . .
o .
.
0.4 .o o .
3¢

v

FIG. 20. Positions of a finger and trougee arrows in Fig. 18
with respect to the rear front from experimental dédats, and
evolution of the unperturbed front line from simulaticsolid line),
corresponding to an experiment wift=3.6x 1074 cn?.

100 200 300 400 500
t(min)

instability for the CV problem. Instead, a fair amount of
literature is devoted to the linear stability analysis of the CF
problem. Here, we apply the results of the CF case to pro-
duce a predictive model for the CV configuration.

A. Constant flux revisited

Thanks to the translational invariance in the CF case, the
solution of they-independent version of Eql) is of the
traveling wave type. Thus, for a constant thicknégsin the
far region behind the fronfplateay, we have a dimension-
less solution of the form,

h=h,H(é), &= (x—-ut)/¢, (6)
where
€=(a%hy)*3, U=uy(l+b+b?, (7)

with up=pghd/3u and b=he/h,. The main feature of this
solution is ti)1e presence of the bump in the front region
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TABLE I. Maximum growth rates and critical wavelengths for

severalb’s. T
‘o > ks
b=hy/h, Omad 1o Mol € N e 35 G O-O
101 0.127 12.84 8.33 g ng !@
102 0.285 12.58 7.42 2 ors .
5x10°3 0.340 12.57 7.34 .
3x10°3 0.377 12.56 7.23 —05 x
[2,19. As it is well known in literature, this bump is the
signature indicating the instability of the solution. In the lin- 0.2 0.4 0.6 0.8
q

ear stability analysis of this problem, it is assumed that there

is a transverse perturbation of the base solutioé) charac-
terized by a wavelength. Thus, the perturbed solution ex- ¢, b=0.01(crosse} 0.005(square and 0.0030pen pentagons

panded in normal modes is written as
H(&y,1) =H(§) + eg(§)cogky)exp(at),

(8

wheree is the (small) amplitude of the perturbatiomy(¢) is
the eigenfunctiong is the growth ratgeigenvalug andk

=2m/\.

Upon substitution of Eq(8) into Eqg. (1), we keep terms
only up to Q). The terms of Q) yield an ordinary differ-
ential equation[2], whose solution isH(¢). The terms of
O(e) constitute an eigenvalue problem of the foufg(é)
=0g(é), whereL is a linear operator, whose coefficients de-jined above. Here, we extend the linear stability analysis of
pend on the base solutidi(¢) [33]. We solve this problem

and obtaino as the maximum value of the discretized spec-ciently slowly relative to the growth rate of the perturbations
trum. These calculations are performed k¥ in the range

o<k=<1.2.

For a givenb, there are two relevant wave numbefay
Kmax for which o(Kyq) is the maximum,oy., and (b) k'
=27/\", which yieldsa (k") =0 (marginal stability, such that
the solution is unstable fdt<k™ (\>\"), and stable other-

wise. Calculated values of these parameters are reported key point in describing the linear evolution of the instability
Table | for some values di. Clearly, o0, ShOws a stronger

dependency ob than the wavelengths™ and\ .,

Interestingly enough, when all the growth raie&) for

variousb'’s are plotted in the normalized form

=K,

Omax

9)

where g=k/K"=\"/\, they nearly collapse onto a single © '
curve (see Fig. 22 For the purpose of analyzing the Cv ton evolves independently from one another.

case, we look for a simple analytical form that would repre-
sent well all these eigenvalues, in particular in the unstabl

range. It turns out that the polynomial fit that one

may expe

based on the smat] limit of the linear stability analysi§l5]
(expansion in even powers @fj is not appropriate for the
whole g range. A better approximation is obtained by using
general functional forng?(1-gP) wherep is a rational num-

ber. We find best agreement by using
F(q) = 95q°(1 - '),

which is also plotted in Fig. 22. This fit is used in the next

(10

section, and it implies thak”~0.61\,,. The departures
from this function increases fay>1, but the fitting in the

ct'f

a

FIG. 22. Eigenvalues of the dispersion relation for the CF case

The solid line is a fitting curve, specified by Ed.0).

unstable range is reasonably good, and it will be helpful in
the model for CV case developed in the following section.

