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We study the thin-film flow of a constant volume of silicon oil(polydymethilsiloxane) spreading down a
vertical glass plate. The initial condition is generated from a horizontal fluid filament of typical diameter
0.4 mm. Two optical diagnostic methods are used: One based on an anamorphic system, and the other on the
Schlieren method. The first one allows for a detailed characterization of the early stable stage of the spreading
which is used to estimate the thickness of the precursor film needed to model the flow. The second one captures
the bidimensional pattern of the transversal film instability. We use these techniques to determine the film
thickness profiles, and the evolution of the moving contact line, including its shape and Fourier spectra. The
numerical simulations of the stable stage of spreading are in good quantitative agreement with the experimental
results. We develop a model based on linear stability theory that predicts the evolution of the modes present in
the linear stage of the instability.
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I. INTRODUCTION

The scenario where a solid surface is being coated by a
thin liquid film is ubiquitous in nature, and it also appears in
a variety of technological problems(microchip production
and microfluidic devices). Basically, the coating process de-
velops as a balance between viscous and surface tension
forces plus possibly a body force. The latter is often the main
driving force and, depending on the configuration, it may be
represented by gravity force[1,2], centrifugal force[3,4], or
thermocapillary force[5–7]. Coating flows exhibit two main
features: One is the existence of a free surface, whose posi-
tion must be calculated as a consequence of the balance
among the acting forces, and the other one is the presence of
a contact line, which defines the boundary between the film
(bulk) and the uncoated surface. The combination of these
two features may give place to complex topologies of stable
or unstable flows, with nontrivial shapes of the free surface
and corrugations of the contact line.

Here, we concentrate on the case of a thin film flowing
down a vertical planar substrate. In particular, we consider
the constant volume(CV) situation, in which a two-
dimensional fluid strip is placed at the top of the plane. Pre-
viously reported experiments have shown that after some
time the initially straight advancing front line, where the liq-
uid, gas, and solid phases meet, becomes unstable with re-
spect to perturbations along the strip. It is generally accepted
that this instability is related to the formation of a capillary
ridge just behind the advancing contact line. However, the

analysis of the instability has only been done for the constant
flux (CF) case, in which the fluid thickness far behind the
contact line is kept constant(thus providing an unlimited
supply of fluid). In this case, the analysis exploits a key
feature of the CF flow, namely, the translational invariance
which allows for the existence of a traveling wave solution.
In contrast, the CV case loses this property and then the
analysis presents additional difficulties, as outlined below.
Thus, it is still not clear what determines the long-time na-
ture of the instability, in particular the main features of the
final patterns, such as their distances and the shapes.

In recent years, many researchers have paid attention to
this problem. On the experimental side, except for the work
by Johnson[8,9], most of the authors have considered the
CV case[1,10–12]. This is understandable considering that
the CF case involves a more complex setup in order to assure
the constant fluid inflow. It must be noted that in the CV
case, rather than the fluid volume, the cross-sectional area of
the initial condition is the characteristic parameter of the
flow. The transversal extension is irrelevant since it is usually
much larger than the flow extension in the streamwise direc-
tion. In contrast to above mentioned experiments for the CV
case, here we use much smaller areas, and thus the fluid
spreads as a micrometric film. As a consequence, the flow
studied here is more representative of the coating processes
used in applications, and the corresponding experimental re-
sults are then also of particular interest to this field. More-
over, the lubrication theory is valid to a high degree of ac-
curacy for such thin films. For example, the possibility of
rolling motion at the advancing fronts[12], that may occur
for thicker (millimetric) films, is surely ruled out in the
present experiments.

The initial condition is a horizontal viscous filament
[polydymethilsiloxane(PDMS) oil of cross sectionA of the
order of 10−4 cm2] placed near the top of a vertical glass
plate, which spreads down the plane under complete wetting
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conditions. As the initially straight front line advances, it
becomes corrugated and, after some time, the flow evolves
by forming well-defined rivulets(called fingers) separated by
troughs.

The main goal of this work is to achieve a quantitative
description of the spreading by performing controlled experi-
ments, detailed optical diagnostics, and numerical simula-
tions in a coordinated fashion. This description is necessary
to test the validity of the assumptions made in the usual
modeling of the flow. One of these assumptions is the exis-
tence of an ultrathin precursor film at the moving contact
line. An experimental issue is that the setups commonly used
to detect and measure the precursor film[13] preclude the
study of the global spreading dynamics. Instead, in this
work, we indirectly determine the precursor film thickness,
hf, that quantitatively describes the macroscopic flow, and
we also measure the evolution of the free surface. Regarding
the unstable stage of the spreading, a detailed study of the
spatial spectra of the contact line as done in this work is
needed to validate the theories and numerical simulations
performed to understand the mechanisms involved in the de-
velopment of the instability.

We use two simultaneous optical techniques to analyze
the problem. The first one(Sec. III A) is based on the use of
an anamorphic lens which processes a vertical light sheet
that passes through the flow region. This technique allows
one to obtain the thickness profile from which we accurately
determine the area,A (for the early stable stage), and thus the
volume of the fluid. By using these profiles and the evolution
of the width of the fluid strip, we determine the value of the
precursor film thickness needed to perform numerical simu-
lations which quantitatively account for real situations. The
other technique(Sec. IV A) consists of a Schlieren method
with an iris diaphragm stopping the deflected rays of an il-
luminating parallel beam. This method produces images
which show most of the relevant features of the instability,
such as the shape of the contact line and the free surface
topography. In particular, from digitized pictures, we obtain
for the first time the evolution of the Fourier spectrum of the
contact line at the fluid front(front line). In Sec. V, we de-
velop a semianalytical model that predicts the value of the
dominant wavelength of the spatial front lines’ spectrum. The
results of this model are in very good agreement with the
experimental time evolution of the spectrum in the linear
stage of the instability, and the model also predicts the
growth rates of the normal modes.

II. BASIC DESCRIPTION OF CONSTANT VOLUME
PROBLEM

The initial fluid configuration is a vertical filament flow-
ing out from a small nozzle at the bottom of a vessel filled
with silicon oil [see Fig. 1(a)]. Both the nozzle diameter and
the fluid properties allow one to control the value of the area
A of the filament. The lower limit of the attainableA’s is
given by the Rayleigh instability of the jet which may lead to
the formation of beads for small enough radius. We use
PDMS with kinematic viscosity n=20 St, density r
=0.96 g cm−3, and surface tensiong=19.8 dyn/cm, so that

the capillary length isa=Îsg /srgd=0.145 cm.
The filament is captured on a glass(6 cm wide) by per-

forming suitable rotations of its frame before reaching the
final vertical position[see Figs. 1(b) and 1(c)]. All of these
movements take about 1–2 s, i.e. a time interval which is
very short compared to the time scale of the experiment(see
below). In order to obtain a good horizontal positioning of
the fluid strip, it is necessary to carefully control the direc-
tions of the rotating shafts. The mechanical adjustments are
optically checked by analyzing a digitized Schlieren image
of the spreading(see Sec. IV A for details). This experimen-
tal procedure allows one to obtain a fluid strip with contact
lines which are both horizontal and straight, so that the initial
configuration has a constant cross-sectional area along they
direction [see Fig. 1(d)]. After each experiment, the oil is
removed and the glass is cleaned by immersion in a bath of
sulphochromic acid for several days, in order to ensure the
removal of any oil residual on the glass surface. Before a
new experiment, the glass is washed with distilled water and
dried with hot air.

