Tree-Delete(T, z)
 case 1: z has no children
 set p[z]'s pointer to NIL instead of z
 case 2: z has 1 child
 set p[z] to point at z’s child
 case 3: z has 2 children
 recursively delete z’s successor y and put y in z’s place

 if left[z]=NIL or right[z]=NIL then y=z
 else y = Tree-Successor(z) /* y is the node that will replace z */
 if left[y] ≠ NIL then x=left[y]
 else x=right[y] /* x is a child of y, if y has any */
 if x ≠ NIL then p[x]=p[y] /* setting up x’s new parent */
 if p[y]=NIL then root[T]=x
 else if y=left[p[y]] then left[p[y]]=x
 else right[p[y]]=x /* setting x’s new parent to point at x */
 if y ≠ z then key[z]=key[y] /* replacing z with y */
Tree-Delete(T, z)
case 1: z has no children
 set p[z] to point to NIL

case 2: z has 1 child
 set p[z] to point at z’s child

case 3: z has 2 children
 delete z’s successor y and put y in z’s place
Tree-Insert(T, z)
 y = NIL x = root(T)
 while x ≠ NIL
 y = x
 if key[z] < key[x] then x = left[x] else x = right[x]
 p[z] = y
 if y = NIL then root[T] = z
 else if key[z] < key[y] then left[y] = z
 else right[y] = z

Running time: O(h)
Querying a binary search tree

Tree-Successor(x)

if right [x] \(\neq\) NIL then return Tree-Minimum(right[x])
y=p[x]
while y \(\neq\) NIL and x = right [y] do x=y; y=p[y]
return y

Running time: either we do Tree-Minimum: \(O(h)\) time

or we traverse a path from node up to (at most) root: \(O(h)\) time

\[T(n) = O(h)\]

Tree-Predecessor(x) \(O(h)\)
Querying a binary search tree

Tree-Search(x,k)
 if x=NIL or k=key[x] then return x
 if k<key[x] then return Tree-Search(left[x],k)
 else return Tree-Search(right[x],k)

Running time: we traverse a path from the root to (at most) a leaf
 at each node we spend Θ(1) time
 let h=height of tree=height of root
 \[T(n) = O(h) \]

Tree-Minimum(x) O(h)
Tree-Maximum(x) O(h)
Lecture 9: Binary Search Trees

Property: if node y is in the left subtree of node x and node z is in the right subtree of x then $key[y] \leq key[x] \leq key[z]$

Inorder-Tree-Walk(x)
 if $x \neq NIL$ then
 Inorder-Tree-Walk(left[x])
 print key[x]
 Inorder-Tree-Walk(right[x])

Running time: $T(n) = T(q) + \Theta(1) + T(n-q) = \Theta(n)$
 or observe that at each node we spend $\Theta(1)$ time, for a total of $\Theta(n)$

Inorder-Tree-Walk(root) prints out all the tree’s keys in a sorted order