B. Constant volume configuration: Adiabatic model

A major hindrance to performing the linear stability
analysis of the unperturbed solutitiix,t) for the CV case,
is the fact that the base solution is time dependent, as out-

the CF case by assuming that the base profile evolves suffi-

(adiabatic approagh

Let us consider a profild(x,ty) after the fluid starts
spreading, withtoztg. Since att=t;, the flow has already
developed a bump—plateau structure, we perform the analysis
by perturbing the flow by a transverse corrugation character-
ized by a wavelengtih and an initial amplitudeéy=I(ty). A

is to assume that the unperturbed state changes so slowly
during this stage that the perturbation evolves on top of a
quasi-steady base flow. Thus, the asymptotic growth rates of
the CF case can be considered as the instantaneous growth
rates of the CV case. This assumption requires that the am-
plitude of the perturbation be small enough, so not to modify
significantly the base flowlinear regime. Therefore, every
component of the spatial Fourier spectrum of the perturba-

We attempt to approximate the bump region of the CV

%ow by the corresponding profile in the CF case for the same

. The idea underlined in this approximation is that the in-
stability basically depends on the thickness structure of this
region, while the flow far behind does not affect the behavior
of the front. In the CF case, the characteristic time and length
scales ast/up~h;>® and h'®, respectively[see Eq.(7)].
Thus, theinstantaneougrowth rate in the CV case becomes
[see also Eq9) and[33]]:

o(0) = Ty F(0) (11)

where
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_ 7\_ 1/3 _ lﬂg
q="-h;"0. (12) Bl (16)
must be smaller than the instantaneous growth rate of the
perturbation. If this condition is fulfilled for the growth rate
of the dominant wavelengtk,,,, then it is satisfied for all
other \’s. We can obtain the lower bourtg as the time at
7=3ualy, (13)  which B(ty) =0ty for Aya. For this purpose, we assume a
guess value ofy and use Eq(15) to find A, by integrating
and7 %, respectively. In order to avoid cumbersome notationfrom t, to a sufficiently large time. If o(\.,,,) as given by
we use the symbols of the previous section to denote thEq.(11) is less tharB att;, we choose a smaller value gf
present dimensionless variables. The valuesgf, and \” otherwiset, must be increased. This iteration scheme yields

Here,h,(t), A are expressed in units of the capillary length
andt, o are in units of

expressed in these units are given in Table I. t’[), i.e., the lower bound of,. This procedure is accurate
In a typical experiment, the range bft)=h,(t)/h; is be-  since\ ., depends only weakly oty for very larget.
tween 10° and 5x 10°3. As shown in Fig. 22 and Table I,  The experiments show that the instability actually occurs
there are no significant variations of,.,, A" and the shape for tys greater thantg, so that the requirement of slow
of function F within this range. change of the base state is fully satisfied. Thus, the predicted
The instantaneous growth rate satisfiesl dI/dt, sowe  spectra results presented below use the valug, @fs ob-
have tained from the experiments.
Figure 23 shows both the experimental spectra and the
t model results at four different times presented in Fig. 12. The
I(\, 1) = IO()\)exp<f a(q(t’))dt’). (14) model predictions are based on the linear evolution of the
to experimental spectrumy(\) from the earliest timet,

=38.2 min (lower gray ling. Figures 28a) and 23b) that
Thus, Egs(11) and(12) allow us to calculate the instanta- concentrate on early times, show that close to the dominant
neous growth rate of the perturbation as a function of thevavelengthh =\,,,,~0.55 cm, there is a very good agree-
dimensionless thickneds,(t), and Eq.(14) predicts its am- ment between the model and the experiments.
plitude. Figure 23 also presents the spectiatted line$ obtained
The experimental results show that for a given time thereassuming constant initial amplitudie, This constant is cho-
exists at least one dominant wavelength, where the spectsen as the experimental maximumtgt and therefore the
have a peak. In order to obtain an estimate of this wavedotted lines provide an envelope for the model results that
length, we assume here that the initial amplitutie  use the details of experimental configuration at ttjn&hese
=constant is the same for evely thus yielding a single envelopes will help us understand some features of the re-
maximum of the amplitudé,,,, at A\=\,a Then, from Eqg. sults that we discuss next.
(14), we have the condition One of these features is another peak at0.9 cm. For
this peak, the model predicts the growth that is slower cor-

U go(q) responding to the experimental one. The discrepancy can be
f — dt' =0, (15 understood by observing the slope of the envelope shown in
o IN Dhonpa Fig. 23. In the zones where the slope of this envelope is very

large, an error i\ plays a significant role in the determina-

which, for given values of, andt, allows one to calculate tion of the corresponding growth rates. In fact, the discrete
Nma character of the DFT spectrum leads to an error in the deter-