In the following sections, we show that both contact lines
(rear/upper and frontal/lower ones) remain straight during an
early stage of the experiment. At this stage, due to capillary
effects, the rear line climbs uphill a short distance(much

FIG. 1. Sketch of the mechanical system to place the fluid on the
substrate.(a) Initial setup and capture of the filament by the sub-
strate. (b) Filament on the substrate and intermediate position
(dashed arrows indicate previous rotation). (c) Final position.(d)
Sketch of the constant volume spreading down the vertical
substrate.
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smaller than the width of the film in the streamwise direc-
tion), while the front moves downhill significantly. These
movements are concurrent with a deformation of the shape
of the cross section. A second stage starts when the frontal
contact line appreciably departs from the straight line shape.
Later on, experiments show the growth of corrugations
which evolve into a pattern of rivulets(or fingers).

We have implemented two optical techniques in order to
observe and probe the relevant features of the flow in both
stages. One of these techniques is aimed at measuring the
thickness profile of the spreading as well as the position of
both contact lines. During the early stage, this technique al-
lows an accurate determination of the fluid volume. The
other one is intended to describe the topography of the free
surface and also the irregular shape of the contact line.

Usually, this type of flow is studied within the lubrication
approximation, i.e., small Reynolds number and small free
surface slope. These hypotheses are satisfied in our experi-
ments since PDMS oil is very viscous, and the strip is of a
small aspect ratio(typically, height/width,0.1). Thus, under
the action of gravity and surface tension, the governing equa-
tion for the fluid thicknesshsx,y,td is [14]:

3m
] h

] t
+ g ¹ · sh3 ¹ s¹2hdd + rg

] h3

] x
= 0, s1d

wherem=nr is viscosity, andg is gravity. The three terms in
Eq. (1) stand for the viscous, capillary, and gravitational
forces, respectively. Here,x is the downhill coordinate.

Equation(1) includes the nonslip boundary condition at
the substrate surface. Due to the well-known contact line
paradox(macroscopic divergence of the viscous dissipation
rate), all theoretical and computational methods require some
regularizing mechanism: Either assuming the existence of a
thin precursor film of thicknesshf in front of the apparent
contact line[2,15,16], or relaxing the no-slip boundary con-
dition at fluid–solid interface[14,17,18] by introducing a
slipping lengthls. We have performed an extensive compari-
son of these regularizing mechanisms applied to the spread-
ing drop problem[19]. In that paper, it is shown that the
precursor film model leads to the results that are very similar
to the ones obtained using slip model forhf < ls. Since the
computational performance of the precursor model is much
better, we use this model as a regularizing method in this
work.

We have recently developed a numerical method[20] to
solve Eq.(1), and used it to analyze the pattern formation in
CF flows [21–23]. Nevertheless, we report here only the re-
sults of one-dimensional numerical simulation that study the
y-independent stage of the flow. We leave the comparison of
the y-dependent numerical solutions of Eq.(1) with CV ex-
periments for a forthcoming paper.

Within the framework of a precursor film model, a certain
value ofhf must be assumed in order to perform the numeri-
cal simulations. Typically, one chooseshf to be one or two
orders of magnitude smaller than the average bulk thickness.
However, in order to produce results inquantitativeagree-
ment with the experiments, we must first determine the ap-
propriate value ofhf that reflects the actual physics of the

contact line. This is done in the following section by com-
paring numerical results for different values ofhf with the
experimental thickness profiles for a given areaA. Most im-
portantly, the resulting value turns out to be independent of
A. Therefore, the simulations that we perform to describe
other experiments for different areas using the samehf also
lead to very good agreement.

III. STABLE STAGE

A. Anamorphic lens technique

The early stages of the spreading, whenh is almost inde-
pendent of the transverse(horizontal) y coordinate, are stud-
ied by employing the optical system reported by Thomaset
al. [24]. The liquid film is probed by a parallel light sheet
along the(vertical) x direction impinging perpendicular to
the glass substrate. A lensL of focal length F=20.1 cm
forms a magnified image of the spreading region with a mag-
nification factor M =6.25 (see Fig. 2). Then, at the focal
plane ofL, we place an anamorphic lens,LA, equivalent to
two crossed cylindrical lenses(one convergent and the other
divergent) with focal lengths of an equal magnitudef
=120 cm, and their axes at ±45° with respect to thex axis (a
cylindrical–spherical ophthalmic lens, conveniently chosen
and oriented, does this job). Therefore, a bright curveyssxsd
appears on the screen, whose coordinates satisfy:

xs = Mx, ys = M
F2

f
sn − 1d

] h

] x
, s2d

wheren=1.4 is the refraction index of the silicon oil, and we
have assumed that they gradients ofh are negligible. There-
fore, this technique is particularly valuable as a tool to ana-
lyze the early stages of the spreading. In later stages, the
method becomes more difficult to use due to the presence of
transverse gradients, except in particular positions with high
symmetry, such as troughs or fingers. In fact, we will show

FIG. 2. Scheme of the anamorphic system.
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thickness profiles in the following section along these par-
ticular lines.

In Fig. 3, we show two images of the observed curve
yssxsd. They correspond to early stages of the spreading of a
filament with an approximate diameter of 0.4 mm placed ini-
tially near the top of the vertical glass. Images are inverted
upside down by the optical system, so that the upper discon-
tinuity corresponds to the front falling down, and the lower
discontinuity represents the rear front. According to Eq.(2),
the amplitude of the curve,ys, is related to the slope of the
thickness profile. Clearly, the steepest slope is at the front
falling down (dynamic contact angle). The right and left de-
flections indicate that there are zones with slopes of opposite
sign and, as a consequence, a point of zero slope(maximum
thickness). Figure 3(a) corresponds to an almost symmetric
early configuration, while Fig. 3(b) shows two distinguish-
able regions: One around the zero slope point(bump region)
and the other in the rear, where the slopes are much smaller.

According to Eq.(2), an integration of the curve]h/]x
versusx yields the thickness profilehsxd, and a further inte-
gration gives the area,A. Since the optical technique assumes
a paraxial approximation for the rays of the light sheet, the
contact line region must be considered in more detail. In this
zone, the steepness of the profile produces a much greater
deviation angle than in the rest of the film. If the assumed
approximation fails, the end of the deflected curve is dis-
placed in the verticalx direction with respect to the corre-
sponding end of the straight line. Thus, a gap or an overlap-
ping might appear on the screen. Although this effect does
not alter the determination of the width of the film, the un-
certainty in the values of the slopes close to this critical
region affects the calculation ofA. This effect becomes more
critical asA increases, posing a limit to the method. We pay
special attention to minimize this problem by a careful posi-
tioning of the anamorphic lens, and when processing the
digitized images.

B. Experimental results and comparison with numerical
simulations

A crucial element in reaching not only qualitative, but
also quantitative agreement between experiment and theory

is using an appropriate value of the precursor film thickness,
hf. As mentioned in Sec. I, this film is very thin and therefore
its measurement requires a technique, such as ellipsometry
[13], which is not compatible with our probing methods to
measure the macroscopic flow. To circumvent this difficulty,
we perform numerical simulations of they-independent ver-
sion of Eq.(1). Clearly, this approach requires very careful
and well resolved computations, since a very thin precursor
film also demands a very small computational step size,Dx,
in order to achieve numerical convergence. However, as we
will see below, the use of the correcthf in this work leads to
full agreement between computed and measured time scales,
therefore eliminating the need for time-scale adjustment
[25,26].

