Heapsort(A)

Buildheap(A) $\mathcal{O}(n)$

for $i = n$ downto 1 n

output $A[1]$ (i.e. output the root) $\Theta(1)$

$A[1] = A[i]$ (i.e. put the last leaf at the root) $\Theta(1)$

Heapify($A[1]$) (i.e. heapify the root) $\Theta(lg\ n)$

Analysis: $T(n) = \mathcal{O}(n) + \Theta(n\ lg\ n) = \Theta(n\ lg\ n)$
Analysis of Buildheap:
So, each node’s height is at most \(\lg n \), and there are \(n \) nodes. Since Heapify takes \(\Theta(h) \) time to process a node at height \(h \), the total Buildheap running time is \(O(n \lg n) \)

Is that the best bound we can get?
No.
Tree contains \(n \) nodes, how many are at height \(h \)?

homework: to show that it is at most \[
\left\lfloor \frac{n}{2^{h+1}} \right\rfloor
\]

Since Heapify takes \(\Theta(h) \) time to process node at height \(h \), total time for Buildheap is

\[
\sum_{h=0}^{\lfloor \lg n \rfloor} \Theta(h) = \Theta\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) \leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)
\]

From Chapter 3, the summation can be simplified to \[
\frac{1/2}{(1 - 1/2)^2} = 2
\]

And so, the total time becomes \(O(2n) = O(n) \)
Buildheap(A): given an array A, make a heap out of it

for h=0 to height(root)
 heapify all nodes at height h

Analysis of Buildheap: what is the height of the root of a heap?

<table>
<thead>
<tr>
<th>depth</th>
<th># nodes at this depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>2^d</td>
</tr>
</tbody>
</table>

$1+2+4+...+2^d = n$, and we want to compute d

$$\sum_{i=0}^{d} 2^i = n$$, which becomes $2^{d+1} - 1 = n$

Thus, $d = \log (n+1) - 1 \leq \log n$

In other words, the depth of any node is at most $\log n$. Then, the height of any node is also at most $\log n$.
Analysis of Heapify: if node i is at height h

largest = $\max\{i, \text{left}(i), \text{right}(i)\}$ \(\Theta(1)\)

if largest = i then done \(\Theta(1)\)

else if largest = left(i) then switch i & left(i) \(\Theta(1)\)

\[\text{Heapify(left(i))} \quad T(h-1)\]

else switch i & right(i) \(\Theta(1)\)

\[\text{Heapify(right(i))} \quad T(h-1)\]

\[T(h) \leq \max\{ \Theta(1), T(h-1) + \Theta(1), T(h-1) + \Theta(1) \} + \Theta(1)\]

\[= T(h-1) + \Theta(1) = \Theta(h) \quad \text{using iteration method}\]

Thus, Heapify runs in time $\Theta(h)$
Heapify(A, i): given a tree that is a heap except possibly at position i, make the entire tree a heap

largest = max \{ i, left(i), right(i) \}

if largest = i then done
else if largest = left(i) then switch i with left(i) and Heapify(left(i))
else switch i with right(i) and Heapify(right(i))
Binary Heaps

described as a binary tree with heap property

Parent(i): return \(\lfloor i/2 \rfloor \)
Left-Child(i): return 2i
Right-Child(i): return 2i+1

Heap Property: node i has a value that is no greater than the value of i’s parent
Lecture 4: Heapsort

Binary Tree

height of a node: number of edges on the longest path from the node to a leaf (shown to the side of nodes)

depth of a node: number of edges on the path from node to root

leaves are double circled