Implementation of priority queue: heap

Maximum: return $A[1]$

takes $\Theta(1)$ time

Extract-Max:

Heap-Extract-Max(A)

$\text{max} = A[1]$

$n = n - 1$

Heapify($A, 1$)

return max

Running time: $\Theta(\lg n)$ time
Implementation of priority queue: heap

Insert:
Heap-Insert(A,x)

\[i=n+1 \]
\[\text{while } i>1 \text{ and } A[\text{Parent}(i)]<x \]
\[A[i]=A[\text{Parent}(i)] \]
\[i=\text{Parent}(i) \]
\[A[i]=x \]

Running time: \(\Theta(\lg n) \) time
Elementary data structures

stack operations: Stack-empty(S) Push(S,x) Pop(S)

queue operations: Enqueue(Q,x) Dequeue(Q)

variations: FIFO LIFO

linked lists operations: List-Search(L,k) List-Insert(L,x)

 List-Delete(L,x)

Priority Queue: data structure for maintaining set S of elements, each
 with an associated key and supporting operation
 Insert(S,x): insert element x into S
 Maximum(S): return the element of S with largest key
 Extract-Max(S): remove and return the element of S with largest key

Implementation of priority queue as list

 Insert takes O(1) time
 Maximum takes O(n) time
 Extract-Max takes O(n) time
Lecture 7: Selection, Priority Queue

given n inputs, want to find i-th smallest value

If sort first, costs $\Omega(n \lg n)$
Can we do $O(n)$ time?

Randomized-Select(A,p,r,i)
 if $p = r$ then return $A[p]$
 $q = \text{Randomized-partition}(A,p,r)$
 $k = q-p+1$
 if $i \leq k$ then
 return Randomized-Select(A,p,q,i)
 else
 return Randomized-Select(A,q+1,r,i-k)

Analysis: assuming that partition always gets a split into
 n/b and $n-n/b = n(b-1)/b = n/c$ ($c = b/(b-1)$) for constants b and c
 assume n/b is the bigger side
 $T(n) = T(n/b) + \Theta(n) = \Theta(n)$