We obtainhf by performing an iterative procedure. First,
we choose two experimental thickness profiles, one close to
the beginning of the spreadingstad, and the other at a later
time tb (chosen small enough to ensure that the front is not
yet corrugated). Then, we use the experimental profile atta
as an initial condition in the numerical simulation, and we
integrate it forward in time using appropriate initial guess for
hf. We then compare the computed and the experimental pro-
file at tb. Based on the difference between these two profiles,
we choose the next iterate forhf and repeat this procedure
until convergence. The result of this iterative procedure is the
value ofhf which produces very goodquantitativeagreement
between computed and observed profiles:hf =43 nm (or hf
=3310−5a). Such a small value also requires very well re-
solved computations: We find that the results are fully con-
verged forDx=10−3a. We have also verified that this value
of hf remains unchanged if we choose a differenttb. We note
that thishf is in the range of the thicknesses measured and
reported in literature for precursor films[27,28]. From now
on, we use this value for the comparisons between experi-
ments and simulations performed using different fluid cross-
sectional areas.

In Fig. 4, we show the experimental results forA=6.75
310−4 cm2 (black dots). The evolution of the thickness pro-
file starts with a shape resembling a cylindrical cap whose
maximum is moving downward[see Fig. 4(a)]. During this
stage, the front line is practically straight. Later on, we ob-
serve the appearance of two regions[see Figs. 4(b) and 4(c)]:
the rear region, which acquires an almost parabolic shape,
and the front region which evolves by developing a large
bump. Once this structure is formed, corrugations of the
front line may start developing(see Sec. V). Figure 4(c)
shows a well developed profile when the front line is about
to start corrugating. Note that in this stage, the regions men-
tioned above are connected by a zone of almost flat thickness
(“plateau”). Similar profile evolution is also observed in the
experiments carried out by Tanner[29]. He obtained the pro-
files by scanning a two-dimensional droplet with a light
beam. However, his method yields only around ten points per
profile, whereas our technique probes the fluid instanta-
neously and provides a continuous(surface slope) curve.

The gray lines in Fig. 4 correspond to the numerical simu-
lations. We see that the results are in excellent agreement
with the experimental data. The simulations are performed
starting from the initial condition(cylindrical cap),

FIG. 3. Snapshots of the originally vertical light sheet after be-
ing refracted by the spreading and deflected by the anamorphic
system forA=6.75310−4 cm2. The thickness gradients along the
line are responsible for the horizontal deflections.(a) t=1.97 min,
(b) t=20.07 min. The vertical segment shows the spatial scale at the
substrate, and the horizontal one corresponds to the scale of]h/]x.
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hsx,0d = h0F1 −S x

w0/2
D2G , s3d

wherew0=ws0d is the width of the strip in the streamwise
direction att=0, andh0 is its maximum thickness. Since both
the values ofw0 and the areaA are given by the anamorphic
technique, we calculateh0 ash0=3A/2w0. We have verified
that this initial shape leads to results that are in full agree-
ment with those obtained by using an experimental profile
for a given t.0. Therefore, we use the initial condition as
given by Eq.(3) for all the simulations that follow.

The comparison of the numerical width of the film(solid
gray line) with the experimental results(black dots), wstd, is
shown in Fig. 5. We define

w = xf − xr , s4d

wherexf, xr are the positions of the front and rear contact
lines, respectively. We use the width,w, instead ofxf in order
to consider a quantity independent of the reference frame
(except for the very first stages,xr does not vary appreciably
during the spreading). In order to show the sensitivity of the
simulations with respect to the precursor film thickness, we
also show in Fig. 5 the numerical width obtained withhf
=3310−4a=430 nm (dashed gray line). Even though this
value is still within the range expected for a precursor film,
we clearly see that the predicted behavior ofwstd strongly
differs from experiments, while the results forhf =43 nm are
in very good agreement.

We have carried out a series of experiments withA’s rang-
ing from 3310−4 to 15310−4 cm2. In order to show the
characteristic features of the problem, we discuss here only
two more cases, one for a larger area, and another for a
smaller one. The general behavior of all other experiments is
similar to that of these three examples.

The results for a larger areasA=10.3310−4 cm2d are
shown in Figs. 6–8. We observe that the numerical results
obtained by using the value ofhf determined for the case
A=6.75310−4 cm2 also show very good agreement for these
experiments. As mentioned above, for a large area, we expect
some effects related to the presence of higher slopes at the
moving contact line. In fact, the overlapping at the upper
discontinuity in Fig. 6(a) is due to this effect. This deviation
from the expected behavior affects only a small portion of
the curve, and does not modify the precision of the rest of it.
Upon integration, we minimize the contribution from that
region in order to obtain a reliable thickness profile. Note
that the overlapping diminishes as time progresses[see Fig.
6(b)], because the dynamic contact angle is lower at this later
time. In practice, we calculate the profiles and their corre-
sponding areas at several time instances, and find that the

FIG. 4. Thickness profiles forA=6.75310−4 cm2 for different
times. Black dots correspond to experimental data and the gray
lines to the numerical simulations withhf =3310−5a.

FIG. 5. Comparison of the width of the film between experi-
ments (black dots) and numerical simulations forhf =3310−5a
(gray solid line) and hf =3310−4a (gray broken line) for A=6.75
310−4 cm2.
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measured areas have a fluctuation which is at most 5%.
Then, the reported value ofA is obtained by performing an
appropriate average. Naturally, we do not use this procedure
for times too close to the onset of the instability, since the
assumption of constant cross section no longer holds. We
verify that an area calculated for a certain time corresponds
to the stable stage by simultaneously observing the shape of
the front line for that time(see Sec. IV A).

A feature of this experimentsA=10.3310−4 cm2d is that
the flow evolution is much faster than the previous case
whereA is smaller. Note that formation of the structure com-
posed of a bump region and a parabolic rear region occurs
now for times as early as<5 min [see Fig. 7(b)] compared
with 20 min in the smaller area case[see Fig. 4(c)].

Figure 9 shows a typical case of one of the smallest areas
studied in this work,A=3.6310−4 cm2. Though there is no
overlapping now, the main difficulty here is the smallness of
the deviation of the light beams. Since for late times[Fig.
9(b)], the mean amplitude of the deviation becomes compa-
rable with the thickness of the line, the relative error intro-
duced by this effect is more important than in the previous
cases. In all experiments, we determine the curve from the
average of the horizontal positions of the pixels weighted
with their intensities. This procedure yields the coordinates
of a one-pixel line, which minimizes the just mentioned ef-
fect.

Figures 10 and 11 show that the numerical simulations,
performed with the samehf as before, are also in good agree-
ment with this experiment. Note that the small differences in
the thickness profiles are not larger than 2mm. The fact that
a single value ofhf allows one to adjust the calculations to
experiments in a significant range of areas, is consistent with
the assumption thathf is a characteristic feature of the par-
ticular interaction between our PDMS and the glass sub-
strate, and it does not depend on the amount of spreading
fluid.

IV. UNSTABLE STAGE

A. Schlieren method

In addition to the previous technique, we also use a
Schlieren method to probe the spreading. A sliding mirror

allows one to switch between one technique and the other.
The Schlieren technique is used with a diaphragm centered at
the focus of lensL (see Fig. 2) and an expanded probing
laser beam. This expansion is achieved by a collimating sys-
tem which includes a pinhole for spatial filtering. This sys-
tem generates a 6 cm wide beam of parallel rays, which il-
luminates the substrate from behind. The setup is adjusted to
produce an illumination as uniform as possible.

