Let $d^{(k)}[i,j]$ be the weight of a shortest path from i to j whose intermediate vertices are drawn from the set $\{1, 2, 3, \ldots, k\}$

If $k=0$, then $d^{(0)}[i,j]=w(i,j)$

If $k>0$, then $d^{(k)}[i,j]$ is the minimum of $d^{(k-1)}[i,j]$ and $d^{(k-1)}[i,k]+d^{(k-1)}[k,j]$

i.e. $d^{(k)}[i,j]=\min(d^{(k-1)}[i,j],d^{(k-1)}[i,k]+d^{(k-1)}[k,j])$

The all-pairs shortest paths are the entries $d^{(n)}[i,j]$ in other words, $\delta(i,j)=d^{(n)}[i,j]$

Floyd-Warshall algorithm (W) Let $D^{(k)}=\{d^{(k)}[i,j]\}$

$D^{(0)}=W$ (i.e. for $i=1$ to n for $j=1$ to n $d^{(0)}[i,j]=w(i,j)$)

for $k=1$ to n

for $i=1$ to n

for $j=1$ to n

$d^{(k)}[i,j]=\min(d^{(k-1)}[i,j],d^{(k-1)}[i,k]+d^{(k-1)}[k,j])$

return $D^{(n)}$

Running time: $O(V^3)$
since \(p \) is a simple path (no repeated vertices), \(p_1 \) and \(p_2 \) do not contain \(k \)

\(p_1 \) must be the shortest \(i \)-to-\(k \) path that uses only \(\{1, 2, 3, \ldots, k-1\} \)

and \(p_2 \) must be the shortest \(k \)-to-\(j \) path that uses only \(\{1, 2, 3, \ldots, k-1\} \)

since both \(p_1 \) and \(p_2 \) are known, we can compute \(p \) easily

To determine \(p \), take the shortest of

1) the shortest \(i \)-to-\(j \) path that uses only \(\{1, 2, 3, \ldots, k-1\} \)

2) the shortest \(i \)-to-\(k \) path \(p_1 \) that uses only \(\{1, 2, 3, \ldots, k-1\} \)

plus the shortest \(k \)-to-\(j \) path \(p_2 \) that uses only \(\{1, 2, 3, \ldots, k-1\} \)
Suppose we know the shortest path for every pair of vertices s and t such that all intermediate vertices on this path are numbered $1, 2, \ldots, k-1$

There are only two possibilities for p:

1) k is not an intermediate vertex of p

then all intermediate vertices of p come from $\{1, 2, 3, \ldots, k-1\}$
then p is the same as the shortest i-to-j path that uses only $\{1, 2, 3, \ldots, k-1\}$ as intermediate vertices, which is known

2) k is an intermediate vertex of p

then we can break p into i-to-k path p_1 and k-to-j path p_2
TOPIC 20: All Pairs Shortest Paths (APSP)

using Dijkstra: $O(V^3)$ or $O(VE \lg V)$ good only for non-negative weights

using Bellman-Ford: $O(V^2E)$

New algorithm: we assume no negative weight cycles

Size of output for APSP is $O(V^2)$; thus use adjacency-matrix representation

Definition: intermediate vertex of a simple path $p = \langle v_1, v_2, ..., v_s \rangle$ is any vertex of p other than v_1 or v_s.

Let vertices be numbered $\{1, 2, 3, ..., n\}$. Consider a subset $\{1, 2, 3, ..., k\}$

For any pair of vertices i and j, consider all paths from i to j whose intermediate vertices are drawn from $\{1, 2, 3, ..., k\}$ (i.e. cannot be numbered $> k$)

Let p be a minimum-weight path from among these paths

Ex: $i=2$, $j=6$

for $k=4$, there is only 1 candidate path for p

path $2, 3, 1, 4, 6$ cost=$8+7+2+4=21$

for $k=5$, there are 2 candidate paths for p

path $2, 3, 1, 4, 6$ cost=21

path $2, 3, 5, 6$ cost=$8+1+2=11$ this is p