To proceed, we must define an appropriate way of detemination of\ of the order[see text after Eq5)] AN=N/(s
mining the parametehn,(t). For this purpose, let us consider —1)=\2?/nP (=~0.15 cm forA=0.9 cm). Thus, for larger,
a CF flow with a certain valué, of the (asymptoti¢ flat  there is a larger error in its determination.
region, such that it has a bump heidfgtcoincident with the Since forh=0.9 cm there is a significant change in the
one of the CV case with the sarhe The idea is to approxi- slope of the envelope withid\, the growth rate predicted
mate the CV flow by the solution of a CF case which fits theby the model may differ significantly from that given by the
bump region the best. Note that this model is intended tdFT. Note also that based on these arguments, the model is
describe only the instability of the contact line and not theexpected to be more accurate for wavelengths close to the
complete flow in the CV problem. The underlined concept isdominant one.
that the instability basically depends bp and the slope at Figures 28c) and 23d) show the results for later times.
the contact line, and that other details of the flow are not s@lthough we observe an increasing departure of the growth
relevant. rates from the linear model, the dominant wavelength given

In order to ensure that the model is used within the adiaby the model is still close to the experimental one. One can
batic and linear approximation, the tintg must be in the expect that nonlinear effects account for this difference, since
interval tggtoitNL (see also the end of Sec. IMBThe the shape of the contact line corresponding to these later
adiabatic condition requires that the relative rate of variatiortimes [see Figs. 1&) and 12d)] has the characteristic fea-
of hy, tures of the nonlinear stage of the instabiligyg., the length
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FIG. 23. Spectral evolution of the front line foA=6.75
X 1074 cn? (see Fig. 12 (a) The lower and upper gray lines cor-
respond to the experimental spectra ®t38.2 min andt
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FIG. 24. Time evolution of the modal amplitudes far6.75
X 1074 cn?. The symbols correspond to experimental data and the
lines to the model results fox,,,,=0.55 cm(squares, solid ling
A=0.63 cm (pentagons, dotted ling and N=0.41 cm (crosses,
dashed ling

of fingers is much larger than their separajiohnother sig-
nature of nonlinear effects can be traced to the increased
amplitudes of short wavelengths for late times. To see this,
note that the experimental spectra in Fig. 13 show that the
amplitudes for\ <\" are not as small as one would expect
based on the linear stability analysis. Our interpretation is
that part of the energy of the linear modes is transferred by
nonlinear processes to shorter wavelengémergy cascade
Essentially, what occurs here is that the fingers’ shape change
for later times, becoming more pointing with parallel sides.
A description of these features then requires shorter wave-
lengths. This mechanism subtracts energy from the dominant
wavelengths and it may then be another source of the differ-
ence between the experimental results and the linear model
for late times. Similar features can be also observed for dif-
ferent fluid areas, shown in Figs. 16 and 19.

An additional effect that must be taken into account to
better understand the instability for late times is the increase
of the ratio b=h¢/h,, due to the fact for fixedh, h, de-
creases. This increase loleads to the decrease of the maxi-
mum growth rate, as shown in Table I. This effect only plays
a minor role when the model is applied to the linear stage, in
which b is of the order of 10°. However, for the advanced
nonlinear staged) is significantly larger. As a consequence,
the growth rates predicted by the model that uses a constant
value of oy, in EQ. (11) corresponding to smabl), are cer-
tainly greater than those of the actual flow for later nonlinear
stages wheré is not so small.

For very long wavelengthé\ >2 cm), the experimental
spectra have relatively high amplitudes. These wavelengths
may be affected by the boundaries, due to the finite extension
(in they direction of the film. Nevertheless, these effects do
not influence the behavior of the dominant wavelength, since
Amax 1S much smaller than the lateral width of the experimen-

=82.8 min. respectively. The dashed black line is the spectrum prd@l domain.

dicted by the model atassuming a linear evolution from the spec-

Figure 24 presents another test of the model. This figure

trum atto. The dotted line is the spectrum obtained evolving thecompares the model predictions for the time evolution of

model from the uniform spectrum &=constant at,. (b), (c), (d):
The same aga) for final timest=101.2, 127.3, and 207.5 min,
respectively.

modal amplitudes extracted from the experimental spectra
shown in Fig. 12. For brevity, we have chosen the amplitudes
of the dominant wavelength,,, and of two othemn’s (a
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FIG. 25. Spectral evolution of the front line foA=10.3
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FIG. 26. Time evolution of the modal amplitudes f4=10.3
X 107* cn?. The symbols correspond to experimental data and the
lines to the model results fox,,,=0.53 cm(squares, solid ling
A=0.71 cm (pentagons, dotted ling and N\=0.47 cm (crosses,
dashed ling

shorter one and a longer on€&or early times, the agreement
between the model and the experiment is very good. For late
times, which start close tb=120 min, there is an increasing
departure from the linear model predictions.