The images thus obtained show a pattern of dark and
bright zones, which correspond to regions where the modu-
lus of the gradient of the thickness is greater or smaller than
a cutoff value, respectively. The cutoff varies with the diam-

FIG. 6. Snapshots of the originally vertical light sheet after be-
ing refracted by the spreading and deflected by the anamorphic
system forA=10.3310−4 cm2. The thickness gradients in the di-
rection of spreading generate the horizontal deflections of the line.
(a) t=2.23 min,(b) t=8.7 min.

FIG. 7. Thickness profiles forA=10.3310−4 cm2 for different
times. Black dots correspond to experimental data and the gray
lines to the numerical simulations withhf =3310−5a.
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eter d of the diaphragm(all photos presented here haved
<1 mm). From these patterns, it is possible to reconstruct
the thickness of the film. The results of this procedure and
the comparison with the numerical solution of Eq.(1) will be
reported in a forthcoming paper. In this work, we restrict our
analysis to the study of the shape of the front line. Figure 12
shows four typical images obtained by using this technique
for areaA=6.75310−4 cm2 (the images are inverted by the
optical system). We clearly see the formation of a pattern of
fingers and troughs. In order to obtain a well resolved shape
of the front line, we filter the Schlieren image to correct the
remaining lack of uniformity in the illumination. Then, we
increase the contrast of the image and obtain the coordinates
of hundreds of pixels corresponding to the front line.

B. Unstable contact line: Spectra, fingers, and troughs

The analysis of the instability pattern is performed by
calculating the discrete Fourier transform(DFT) of the front
lines. Here, we employ the following definition to make this
transformation:

vs =
1
În

o
r=1

n

ur expf2pısr − 1dss− 1d/ng, s5d

wheren is the number of sampling points withx coordinates
ur, r denotes they ordering of the pixel, ands is an integer

with 1øsøn. Here, we obtain the power spectrumuvsu as a
function ofl=nP/ ss−1d, whereP is the scale of the picture
(in units of cm/pixel), since the dominantl can be related to
the average distance between fingers.

By processing the images of the front line for different
times as shown in Fig. 12, we obtain the Fourier spectra
presented in Fig. 13. For times close to the beginning of the
instability [see Fig. 12(a)], one can distinguish two peaks in
the spectrum(t=38.2 min, lowest gray line in Fig. 13). How-
ever, for later times, the shorter-wavelength peaksl
<0.55 cmd grows faster and finally dominates the spectrum.
Later, for times greater than 200 min, a secondary peak ap-

FIG. 8. Comparison of the width of the film between experi-
ments (black dots) and numerical simulations withhf =3310−5a
(gray lines) for A=10.3310−4 cm2.

FIG. 9. Snapshots of the originally vertical light sheet after be-
ing refracted by the spreading and deflected by the anamorphic
system forA=3.6310−4 cm2. The thickness gradients in the direc-
tion of spreading generate the horizontal deflections of the line.(a)
t=2.53 min,(b) t=18.1 min.

FIG. 10. Thickness profiles forA=3.6310−4 cm2 for different
times. Black dots correspond to experimental data and the gray
lines to the numerical simulations withhf =3310−5a.
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pears for even shorter wavelength,l<0.4 cm.
We note that the details of the emerging patterns vary

from experiment to experiment. For example, the experimen-
tal results shown in Fig. 12 are characterized by a rather slow
evolution of the patterns in the middle of the domain[see
Fig. 12(b)]. However, repeating the experiment, using the
same glass and the same cleaning procedure, leads to a dif-
ferent pattern distribution. Although the details of the emerg-
ing patterns vary, the value of the dominant wavelength is
highly reproducible for a given fluid area. We further discuss
the aspects of the spectral evolution in Sec. V.

In Fig. 14, we show the width,w, of the film along two
lines [see arrows in Fig. 12(d)]: One going through the tip of
a finger and the other through the central point of an adjacent

trough. For the sake of completeness, we add to the figure
the data obtained using the anamorphic system for early
times. For comparison, we also plot the trajectory of the
unperturbed(straight) front line as given by the numerical
simulation (solid line). Figure 14 allows one to estimate a
time for the onset of the instability, which is here aboutt
<80 min. This time is an upper limit, since corrugations
might appear for earlier times at differenty positions.

In Figs. 15–17, we show the corresponding results for the
largest area,A=10.3310−4 cm2. The Schlieren pictures in
Fig. 15 show a very regular pattern of fingers and troughs.
This is apparent in the corresponding spectra(Fig. 16), since
there is an outstanding peak atl<0.51 cm from the very
early stages of the instability. This suggests that the nonlinear
stage of instability development is imprinted by the mecha-
nisms involved in the linear stage. In Fig. 17, we show an
expansion of Fig. 8 for later times by including the positions
of the fingers and troughs marked with arrows in Fig. 15
from the Schlieren pictures. Just after the onset of the insta-
bility, the fingers and troughs clearly depart from the straight
front numerical solution(gray line).

The smallest area results(A=3.6310−4 cm2), are reported
in Figs. 18–20. The spectra have a more complicated struc-

FIG. 11. Comparison of width of the spreading between experi-
ments (black dots) and numerical simulations forA=3.6
310−4 cm2. The solid and dashed gray lines correspond tohf =3
310−5a and 3310−4a, respectively.

FIG. 12. Evolution of the film using the Schlieren technique for
A=6.75310−4 cm2 at: (a) t=38.2, (b) 101.2, (c) 207.5, and(d)
343.7 min. Arrows point to they coordinates chosen to track the
positions of a finger and a trough(see Fig. 14). The white segments
stand for the length scales1 cmd at the substrate.

FIG. 13. Fourier spectra of the front lines shown in Fig. 12.
Darker lines correspond to later times:t=38.2, 101.2, 207.5, and
343.7 min.

FIG. 14. Positions of a finger and trough(see arrows in Fig. 12)
with respect to the rear front from experimental data(dots), and
evolution of the unperturbed front line from simulation(solid line),
corresponding to the experiment withA=6.75310−4 cm2.
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ture (see Fig. 19 for early times). For later times, however,
there is a well-defined peak(here atl<0.46 cm), similar to
the ones observed in the cases of larger areas. The existence
of persistent secondary peaks close to the dominant one is
directly related to the shape of the early unstable spectrum
st=133 mind. The reason why this other peak also grows
relatively fast is due to its proximity to the dominant wave-
length.

It is interesting to show that the anamorphic technique is
also useful in the unstable stage to measure thickness pro-
files. The measurement must be done along lines where the
transverse gradients are negligible, as it occurs along a finger
or a trough. In Fig. 21, we show the profile along the sym-
metry line of a finger from an experiment with areaA=5.5
310−4 cm2. It is obtained by lateral displacements of the

glass, so that the light sheet probes the spreading along this
line. The frame is moved with a sliding device and the use of
a micrometric screw. A similar procedure is followed to ob-
tain the profile along the symmetry line of a trough. To our
knowledge these are the first reported simultaneous micro-
metric profiles of a finger and its adjacent trough for the CV
case (on the other hand, the profiles for the CF case of
thicker millimetric films are available in literature[8,9,30]).
A further analysis of these results and the comparison with
numerical simulations is left for a future work.

In summary, the experimental results suggest the exis-
tence of stages in the development of the instability. These
stages can be defined as follows:

(1) The first stages0ø tø t0
*d is characterized by a tran-

sient behavior in which the flow evolves from an initial con-

FIG. 15. Evolution of the film using the Schlieren technique for
A=10.3310−4 cm2 at: (a) t=17.8, (b) 54.4, (c) 104.7, and(d)
192.9 min. Arrows point they coordinates chosen to track the po-
sitions of a finger and a trough, see Fig. 17.

