Path-Compression
during Find-Set, make each node on the find path point
directly to root

Using union by rank and path compression:
$O(m\alpha(m,n))$ running time for $m+n$ operations
$\alpha(m,n)$ is a function that is almost constant
(for any conceivable application, $\alpha(m,n)<5$)
The best implementation for disjoint sets: disjoint-set forest

Find-Set -- chase parent pointers until get to root (representative)
Union -- make root of one tree point to the root of the other tree

Augmentations that improve running time:
Union by rank -- just like weighted union
the root of the tree with fewer nodes points to the root of larger tree

Using Union by rank: $O(m + n \lg n)$ running time for $m+n$ operations
Theorem: with weighted-union, a sequence of \(s+n \) operations,
n of which are Make-Set, takes \(O(s+n \log n) \) time

Proof: -- \(n \) Make-Set operations take \(O(n) \)
 -- all Find-Sets: at most \(O(s) \)
 -- all Unions: at most \(O(s) \) for making 1 set and \(\sum \) for changing pointers
 -- consider some element \(x \); each time \(x \)'s representative pointer is updated, \(x \) must have started in the smaller set:
 1st time \(x \)'s pointer was updated, resulting set had \(\geq 2 \) members
 2nd time \(\geq 4 \) members
 3rd time \(\geq 8 \) members

 \(i \)-th time \(\geq 2^i \) members
 \((\log n) \)-th time \(\geq n \) members
 -- the largest any set can ever become is having \(n \) members,
 so \(x \)'s pointer can be updated at most \(\log n \) times
 -- there are \(n \) objects \("x" \) -- total time for all Unions is \(O(n \log n) \)
 -- \(T(n) = O(n \log n) + O(m) + O(n) = O(m+n \log n) \)
augmentation: each element has a pointer back to representative

Make-Set takes $O(1)$ time
Union takes $O(\text{length of list})=O(n)$ time

Find-Set takes $O(1)$

Weighted-union: always append the smaller list to the larger for this, need another augmentation:
keep the size of the list with the representative
Connected-Components(G)
for each vertex v in V
 Make-Set(v)
for each edge (u,v) in E
 if \(\text{Find-Set}(u) \neq \text{Find-Set}(v) \) then Union(u,v)

Same-Component(u,v)
 if Find-Set(u)=Find-Set(v) then return TRUE
 else return FALSE

Implementation of disjoint sets: each set as a linked list
first element in list is the representative

Make-Set takes O(1) time
Union takes O(length of list)=O(n) time
Find-Set takes O(length of list)=O(n) time
TOPIC 12: Disjoint-set Data Structure

Disjoint-set data structure

- maintain a collection $S = \{S_1, S_2, \ldots, S_k\}$ of disjoint dynamic sets
- each set is identified by a representative (ex: some member of set)

operations needed on this data structure:
- Make-Set(x) -- create a new set whose only member is x
- Union(x,y) -- unite the sets containing x and y, say S_x and S_y, into a new set; S_x and S_y get destroyed
- Find-Set(x) -- find the set (representative) containing x

Application: finding connected components of a graph

$$G=(V,E) \quad V=\text{set of vertices} \quad E=\text{set of edges}$$