Figure 25 shows the spectra for the large area dase
=10.3x 10 cn? [see Fig. 1E)]. Here, we observe many
similarities but also some differences compared to the previ-
ous case. Regarding similarities, there is good agreement be-
tween the model and the experiment for the emerging domi-
nant wavelength, as well as for the amplitudes at early times.
This agreement is confirmed by the time evolution of modal
amplitudes shown in Fig. 26. In this figure, we see that the
transition to the nonlinear regime occurs for times close to
t=50 min. The main difference between these spectra and
the previous ones is the appearance of a strong dominant
wavelength with very weak side peaks. This feature can be
qualitatively understood by visual comparison of Figs. 12
and 15—the patterns shown in Fig. 15 are much more regu-
lar, leading to better defined dominant wavelength.

Next, Fig. 27 shows the results for smaller fluid arAa,
=3.6X 10 cn?. The spectra still have a dominant wave-
length, but the amplitudes of the side peaks are now closer to
that of the main peak. In spite of this more complex struc-
ture, the model still accurately predicts the value of the
dominant wavelength. The time evolution of modal ampli-
tudes, shown in Fig. 28 is again in good agreement with the
model for early times. The transition time towards the non-
linear regime is now close tb=180 min. Regarding differ-
ences to the cases of larger areas, we note that the envelope
here is flatter, and so the maximum growth rate is closer to
the ones of the neighboring modes. As a consequence, the
development of a clearly dominant wavelength is slower
compared to the larger areas.

Before concluding this section, we briefly discuss an al-
ternative approach to the analysis of the experimental data,
with the main goal of verifying that our results are not af-
fected by possible spatial nonuniformities of the substrate.

X 10 cn? (see Fig. 1% at final timest=17.8, 54.4, 70.4, and Therefore, we complement oglobal) Fourier analysis by a

104.7 min in(a)—<(d), respectively(heret;=17.8 min. See the leg-
end of Fig. 23 for additional information.

local wave number study using tikemplex demodulatioof
the shape of the corrugated contact line. This procedure may
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FIG. 27. Spectral evolution of the front line foA=3.6
X 1074 cn? (see Fig. 18 at final timest=176.2,t=224.6, 256.1,
and 430.6 min ia)—(d), respectivelyherety=133.5 min). See the
legend of Fig. 23 for additional information.
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FIG. 28. Time evolution of the modal amplitudes f8=3.6
X 1074 cn?. The symbols correspond to experimental data and the
lines to the model results fox,,,,=0.46 cm(squares, solid ling
N=0.66 cm (pentagons, dotted ling and N=0.38 cm (crosses,

dashed ling

be regarded as a local version of the previously presented
Fourier analysis, and it consists of demodulation of the digi-
tized spreading widthv(y,t) [see Eq(4)] obtained from the
Schlieren pictures. By defining the wave numkge 27/,

we write the demodulated function §34]:

WY, 1) = [W(y,t) = Wa(t)Je koY

where w,(t) is the width averaged along the transveyse
direction. Here, we takk, equal to the dominant wavelength
Amax @S given by the Fourier analysis. Thus, we assume that
the contact line can be described by a monochromatic signal
with slowly varying both amplituddR(y,t) and phase for a
given timet. We extract an approximation ®&(y,t) by em-
ploying a least-squares filter as described in R&4]. Since
we want to compare this amplitude with the one given by
Fourier analysisjv4 [see Eq(5)], we defineR,=VnR(y,t).
Figures 2@a)-29c) shows the results of this technique
applied to the linear stage of the experimental data presented
earlier in increasing order of the aréa In Fig. 29a), we
show the time evolution oR, at three fixed transverse posi-
tions along the spreading front, located approximately 1/4
(dotted-dashed ling1/2 (dotted ling, and 3/4(dashed ling
along the spreading in thedirection, measured from the left
edge. Note that even if the local amplitudes are different, the
curves are almost parallel to each other, thus indicating that
the growth rated log R,/dt of the demodulated amplitude is
almost the same at all locations. Therefore, we do not find
any evidence of spatial nonuniformity of the substrate. For
comparison, we also shofgolid line in Fig. 29a)] the am-
plitude |vgd of the dominant mode\ ., as given by the
model. Clearly, the model describes well the growth rates
obtained by using complex demodulation technique.