FIG. 16. Fourier spectra of the frontlines shown in Fig. 15.
Darker lines correspond to later times:t=17.8, 54.4, 104.7, and
192.9 min.

FIG. 17. Positions of a finger and trough(see arrows in Fig. 15)
with respect to the rear front from experimental data(dots), and
evolution of the unperturbed front line from simulation(solid line),
corresponding to the experiment withA=10.3310−4 cm2.

FIG. 18. Evolution of the film using the Schlieren technique for
A=3.6310−4 cm2 at: (a) t=0.83, (b) 133.5, (c) 256.1, and(d)
430.6 min. Arrows point they coordinates chosen to track the po-
sitions of a finger and a trough(see Fig. 20).
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dition (close to a cylindrical cap) to a structure with a para-
bolic shape in the rear region and a bump developed in the
frontal region. Also, in this stage, the front line is still
straight and does not show any appreciable corrugation. A
more precise definition oft0

* will be given below.
(2) Once the bump structure is clearly attained, the small

perturbations tend to grow(unstable profile). In other words,
the presence of the bump is a key feature for the develop-
ment of the instability. For this stage,t. t0

* , we develop, in
next section, a model for the growth of the amplitude of the
perturbations within the linear approximation.

(3) When the amplitude of the perturbations exceeds a
certain limit, the nonlinear effects become significant
st. tNLd. However, in our experiments, these effects do not
change the mean separation between fingers.

We emphasize that for all cross-sectional areas explored
here, the instability developsafter the formation of the
bump. In particular, asA is increased, the instability develops
faster, but the formation of the bump proceeds on a faster
time scale as well. This observation constitutes an important
difference with respect to other experiments performed with
millimetric (or even thicker) films [1,12]. In those cases, the

lubrication approximation is only marginally satisfied, while
it is completely fulfilled in our micrometric films. As a con-
sequence, those experiments may have a different sequence
of stable and unstable stages. Thicker films often include a
rolling motion (“nose”) at the advancing front, which stabi-
lizes the flow and is responsible for the initial stable stage
[31]. If the film is not too thick, surface tension effects be-
come increasingly important as the fluid thins, and the nose
changes its shape to a wedge-shaped profile[32]. Later on,
the front region grows a bump and the flow becomes un-
stable. Instead, in our experiments, there is no rolling stage,
but the bump of the front region is present from the very
early stages. The instability is not observed at once, but it
becomes apparent only after a certain time. We discuss this
delay in the next section.

V. INSTABILITY ANALYSIS

In this section, we aim to develop a model for predicting
the spatial spectrum of the instability, the growth rates of the
perturbations and the value of the dominant wavelengthlm.
At present, there is no thorough analysis of the contact line
instability for the CV problem. Instead, a fair amount of
literature is devoted to the linear stability analysis of the CF
problem. Here, we apply the results of the CF case to pro-
duce a predictive model for the CV configuration.

A. Constant flux revisited

Thanks to the translational invariance in the CF case, the
solution of they-independent version of Eq.(1) is of the
traveling wave type. Thus, for a constant thickness,hp, in the
far region behind the front(plateau), we have a dimension-
less solution of the form,

h = hpHsjd, j = sx − utd/,, s6d

where

, = sa2hpd1/3, u = u0s1 + b + b2d, s7d

with u0=rghp
2/3m and b=hf /hp. The main feature of this

solution is the presence of the bump in the front region

FIG. 21. Thickness profiles along a finger(black dots) and a
trough (gray dots) from an experiment withA=5.5310−4 cm2 at
time t=52.5 min.

FIG. 19. Fourier spectra of the front lines shown in Fig. 18.
Darker lines correspond to later times:t=0.83, 133.5, 256.1, and
430.6 min.

FIG. 20. Positions of a finger and trough(see arrows in Fig. 18)
with respect to the rear front from experimental data(dots), and
evolution of the unperturbed front line from simulation(solid line),
corresponding to an experiment withA=3.6310−4 cm2.

GONZÁLEZ et al. PHYSICAL REVIEW E 70, 026309(2004)

026309-10



[2,19]. As it is well known in literature, this bump is the
signature indicating the instability of the solution. In the lin-
ear stability analysis of this problem, it is assumed that there
is a transverse perturbation of the base solutionHsjd charac-
terized by a wavelengthl. Thus, the perturbed solution ex-
panded in normal modes is written as

Hsj,y,td = Hsjd + egsjdcosskydexpsstd, s8d

wheree is the (small) amplitude of the perturbation,gsjd is
the eigenfunction,s is the growth rate(eigenvalue), and k
=2p /l.

Upon substitution of Eq.(8) into Eq. (1), we keep terms
only up to Osed. The terms of Ose0d yield an ordinary differ-
ential equation[2], whose solution isHsjd. The terms of
Osed constitute an eigenvalue problem of the formLgsjd
=sgsjd, whereL is a linear operator, whose coefficients de-
pend on the base solutionHsjd [33]. We solve this problem
and obtains as the maximum value of the discretized spec-
trum. These calculations are performed fork’s in the range
0økø1.2.

For a givenb, there are two relevant wave numbers:(a)
kmax for which sskmaxd is the maximum,smax, and (b) k*

=2p /l* , which yieldsssk*d=0 (marginal stability), such that
the solution is unstable fork,k* sl.l*d, and stable other-
wise. Calculated values of these parameters are reported in
Table I for some values ofb. Clearly,smax shows a stronger
dependency onb than the wavelengthsl* andlmax.

Interestingly enough, when all the growth ratessskd for
variousb’s are plotted in the normalized form

s

smax
= Fsqd, s9d

where q=k/k* =l* /l, they nearly collapse onto a single
curve (see Fig. 22). For the purpose of analyzing the CV
case, we look for a simple analytical form that would repre-
sent well all these eigenvalues, in particular in the unstable
range. It turns out that the polynomial fit that one may expect
based on the smallq limit of the linear stability analysis[15]
(expansion in even powers ofq) is not appropriate for the
wholeq range. A better approximation is obtained by using a
general functional formq2s1−qpd wherep is a rational num-
ber. We find best agreement by using

Fsqd = 95q2s1 − q1/17d, s10d

which is also plotted in Fig. 22. This fit is used in the next
section, and it implies thatl* <0.61lmax. The departures
from this function increases forq.1, but the fitting in the

unstable range is reasonably good, and it will be helpful in
the model for CV case developed in the following section.

B. Constant volume configuration: Adiabatic model

A major hindrance to performing the linear stability
analysis of the unperturbed solutionhsx,td for the CV case,
is the fact that the base solution is time dependent, as out-
lined above. Here, we extend the linear stability analysis of
the CF case by assuming that the base profile evolves suffi-
ciently slowly relative to the growth rate of the perturbations
(adiabatic approach).

Let us consider a profilehsx,t0d after the fluid starts
spreading, witht0ù t0

* . Since att= t0, the flow has already
developed a bump–plateau structure, we perform the analysis
by perturbing the flow by a transverse corrugation character-
ized by a wavelengthl and an initial amplitudeI0= Ist0d. A
key point in describing the linear evolution of the instability
is to assume that the unperturbed state changes so slowly
during this stage that the perturbation evolves on top of a
quasi-steady base flow. Thus, the asymptotic growth rates of
the CF case can be considered as the instantaneous growth
rates of the CV case. This assumption requires that the am-
plitude of the perturbation be small enough, so not to modify
significantly the base flow(linear regime). Therefore, every
component of the spatial Fourier spectrum of the perturba-
tion evolves independently from one another.

