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Background

Founded in 1958 by Bill and Vieve Gore in Newark, DE with 10,000+
associates and more than $3 billion in annual revenue
Manufactures in U.S., Germany, Scotland, Japan, and China and has
sales offices in many other countries
Privately held and has 2,000+ patents worldwide
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Characterization of Porous Media

Network of cylindrical capillaries: Pore networks represented by
graphs with connectivity (2D/3D lattices)

Curves in space: Lines, circles, spheres, cylinders laid out in space to
represent the solid portion of the porous medium

Experimental Characterization: Gas/Liquid porometry and
porosimetry and Filtration Efficiency for well defined
particles/molecules
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Setup

The scanning electron microscope (SEM) in particular is a useful tool
to analyze the structure of the pore networks

Assume it generates negligible information depthwise and the
distribution is homogeneous in depth

We want a distribution of the diameters of the fibers in the network
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Problem 1

Study the existing algorithms for Image Analysis
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Existing Methods

Local thickness:

Highly effective for 3D geometry (planes, spheres, cylinders).
Distance map is defined by the largest sphere that can fit in the object.
For 2D, it treats everything in an intersection as a single object.

Pourdeyhimi : Compute diameter by computing the distance
transform.

Ridge detection:

Highly effective for detecting line segments
Highly dependent on 3 mandatory parameters
Creates lines from background noise
Mixes up fibers in the intersections
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Problem 2

Develop models to study the diameter distribution of the fibres

Transformation- Radon

Neural Networks

Probabilistic Approach
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Radon Transform

Definition:

R(f )(P) =

∫
P
f ,

where P is the hyperplane in Rn, f ∈ S(Rn). (Fourier Analysis an
introduction, Stein, E., Shakarchi, R.)

In 2D, it coincides with X-ray transform:

X (ρ)(L) =

∫
L
ρ,

where L is a line in R2, ρ ∈ S(R2) is typically a density function.

Hough transform (Hough, P. V. C. 1962 Patent No. 3,069,654).{
y = yix + xi , Rosenfeld, 1969

ρ = xi cos θ + yi sin θ, Duda and Hart, 1972
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Radon Transform 2D

Figure: From Hart 2009, the normal parametrization of a straight line.

R(f )(θ, ρ) =

∫ ∞
−∞

f (z sin θ + ρ cos θ,−z cos θ + ρ sin θ)dz
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Radon Transform for lines

Radon transform

ρ

θα

Y

X

α

Figure: Radon transform for lines.
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Image processing procedure

change image to grey scale (rgb2gray)

find the edge (edge)

radon transform the image with just edges (radon)

locate peaks (tricky part)

peak location gives information about size and orientation (couple
peaks)
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Radon Transform for fibers
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Figure: Fiber image processing using Radon transform.
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Hough Transform for fibers

r

Figure: Fiber image processing using Hough transform. Code from Davin.
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Edge Detection for real fibers

Figure: Actual fiber image after edge detection.
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Radon Transform for real fibers

Figure: Actual fiber image processing using Radon transform. With distribution of fiber
size.
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Hough Transform

A feature extraction technique used in image analysis.
Helps to solve problem of missing points or pixels in detecting simple
shapes like straight lines, circle or ellipses.
Representing straight lines as y = mx + b, vertical lines pose a
problem.
In Hough transform, a straight lines in image is represented by its
normal direction θ and its distance to the origin.

r = x cos(θ) + y sin(θ).

All the points on the straight line has a contribution to (θ, r) in
Hough space.

X

Y

θ
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Hough Transform

Each straight line in image is a pair (r , θ) in Hough space.

Straight lines passing through a point in image corresponds to a
sinusoidal curve in Hough space.

Detecting straight line is equivalent to finding the bright spot in
Hough space contributed by intersecting curves.
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Machine Learning

Data Synthesis:

ML/NN models require training on large amounts of labeled data
which we do not have. For this, we created synthetic images of fiber
structure.

Synthetic data is labeled based on number of fibers, angular
distribution of fibers, and distribution of thickness.
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Machine Learning

Here is a sample synthetic image with a uniform distribution of fiber
widths and a normal (mod π) distribution of fiber angle with
µ = 112◦ and σ = 29◦
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Machine Learning

Pre-Processing:

In order to train on the synthetic images, we first pre-process with
edge detection, and then convert the image using the Hough
Transform.