In Figs. 29b) and 29c), we present the results for larger
areas, corresponding to Figs. 12 and 15. These figures also
lead to the same conclusion regarding spatial uniformity of
the substrate, and the agreement of the global Fourier analy-
sis with the complex demodulation technique. We note that
the first point in the curve at 1/@lotted-dashed linen Fig.
29(c) is not completely reliable since the differenee w,, is

17
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FIG. 30. Comparison of experimental results for the case shown
in Fig. 23a) with the spectral evolution of the front line using:
Plateau adjustment dfi, (dotted ling, and adjustment by using
Huppert's solutionth,=hy, dashed ling

Amplitude (cm)

Figure 30 shows the results obtained using this approach
applied to the experiment performed using=6.75
X 1074 cm?. The comparison of the dotted line obtained us-
ing this fit and of the experimental curve demonstrates that
this fitting mechanism fails to describe the experimental re-
sults [viz. Fig. 23a) for the results obtained using bump-
fitting approach Similar results hold for all other explored
cross-sectional areas, reinforcing the argument that the insta-
bility development in the linear regime is governed by the
bump and front region while the rear zone plays only a minor
role.
Another option is to approximate,(t) by the value given
by Huppert's formulg1]. This analytical solution is obtained
by neglecting surface tension effects, and thus it does not
predict the bump regiosee the Appendix However, it is
FIG. 29. Time evolution of the amplitud®, of the complex  expected to be a good approximation of the rear zone for
demodulated contact line a=\pax for: (@ A=3.6X10% (b  |arge times. Therefore, one hopes that it should be possible to
and dashed lines correspond to 1/4, 1/2, and 3/4 of the distanGgis model are also plotted in Fig. 36ashed ling We see
along the spreading in the direction, respectively. The solid line ¢ this approach still underestimates the growth rate of the
corresponds to the amplituded of the dominant mode ., as linear stage of the instability.
given by the model. There are several additional drawbacks regarding the use
_ _of Huppert's solution to estimate, for t=t,. For the times
very small thergsee Fig. 168)], and then the demodulation \yhen the linear model is expected to hold, neither the thick-
technique, including the filtering process, yields a large relaness profile nor the position of the contact line is correctly
tive error. predicted by this analytical solution. This is illustrated in Fig.
C. Other approaches toh 31. This figure shows that E¢A2) [solid Iine in Fig. 319)]
' P predicts much too fast spreading of the film, compared to the
The fitting process of the bump height explained aboveexperimental resultgdots [the time in Eq.(A2) has been
yields values oh, that are generally higher than those of the shifted in order to get the right value w{t=0)]. The portion
actual plateau zon@gnentioned in Sec. Il Aconnecting the of the fluid area that should be placed in the bump is relo-
bulk and bump regions. One might question whether a modetated in the bulk, thus leading to an overestimate of the
that adjustsh, to the actual plateau thickness could lead towidth. Furthermore, the profiles for the early stages of the
better results. In this alternative approach, the funckigit)  instability (see, e.g., Fig. 21lare also poorly described by
can be obtained from the numerical simulation by defining itHuppert’s solution.
as the thickness of the second inflection point behind the In spite of the failure of this solution to describe the stable
bump. This choice is convenient because it allows for astage as well as the early stages of the instability, one may
simple tracking of the point, and it corresponds to the pla-wonder why the departure of the predicted growth rates from
teaulike zone which connects the rear parabolic and frontahe experimental dategsee Fig. 3Dis only about 20%. This
bump region. fact can be explained by a mechanism of cancellation of

Amplitude (cm)

20 30 40 50 60 70
t (min)
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errors. Note thah, (as given byhy) is initially too large(it 0.5
diverges as¢—0), and it also decreases too fgsee Eq.