We attempt to approximate the bump region of the CV
flow by the corresponding profile in the CF case for the same
hf. The idea underlined in this approximation is that the in-
stability basically depends on the thickness structure of this
region, while the flow far behind does not affect the behavior
of the front. In the CF case, the characteristic time and length
scales as, /u0<hp

−5/3 and hp
1/3, respectively[see Eq.(7)].

Thus, theinstantaneousgrowth rate in the CV case becomes
[see also Eq.(9) and [33]]:

ssqd = smaxhp
5/3Fsqd s11d

where

TABLE I. Maximum growth rates and critical wavelengths for
severalb’s.

b=hf /hp smax, /u0 lmax/, l* /,

10−1 0.127 12.84 8.33

10−2 0.285 12.58 7.42

5310−3 0.340 12.57 7.34

3310−3 0.377 12.56 7.23

FIG. 22. Eigenvalues of the dispersion relation for the CF case
for b=0.01 (crosses), 0.005(squares), and 0.003(open pentagons).
The solid line is a fitting curve, specified by Eq.(10).
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q =
l*

l
hp

1/3std. s12d

Here,hpstd, l are expressed in units of the capillary lengtha,
and t, s are in units of

t = 3ma/g, s13d

andt−1, respectively. In order to avoid cumbersome notation,
we use the symbols of the previous section to denote the
present dimensionless variables. The values ofsmax and l*

expressed in these units are given in Table I.
In a typical experiment, the range ofbstd=hpstd /hf is be-

tween 10−3 and 5310−3. As shown in Fig. 22 and Table I,
there are no significant variations ofsmax, l* and the shape
of function F within this range.

The instantaneous growth rate satisfiess= I−1dI /dt, so we
have

Isl,td = I0sldexpSE
t0

t

ssqst8dddt8D . s14d

Thus, Eqs.(11) and (12) allow us to calculate the instanta-
neous growth rate of the perturbation as a function of the
dimensionless thicknesshpstd, and Eq.(14) predicts its am-
plitude.

The experimental results show that for a given time there
exists at least one dominant wavelength, where the spectra
have a peak. In order to obtain an estimate of this wave-
length, we assume here that the initial amplitudeI0
=constant is the same for everyl, thus yielding a single
maximum of the amplitudeImax at l=lmax. Then, from Eq.
(14), we have the condition

E
t0

t U ] ssqd
] l

U
l=lmax

dt8 = 0, s15d

which, for given values oft0 and t, allows one to calculate
lmax.

To proceed, we must define an appropriate way of deter-
mining the parameterhpstd. For this purpose, let us consider
a CF flow with a certain valuehp of the (asymptotic) flat
region, such that it has a bump heighthb coincident with the
one of the CV case with the samehf. The idea is to approxi-
mate the CV flow by the solution of a CF case which fits the
bump region the best. Note that this model is intended to
describe only the instability of the contact line and not the
complete flow in the CV problem. The underlined concept is
that the instability basically depends onhb and the slope at
the contact line, and that other details of the flow are not so
relevant.

In order to ensure that the model is used within the adia-
batic and linear approximation, the timet0 must be in the
interval t0

* ø t0ø tNL (see also the end of Sec. IV B). The
adiabatic condition requires that the relative rate of variation
of hp,

b =
1

hp

] hp

] t
, s16d

must be smaller than the instantaneous growth rate of the
perturbation. If this condition is fulfilled for the growth rate
of the dominant wavelengthlmax, then it is satisfied for all
other l’s. We can obtain the lower boundt0

* as the time at
which bst0

*d=sst0
*d for lmax. For this purpose, we assume a

guess value oft0 and use Eq.(15) to find lmax by integrating
from t0 to a sufficiently large timet. If sslmaxd as given by
Eq. (11) is less thanb at t0, we choose a smaller value oft0;
otherwise,t0 must be increased. This iteration scheme yields
t0
* , i.e., the lower bound oft0. This procedure is accurate

sincelmax depends only weakly ont0 for very larget.
The experiments show that the instability actually occurs

for t0’s greater thant0
* , so that the requirement of slow

change of the base state is fully satisfied. Thus, the predicted
spectra results presented below use the value oft0 as ob-
tained from the experiments.

Figure 23 shows both the experimental spectra and the
model results at four different times presented in Fig. 12. The
model predictions are based on the linear evolution of the
experimental spectrumI0sld from the earliest timet0
=38.2 min (lower gray line). Figures 23(a) and 23(b) that
concentrate on early times, show that close to the dominant
wavelengthl=lmax<0.55 cm, there is a very good agree-
ment between the model and the experiments.

Figure 23 also presents the spectra(dotted lines) obtained
assuming constant initial amplitude,I0. This constant is cho-
sen as the experimental maximum att0, and therefore the
dotted lines provide an envelope for the model results that
use the details of experimental configuration at timet0. These
envelopes will help us understand some features of the re-
sults that we discuss next.

One of these features is another peak atl<0.9 cm. For
this peak, the model predicts the growth that is slower cor-
responding to the experimental one. The discrepancy can be
understood by observing the slope of the envelope shown in
Fig. 23. In the zones where the slope of this envelope is very
large, an error inl plays a significant role in the determina-
tion of the corresponding growth rates. In fact, the discrete
character of the DFT spectrum leads to an error in the deter-
mination ofl of the order[see text after Eq.(5)] Dl=l / ss
−1d=l2/nP (<0.15 cm forl=0.9 cm). Thus, for largerl,
there is a larger error in its determination.

Since forl<0.9 cm there is a significant change in the
slope of the envelope withinDl, the growth rate predicted
by the model may differ significantly from that given by the
DFT. Note also that based on these arguments, the model is
expected to be more accurate for wavelengths close to the
dominant one.

Figures 23(c) and 23(d) show the results for later times.
Although we observe an increasing departure of the growth
rates from the linear model, the dominant wavelength given
by the model is still close to the experimental one. One can
expect that nonlinear effects account for this difference, since
the shape of the contact line corresponding to these later
times [see Figs. 12(c) and 12(d)] has the characteristic fea-
tures of the nonlinear stage of the instability(e.g., the length
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of fingers is much larger than their separation). Another sig-
nature of nonlinear effects can be traced to the increased
amplitudes of short wavelengths for late times. To see this,
note that the experimental spectra in Fig. 13 show that the
amplitudes forl,l* are not as small as one would expect
based on the linear stability analysis. Our interpretation is
that part of the energy of the linear modes is transferred by
nonlinear processes to shorter wavelengths(energy cascade).
Essentially, what occurs here is that the fingers’ shape change
for later times, becoming more pointing with parallel sides.
A description of these features then requires shorter wave-
lengths. This mechanism subtracts energy from the dominant
wavelengths and it may then be another source of the differ-
ence between the experimental results and the linear model
for late times. Similar features can be also observed for dif-
ferent fluid areas, shown in Figs. 16 and 19.

An additional effect that must be taken into account to
better understand the instability for late times is the increase
of the ratio b=hf /hp, due to the fact for fixedhf, hp de-
creases. This increase ofb leads to the decrease of the maxi-
mum growth rate, as shown in Table I. This effect only plays
a minor role when the model is applied to the linear stage, in
which b is of the order of 10−3. However, for the advanced
nonlinear stages,b is significantly larger. As a consequence,
the growth rates predicted by the model that uses a constant
value ofsmax in Eq. (11) corresponding to smallb, are cer-
tainly greater than those of the actual flow for later nonlinear
stages whereb is not so small.

