MST-Prim(G,w,r)

Q=V

for each u in Q

key[u]=∞

key[r]=0

while Q is not empty

u=Extract-Min(Q)

for each v ∈ Adj [u]

if v ∈ Q and w(u,v)<key[v] then key[v]=w(u,v)

Running time: $O(V+V \lg V+E \lg V)=O(E \lg V)$

using balanced binary search tree for Q

using fancier data structures can get $O(E+V \lg V)$
MST-Kruskal(G,w)

A=∅

for each vertex v
 Make-Set(v)

sort edges of E by nondecreasing weight w

for each edge (u,v) in order by nondecreasing weight
 if Find-Set(u) ≠ Find-Set(v) then
 add (u,v) to A
 Union(u,v)

return A

Running time: O(V+E lg E+Eα(E,V))=O(E lg E)

using disjoint-set union data structure
Theorem: Let A be a subset of E that is included in some MST for G. Let $(S, V-S)$ be any cut of G that respects A and let (u,v) be a light edge crossing $(S, V-S)$. Then (u,v) is safe for A.

Proof: Let T be a MST that includes A. For contradiction, assume T does not contain (u,v). We want to construct another MST T'' that includes A and (u,v). Look at the path p from u to v in T. u and v are on opposite sides of cut $(S, V-S)$. So, there must be some other edge of p that crosses this cut, say (x,y). Since $(S, V-S)$ respects A, we know that $(x,y) \notin A$. Let $T'' = T - \{(x,y)\} + \{(u,v)\}$ T'' is a spanning tree since taking out (x,y) breaks T into 2 components, and adding (u,v) reconnects these 2 components. T'' is a minimum spanning tree since $w(u,v) \leq w(x,y)$.
Generic-MST(G,w)
A=∅
while A does not form a spanning tree
 find edge (u,v) that is safe for A and add edge (u,v) to A
return A

How to find safe edges?

A cut (S,V-S) is a partition of V

A cut respects the set A if no edge in A crosses the cut

An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing a cut
TOPIC 18: Minimum Spanning Trees (MST)

given weighted graph $G=(V,E)$, we want an acyclic subset $T \subseteq E$ that spans V and has minimum weight

$w(T)=$sum of weights of T’s edges

Growing a MST
algorithm manages set A that is a subset of an MST
at each step, algorithm determines an edge (u,v) that can be added to A while maintaining the invariant that A is a subset of an MST such edge (u,v) is called a safe edge for A