Running time: $O(V \cdot E)$

Proof of correctness:

Let v be reachable from s, and let $p = \langle v_0, v_1, \ldots, v_k \rangle$, $v_0 = s$ and $v_k = v$, be a shortest path from s to v. Since p is a simple path, $k < |V|$.

We want to prove by induction for $i=0,1,...,k$ that $d[v_i] = \delta(s, v_i)$ after the i-th execution of the for loop.

Basis: $d[v_0] = \delta(s, v_0) = 0$

Inductive step: if $d[v_{i-1}] = \delta(s, v_{i-1})$ after $(i-1)$-st pass,

prove that $d[v_i] = \delta(s, v_i)$ after the i-th pass

Proof: edge (v_{i-1}, v_i) is relaxed during the i-th pass,

and thus by a previous lemma, $d[v_i] = \delta(s, v_i)$
Bellman-Ford(G,w,s)
Initialize-Single-Source(G,s)
for i=1 to |V|-1
 for each edge (u, v) ∈ E do Relax(u,v,w)
for each edge (u, v) ∈ E
 if d[v]>d[u]+w(u,v) then return FALSE (i.e. negative weight cycle)
return TRUE

order of edges: (u,v) (u,x) (u,y) (v,u) (x,v) (x,y) (y,v) (y,z) (z,u) (z,x)
Running time: if we use a table for Q, we get $O(V+V^2)=O(V^2)$
if we use a balanced binary search tree for Q,
we get $O(V+V \log V+E \log V)=O(V+E \log V)$

Proof of correctness: We want to show that for each vertex $u \in V$, we have $d[u] = \delta(s,u)$ at the time when u is inserted into F. By contradiction.
Let u be the first vertex for which $d[u] \neq \delta(s,u)$ when u is inserted into F.
Examine the time at the beginning of the while loop when u is inserted into F.
If there is no path from s to u, then $d[u] = \delta(s,u) = \infty$, a contradiction.
So, there is a path from s to u, and let p be the shortest s-to-u path.
p connects a vertex in F, i.e. s, to a vertex in $V-F$, i.e. u. So, p crosses border.
Look at the first vertex y along p such that $y \in V-F$, and at vertex x preceeding y in p. $x \in F$.
When x was inserted into F, $d[x] = \delta(s,x)$.
Then we did Relax(x,y,w).
By lemma, we have $d[y] = \delta(s,y)$.
$d[y] = \delta(s,y) \leq \delta(s,u) \leq d[u]$
Since both u and y were in $V-F$ when u was chosen, $d[u] \leq d[y]$.
Then, $d[y] = \delta(s,y) = \delta(s,u) = d[u]$, which contradicts our choice of u.
Dijkstra(G,w,s)
Initialize-Single-Source(G,s); \(F = \emptyset \); \(Q = V \)
while \(Q \neq \emptyset \)
 \[u = \text{Extract-Min}(Q) \]
 \[F = F \cup \{ u \} \]
 for each vertex \(v \in \text{Adj}[u] \) do Relax\((u,v,w)\)
Lemma: Suppose that the shortest path from s to v uses edge (u,v), and G is initialized with Initialize-Single-Source, and then a sequence of relaxations is executed on edges of G that includes Relax(u,v,w). If $d[u] = \delta(s,u)$ at any time prior to this call Relax(u,v,w), then $d[v] = \delta(s,v)$ at all times after the call.

Proof: By previous Lemma, if $d[u] = \delta(s,u)$ at some point prior to this Relax(u,v,w), then $d[u] = \delta(s,u)$ holds always thereafter. Thus, after this Relax(u,v,w), we have

$$d[v] \leq d[u] + w(u,v) = \delta(s,u) + w(u,v) = \delta(s,v)$$

Thus, $d[v] \leq \delta(s,v)$. But from previous Lemma, we have $d[v] \geq \delta(s,v)$. Thus, $d[v] = \delta(s,v)$.
Lemma: Immediately after Relax(u,v,w), we have \(d[v] \leq d[u] + w(u,v) \)

Proof: If before execution of Relax(u,v,w), we had \(d[v] > d[u] + w(u,v) \), then \(d[v] = d[u] + w(u,v) \) afterwards. If instead, before execution of Relax(u,v,w) we had \(d[v] \leq d[u] + w(u,v) \), then nothing was changed by Relax(u,v,w) and we still have \(d[v] \leq d[u] + w(u,v) \).

Lemma: After Initialize-Single-Source, \(d[v] \geq \delta(s,v) \) for all vertices \(v \), and this invariant is maintained over any sequence of relaxations on edges of \(G \). And, once \(d[v] \) achieves its lower bound of \(\delta(s,v) \), it never changes.

Proof: First, \(d[v] \geq \delta(s,v) \) is true just after Initialize-Single-Source. We show by contradiction that the invariant holds over any sequence of relaxations. Let \(v \) be the first vertex for which a relaxation step of some edge \((u,v)\) causes \(d[v] < \delta(s,v) \). Then after this Relax(u,v,w), we have \[d[u] + w(u,v) = d[v] < \delta(s,v) \leq \delta(s,u) + w(u,v), \] which implies that \(d[u] < \delta(s,u) \).

This contradicts our assumption that \(v \) is the first to violate the invariant. Thus, \(d[v] \geq \delta(s,v) \) for all vertices \(v \).
Initialize-Single-Source(G,s)
 for each vertex v in V
 \(d[v] = \infty \)
 \(\pi[v] = NIL \)
 d[s]=0

Throughout the algorithms, \(d[v] \) is the current best known path from \(s \) to \(v \)

Relax\((u,v,w)\)
 if \(d[v] > d[u] + w(u,v) \) then \(d[v] = d[u] + w(u,v) \) and \(\pi[v]=u \)

Example:

\[
\begin{array}{cccc}
 s & \rightarrow & u & \rightarrow & v \\
 0 & & 5 & & 9 \\
\end{array}
\]

\[
\begin{array}{cccc}
 s & \rightarrow & u & \rightarrow & v \\
 0 & & 5 & & 7 \\
\end{array}
\]

\[
\begin{array}{cccc}
 s & \rightarrow & u & \rightarrow & v \\
 0 & & 5 & & 9 \\
\end{array}
\]
Representing shortest paths

\[\pi[v] = \text{predecessor of } v \]

so that the chain of predecessors originating at vertex \(v \) runs backwards along a shortest path from \(s \) to \(v \)

Properties of shortest paths and Relaxation

Lemma: if \(p = \langle v_1, v_2, \ldots, v_k \rangle \) is the shortest path from vertex \(v_1 \) to vertex \(v_k \), then for any \(i \) and \(j \) such that \(1 \leq i \leq j \leq k \), \(p_{ij} = \langle v_i, \ldots, v_j \rangle \) is the shortest path from \(v_i \) to \(v_j \)

Lemma: For all edges \((u, v) \in E \), we have \(\delta(s, v) \leq \delta(s, u) + w(u, v) \)
TOPIC 19: Single Source Shortest Paths

Shortest Paths

given a graph, we want to compute **shortest** paths between certain origin and destination vertices

weight of a path = sum of weights of the edges that make up the path

Single source shortest paths: compute shortest paths from origin (source) \(s \) to all other vertices

Single-destination shortest paths: compute shortest paths from all vertices to some destination \(t \)

All-pairs shortest paths: compute shortest paths between all pairs of vertices

Define: shortest-path distance (or weight)

\[\delta(s, v) = \text{the minimum weight of a path over all paths from } s \text{ to } v \]

Issues: negative-weight edges

negative-weight cycle