For very long wavelengthssl.2 cmd, the experimental
spectra have relatively high amplitudes. These wavelengths
may be affected by the boundaries, due to the finite extension
(in they direction) of the film. Nevertheless, these effects do
not influence the behavior of the dominant wavelength, since
lmax is much smaller than the lateral width of the experimen-
tal domain.

Figure 24 presents another test of the model. This figure
compares the model predictions for the time evolution of
modal amplitudes extracted from the experimental spectra
shown in Fig. 12. For brevity, we have chosen the amplitudes
of the dominant wavelength,lmax, and of two otherl’s (a

FIG. 23. Spectral evolution of the front line forA=6.75
310−4 cm2 (see Fig. 12). (a) The lower and upper gray lines cor-
respond to the experimental spectra att0=38.2 min and t
=82.8 min. respectively. The dashed black line is the spectrum pre-
dicted by the model att assuming a linear evolution from the spec-
trum at t0. The dotted line is the spectrum obtained evolving the
model from the uniform spectrum atI0=constant att0. (b), (c), (d):
The same as(a) for final times t=101.2, 127.3, and 207.5 min,
respectively.

FIG. 24. Time evolution of the modal amplitudes forA=6.75
310−4 cm2. The symbols correspond to experimental data and the
lines to the model results forlmax=0.55 cm(squares, solid line),
l=0.63 cm (pentagons, dotted line), and l=0.41 cm (crosses,
dashed line).
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shorter one and a longer one). For early times, the agreement
between the model and the experiment is very good. For late
times, which start close tot=120 min, there is an increasing
departure from the linear model predictions.

Figure 25 shows the spectra for the large area caseA
=10.3310−4 cm2 [see Fig. 15(a)]. Here, we observe many
similarities but also some differences compared to the previ-
ous case. Regarding similarities, there is good agreement be-
tween the model and the experiment for the emerging domi-
nant wavelength, as well as for the amplitudes at early times.
This agreement is confirmed by the time evolution of modal
amplitudes shown in Fig. 26. In this figure, we see that the
transition to the nonlinear regime occurs for times close to
t=50 min. The main difference between these spectra and
the previous ones is the appearance of a strong dominant
wavelength with very weak side peaks. This feature can be
qualitatively understood by visual comparison of Figs. 12
and 15—the patterns shown in Fig. 15 are much more regu-
lar, leading to better defined dominant wavelength.

Next, Fig. 27 shows the results for smaller fluid area,A
=3.6310−4 cm2. The spectra still have a dominant wave-
length, but the amplitudes of the side peaks are now closer to
that of the main peak. In spite of this more complex struc-
ture, the model still accurately predicts the value of the
dominant wavelength. The time evolution of modal ampli-
tudes, shown in Fig. 28 is again in good agreement with the
model for early times. The transition time towards the non-
linear regime is now close tot=180 min. Regarding differ-
ences to the cases of larger areas, we note that the envelope
here is flatter, and so the maximum growth rate is closer to
the ones of the neighboring modes. As a consequence, the
development of a clearly dominant wavelength is slower
compared to the larger areas.

Before concluding this section, we briefly discuss an al-
ternative approach to the analysis of the experimental data,
with the main goal of verifying that our results are not af-
fected by possible spatial nonuniformities of the substrate.
Therefore, we complement our(global) Fourier analysis by a
local wave number study using thecomplex demodulationof
the shape of the corrugated contact line. This procedure may

FIG. 25. Spectral evolution of the front line forA=10.3
310−4 cm2 (see Fig. 15) at final times t=17.8, 54.4, 70.4, and
104.7 min in(a)–(d), respectively(heret0=17.8 min). See the leg-
end of Fig. 23 for additional information.

FIG. 26. Time evolution of the modal amplitudes forA=10.3
310−4 cm2. The symbols correspond to experimental data and the
lines to the model results forlmax=0.53 cm(squares, solid line),
l=0.71 cm (pentagons, dotted line), and l=0.47 cm (crosses,
dashed line).
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be regarded as a local version of the previously presented
Fourier analysis, and it consists of demodulation of the digi-
tized spreading widthwsy,td [see Eq.(4)] obtained from the
Schlieren pictures. By defining the wave numberk0=2p /l0,
we write the demodulated function as[34]:

Wsy,td = fwsy,td − wavstdge−ik0y s17d

where wavstd is the width averaged along the transversey
direction. Here, we takel0 equal to the dominant wavelength
lmax as given by the Fourier analysis. Thus, we assume that
the contact line can be described by a monochromatic signal
with slowly varying both amplitudeRsy,td and phase for a
given timet. We extract an approximation toRsy,td by em-
ploying a least-squares filter as described in Ref.[34]. Since
we want to compare this amplitude with the one given by
Fourier analysis,uvsu [see Eq.(5)], we defineRn=ÎnRsy,td.

Figures 29(a)–29(c) shows the results of this technique
applied to the linear stage of the experimental data presented
earlier in increasing order of the areaA. In Fig. 29(a), we
show the time evolution ofRn at three fixed transverse posi-
tions along the spreading front, located approximately 1/4
(dotted-dashed line), 1/2 (dotted line), and 3/4(dashed line)
along the spreading in they direction, measured from the left
edge. Note that even if the local amplitudes are different, the
curves are almost parallel to each other, thus indicating that
the growth rated log Rn/dt of the demodulated amplitude is
almost the same at all locations. Therefore, we do not find
any evidence of spatial nonuniformity of the substrate. For
comparison, we also show[solid line in Fig. 29(a)] the am-
plitude uvsu of the dominant modelmax as given by the
model. Clearly, the model describes well the growth rates
obtained by using complex demodulation technique.

In Figs. 29(b) and 29(c), we present the results for larger
areas, corresponding to Figs. 12 and 15. These figures also
lead to the same conclusion regarding spatial uniformity of
the substrate, and the agreement of the global Fourier analy-
sis with the complex demodulation technique. We note that
the first point in the curve at 1/4(dotted-dashed line) in Fig.
29(c) is not completely reliable since the differencew−wav is

FIG. 27. Spectral evolution of the front line forA=3.6
310−4 cm2 (see Fig. 18) at final timest=176.2, t=224.6, 256.1,
and 430.6 min in(a)–(d), respectively(heret0=133.5 min). See the
legend of Fig. 23 for additional information.

FIG. 28. Time evolution of the modal amplitudes forA=3.6
310−4 cm2. The symbols correspond to experimental data and the
lines to the model results forlmax=0.46 cm(squares, solid line),
l=0.66 cm (pentagons, dotted line), and l=0.38 cm (crosses,
dashed line).
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very small there[see Fig. 15(a)], and then the demodulation
technique, including the filtering process, yields a large rela-
tive error.

C. Other approaches tohp

The fitting process of the bump height explained above
yields values ofhp that are generally higher than those of the
actual plateau zone(mentioned in Sec. III A) connecting the
bulk and bump regions. One might question whether a model
that adjustshp to the actual plateau thickness could lead to
better results. In this alternative approach, the functionhpstd
can be obtained from the numerical simulation by defining it
as the thickness of the second inflection point behind the
bump. This choice is convenient because it allows for a
simple tracking of the point, and it corresponds to the pla-
teaulike zone which connects the rear parabolic and frontal
bump region.