Here we see a similar image after edge detection.
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Machine Learning

Pre-Processing:

In order to extract non-localized features using a Convolutional
Neural Network, we then take the Hough Transform
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Machine Learning

Pre-Processing:

At this point, proper selection of Hough Transform peaks will lead to
the identification of lines parameterized by θ and r. Taking the
histogram of these theta values would give a sample of the
distribution of fiber angles. Of course, you have to remap theta to
your desired coordinate system. (i.e. π

2 − θ)
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Machine Learning

Pre-Processing:

Instead, we opt for a Convolutional Neural Network to train on the
Hough transformed image. We downsample the image, as training on
smaller images is much faster. (Training on many large images can
introduce GPU memory concerns)
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Machine Learning

Model:

We used a Convolutional Neural Network that was modified from one
used to train on identifying anglular offset of MNIST data. Our
network has a total of three convolution layers.
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Machine Learning

Model:

Setting the target variable as the mean of the distribution angles does
not give bad results. We get an RMSE = 0.7391 on the test data
(n=1000,80% training,20% testing).
Here we see the histogram of errors on the Test data set in radians.
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Machine Learning

Convolutional Layer:

A brief explination... A convolutional layer is an m x n kernel that is
convolved over the image with weights that are are trained through
back propigation. (Image taken from Skani, Introduction to Deep
Learning: From Logical Calculus to Artificial Intelligence)
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Machine Learning

Back Propogation:

The regression output layer of the Neural Network uses the Mean
Squared Error loss function defined by:

MSE =
R∑
i=1

(ti − ri )
2

R

This loss function does not take into account the periodicity of θ and
could be improved by redefining in periodic space.

In MATLAB, this could be done by modifying the source code for
RegressionOutputLayer.
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Machine Learning

Room for Improvement:

Further testing can be done on this problem by simulating more
complex distributions of angle/thickness.

More time would also permit exploring a neural network that outputs
a vector of values that correspond to the the distribution of fiber
angle. (Instead of just the mean statistic)

Finally, more testing needs to be done on using a CNN over the
Hough space to identify fiber thickness.
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1D Slicing

Consider measuring a one-dimensional slice of the image.
The slice intersects a fiber at an angle θ, assumed to be normally
distributed.
Measure the width of the intersection X with the fiber by counting
the number of consecutive light pixels.
This can be used to find the distribution of h.
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Expectation of Width of Intersection

For a fixed single fiber of width h,

X =
h

cos(θ)
= h sec(θ)

h =
E[X ]

E[sec(θ)]

Unfortunately, the expectation of sec(θ) is unbounded. However, the
maximum measurement is approximately the length of fiber that is in the
frame, L. Thus,

E[X ] = E[min(h sec(θ), L)]

≈ 2h

π

(
1 + log

(
2L

h

))
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Multiplying with Width Distribution

Consider instead that each measured intersection corresponds with a
range of possible width values.
By multiplying the empirical distribution with a distribution of
possible widths, we arrive at a distribution much closer to the truth.
Since the angle theta is distributed uniformly, and X = h cos(θ), this
width distribution is the derivative of the inverse cosine, 1√

1−x2

Figure: Plot of 1√
1−x2

from x = 0 to 1
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Results

Figure: Distribution at 1x magnification. In black is shown the ground truth
distribution the dataset was sampled from.
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Truncating Small Fibers

Fibers of small diameter are often erroneously detected. If we truncate all
intersections of width less than 2 pixels, we arrive at distributions much
closer to the truth.
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Results with Truncation

Figure: Distribution at 1x magnification. In black is shown the ground truth
distribution the dataset was sampled from.
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Results with Truncation

Figure: Distribution at 2x magnification. In black is shown the ground truth
distribution the dataset was sampled from.
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Results with Truncation

Figure: Distribution at 4x magnification. In black is shown the ground truth
distribution the dataset was sampled from.
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Results with Truncation

Figure: Distribution at 8x magnification. In black is shown the ground truth
distribution the dataset was sampled from.

38 / 45



Observations about Magnification

We observe that as the magnification increases, the distribution skews
further to the right.

However, it appears that at 8x magnification, the low diameter fibers
are actually being over represented.

Future work would be to quantify this effect and adjust for it when
combining samples across different magnifications.
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Computational Topology

We also used tools from persistent homology to characterize different
types of realistic fiber structures.

Real life filters have different morphologies and these morphologies
may be characterized by persistence diagrams.

Specifically, we track Betti numbers, which characterize topological
spaces, as the image is filtered in gray scale.

The 0 Betti number is the number of connected components
The 1 Betti number is the number of closed cycles.

Code used was from the Perseus software project:
http://people.maths.ox.ac.uk/nanda/perseus/index.html
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Computational Topology

We’ll show movies after the slides.
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Summary

Approaches:

Neural Networks

Radon and Hough Transform

1D Slicing

Persistent Homology
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Questions?
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