(A3)]. As a consequence, for times closetgpthis approach 04} (@)
leads to a perturbation’s growth that is faster than expectec
[see Eq.(11)]. However, this approach also diminishes the ~ g | .
growth rate too strongly for later times. Upon time integra- g ° td

tion, these two departures from the actual behavior almosw; 02! .
compensate for each other, and the results for the amplitud® ™ »®
of the perturbation are then masked by this cancellation. Foi
even later times, one could hope that, due to the asymptotic
character of Huppert's solution, it could be appropriate to
describe the unperturbgdindependent flow for larger times,
However, for those times, the perturbations have grown S 10 15 20 25
enough to invalidate the modeling of the growth rates by a t (min)

linear approach, no matter how we defimg 50

e

VI. SUMMARY AND CONCLUSIONS 40 (b)

In this work, we report detailed experimental results of
the spreading of a constant volume of PDMS oil down a g 30 |
vertical glass substrate. We study this problem by combining &
experimental and theoretical/computational techniques. The < 20 ¢
experiments employ two optical techniques: One requires the
use of an anamorphic lens, and the other is based on th g |
Schlieren method. The analysis is performed by comparing
the experimental data with numerical simulations and by de- L %
veloping analytical models. 0 0.1 0.2 0.3 0.4

The anamorphic lens technique allows one to measure thi X (cm)
thickness profile and the width of the film. It is mainly used
in the Stable Stage Of the eXpeI’imentS befOI‘e the onset Of the FIG. 31. Comparison of Huppert’s so|utngray dashed |ines
instability. From the measured profiles we obtain the crosswith the experiment oA=6.75x 104 cn? (black dots. (a) Width
sectional area of the uniform fluid strip. Since the area isf the spreading(b) Thickness profile fott=20.07 min. See also
accurately measured, we are in a position to very precisel¥igs. 4c) and 5.
determine the thickness of the precursor film which numeri-

cally reproduces the evolution of the experimental profiles of o )
an arbitrary single experiment. The outcome of this Ioroce_Several possibilities are considered, and we show that the

dure is the thickness of 43 nm which is a value in agreemerf?€St fit to the experimental results is obtained by choosing
with those reported and estimated in literature. This value i§Uch @ value that the bump heights of these two problems
directly used as an input to numerical simulations that uséCV and CH agree. In particular, we show that the use of the
different fluid cross-sectional areas. The calculated profile$!UPPert's solution fails to produce quantitatively correct re-

are in very good agreement with the experimental data obSUlts for both stable and unstable stages of the flow.
tained using these different areas. In summary, our experimental techniques allow one to

The images obtained using the Schlieren technique ar@rovide a detailed quant.itative descriptiqn pf several features
used to study the shape of the front line after the onset off the problem not previously reported in literature. The ac-
instability. Here, we perform a discrete Fourier transform ofcurate determination Qf the relevant parameters'of the experi-
the fluid front lines. The resulting spatial spectra show a@neénts(such as the thickness of the precursor film, cross ar-
dominant wavelength which is determined during the linea®@S: thickness profiles, spatial spectra of the modes, and
stage of the instability development. The experiments shoWfoWth rateare essential to test the validity of the approxi-
that this wavelength is a decreasing function of the axea mations [nvolved in the lubrication theory and the contact
Also, the reported experimental results allow one to deterline physics.
mine the average growth rate for all spatial modes occurring
in the experiment by comparing two spectra at successive
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APPENDIX: HUPPERT'S SOLUTION 27 13
Xy(t) = (—A2t> , (A2)
If we ignore they dependence of the flow, we are left with

a one-dimensional problem. For late times, when the trangnere the thickness is

sient effects associated with the initial release of the fluid

have decreased enough, a self-similar solution, that balances h(xy) = hy = (A/2t) M3, (A3)

the weight of the fluid and the viscous force on the pIaneBy replacing this solution in the neglected terms, we find that
[i.e., the first and third terms in Eq1)], can be obtained. i holds for (see[35]) 1< (48C1)Y2 Thus, Hupperts self-
T_hus, by_ neglecting surface tension, one reaches the solutiQ®,.iiar solution is reached asymptoticallytas . However,
(first derived by Hupperf1]) of the form as noted by Hocking35], the main criticisms that can be
12 made to this solution regard the validity of the lubrication
h(x,t) = (ﬁ) , (A1) approximation. It violates the small slope hypothesis both at
3t the leading edge, wheie goes abruptly fronh, to (practi-
cally) zero, and at the rear wall, where the slope is infinite.
whereh, x are in units ofa, andt is in units of 7 (see Sec. Note that the inclusion of surface tension, i.e., the fourth-

V B). The domain of the solution ends abruptly at order term in Eq(1) breaks self-similarity.
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