Figure 30 shows the results obtained using this approach
applied to the experiment performed usingA=6.75
310−4 cm2. The comparison of the dotted line obtained us-
ing this fit and of the experimental curve demonstrates that
this fitting mechanism fails to describe the experimental re-
sults [viz. Fig. 23(a) for the results obtained using bump-
fitting approach]. Similar results hold for all other explored
cross-sectional areas, reinforcing the argument that the insta-
bility development in the linear regime is governed by the
bump and front region while the rear zone plays only a minor
role.

Another option is to approximatehpstd by the value given
by Huppert’s formula[1]. This analytical solution is obtained
by neglecting surface tension effects, and thus it does not
predict the bump region(see the Appendix). However, it is
expected to be a good approximation of the rear zone for
large times. Therefore, one hopes that it should be possible to
usehpstd<hHstd [see Eq.(A3)]. The computed results using
this model are also plotted in Fig. 30(dashed line). We see
that this approach still underestimates the growth rate of the
linear stage of the instability.

There are several additional drawbacks regarding the use
of Huppert’s solution to estimatehp for tù t0. For the times
when the linear model is expected to hold, neither the thick-
ness profile nor the position of the contact line is correctly
predicted by this analytical solution. This is illustrated in Fig.
31. This figure shows that Eq.(A2) [solid line in Fig. 31(a)]
predicts much too fast spreading of the film, compared to the
experimental results(dots) [the time in Eq.(A2) has been
shifted in order to get the right value ofwst=0d]. The portion
of the fluid area that should be placed in the bump is relo-
cated in the bulk, thus leading to an overestimate of the
width. Furthermore, the profiles for the early stages of the
instability (see, e.g., Fig. 21) are also poorly described by
Huppert’s solution.

In spite of the failure of this solution to describe the stable
stage as well as the early stages of the instability, one may
wonder why the departure of the predicted growth rates from
the experimental data(see Fig. 30) is only about 20%. This
fact can be explained by a mechanism of cancellation of

FIG. 29. Time evolution of the amplitudeRn of the complex
demodulated contact line atl0=lmax for: (a) A=3.6310−4, (b)
6.75310−4, and (c) 10.3310−4 cm2. The dotted–dashed, dotted,
and dashed lines correspond to 1/4, 1/2, and 3/4 of the distance
along the spreading in they direction, respectively. The solid line
corresponds to the amplitudeuvsu of the dominant modelmax as
given by the model.

FIG. 30. Comparison of experimental results for the case shown
in Fig. 23(a) with the spectral evolution of the front line using:
Plateau adjustment ofhp (dotted line), and adjustment by using
Huppert’s solution(hp=hH, dashed line).
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errors. Note thathp (as given byhH) is initially too large(it
diverges ast→0), and it also decreases too fast[see Eq.
(A3)]. As a consequence, for times close tot0, this approach
leads to a perturbation’s growth that is faster than expected
[see Eq.(11)]. However, this approach also diminishes the
growth rate too strongly for later times. Upon time integra-
tion, these two departures from the actual behavior almost
compensate for each other, and the results for the amplitude
of the perturbation are then masked by this cancellation. For
even later times, one could hope that, due to the asymptotic
character of Huppert’s solution, it could be appropriate to
describe the unperturbedy-independent flow for larger times,
However, for those times, the perturbations have grown
enough to invalidate the modeling of the growth rates by a
linear approach, no matter how we definehp.

VI. SUMMARY AND CONCLUSIONS

In this work, we report detailed experimental results of
the spreading of a constant volume of PDMS oil down a
vertical glass substrate. We study this problem by combining
experimental and theoretical/computational techniques. The
experiments employ two optical techniques: One requires the
use of an anamorphic lens, and the other is based on the
Schlieren method. The analysis is performed by comparing
the experimental data with numerical simulations and by de-
veloping analytical models.

The anamorphic lens technique allows one to measure the
thickness profile and the width of the film. It is mainly used
in the stable stage of the experiments before the onset of the
instability. From the measured profiles we obtain the cross-
sectional area of the uniform fluid strip. Since the area is
accurately measured, we are in a position to very precisely
determine the thickness of the precursor film which numeri-
cally reproduces the evolution of the experimental profiles of
an arbitrary single experiment. The outcome of this proce-
dure is the thickness of 43 nm which is a value in agreement
with those reported and estimated in literature. This value is
directly used as an input to numerical simulations that use
different fluid cross-sectional areas. The calculated profiles
are in very good agreement with the experimental data ob-
tained using these different areas.

The images obtained using the Schlieren technique are
used to study the shape of the front line after the onset of
instability. Here, we perform a discrete Fourier transform of
the fluid front lines. The resulting spatial spectra show a
dominant wavelength which is determined during the linear
stage of the instability development. The experiments show
that this wavelength is a decreasing function of the areaA.
Also, the reported experimental results allow one to deter-
mine the average growth rate for all spatial modes occurring
in the experiment by comparing two spectra at successive
times.

We developed a linear model to account for the time evo-
lution of the amplitude of each mode. It uses the growth rates
of the instability of a CF problem properly scaled to consider
the thinning of the average thickness in the CV case. A key
point in the model is the determination of the appropriate
value of the plateau thickness to be used in the CF solution.

Several possibilities are considered, and we show that the
best fit to the experimental results is obtained by choosing
such a value that the bump heights of these two problems
(CV and CF) agree. In particular, we show that the use of the
Huppert’s solution fails to produce quantitatively correct re-
sults for both stable and unstable stages of the flow.

In summary, our experimental techniques allow one to
provide a detailed quantitative description of several features
of the problem not previously reported in literature. The ac-
curate determination of the relevant parameters of the experi-
ments(such as the thickness of the precursor film, cross ar-
eas, thickness profiles, spatial spectra of the modes, and
growth rates) are essential to test the validity of the approxi-
mations involved in the lubrication theory and the contact
line physics.
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FIG. 31. Comparison of Huppert’s solution(gray dashed lines)
with the experiment ofA=6.75310−4 cm2 (black dots). (a) Width
of the spreading.(b) Thickness profile fort=20.07 min. See also
Figs. 4(c) and 5.
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APPENDIX: HUPPERT’S SOLUTION

If we ignore they dependence of the flow, we are left with
a one-dimensional problem. For late times, when the tran-
sient effects associated with the initial release of the fluid
have decreased enough, a self-similar solution, that balances
the weight of the fluid and the viscous force on the plane
[i.e., the first and third terms in Eq.(1)], can be obtained.
Thus, by neglecting surface tension, one reaches the solution
(first derived by Huppert[1]) of the form

hsx,td = S x

3t
D1/2

, sA1d

whereh, x are in units ofa, and t is in units oft (see Sec.
V B). The domain of the solution ends abruptly at

xHstd = S27

4
A2tD1/3

, sA2d

where the thickness is

hsxHd = hH = sA/2td1/3. sA3d

By replacing this solution in the neglected terms, we find that
it holds for (see [35]) 1! s48x5td1/2. Thus, Huppert’s self-
similar solution is reached asymptotically ast→`. However,
as noted by Hocking[35], the main criticisms that can be
made to this solution regard the validity of the lubrication
approximation. It violates the small slope hypothesis both at
the leading edge, whereh goes abruptly fromhH to (practi-
cally) zero, and at the rear wall, where the slope is infinite.
Note that the inclusion of surface tension, i.e., the fourth-
order term in Eq.(1) breaks self-similarity.
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