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Abstract: In this work, we consider variable selection when modeling the intensity and clustering of inho-
mogeneous spatial point processes, integrating well-known procedures in the respective fields of variable
selection and spatial point process modeling to introduce a simple procedure for variable selection in spa-
tial point process modeling. Specifically, we consider modeling spatial point data with Poisson, pairwise
interaction and Neyman-Scott cluster models, and incorporate LASSO, adaptive LASSO and elastic net
regularization methods into the generalized linear model framework for fitting these point models. We per-
form simulation studies to explore the effectiveness of using each of the three regularization methods in our
procedure. We then use the procedure in two applications, modeling the intensity and clustering of rain-
forest trees with soil and geographical covariates using a Neyman-Scott model, and of fast food restaurant
locations in New York City with Census variables and school locations using a pairwise interaction model.
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1. INTRODUCTION

Spatial point data occur in a wide range of applications such as ecology, astronomy and epidemi-
ology and consist of random locations representing the observations of the objects (e.g. trees,
galaxies, disease cases) of interest. Different statistical models for spatial point processes have
been developed and studied, see e.g. Mgller and Waagepetersen (2004). For stationary point pat-
terns, the interest is often the study of the clustering properties. With the more recent interest in
inhomogeneous point patterns, one focus is the modeling of the spatially varying intensity of the
process in terms of covariates.

Broadly speaking, spatial point processes can be divided into three classes according to how
the points are clustered or dispersed: complete spatial randomness, clustering or regularity. Com-
plete spatial randomness is exhibited by the Poisson spatial point process, where there is inde-
pendence between the points of the process. This process has been well-studied due to its theoret-
ical and computational tractability. Despite the strong assumption of independence, Schoenberg
(2005) showed that the inhomogeneous Poisson process model with a linear expression for the
log-intensity can yield consistent estimates for non-Poisson point data under certain regularity
conditions on the process generating the data.
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Point patterns that exhibit clustering are often modeled using cluster point processes. They
produce clustering patterns through “offspring” points that are distributed around the locations of
(unobserved) underlying “parent” points. The parent point process is often taken to be Poisson,
although Yau and Loh (2010) considered a regular parent process. Waagepetersen (2007) and
Waagepetersen and Guan (2009) exploited the consistency property of Schoenberg (2005) to
introduce a two-step procedure for modeling the intensity and an inhomogeneous K function
that is often used to describe the clustering properties of a point process.

A pairwise interaction process uses a non-negative interaction function to describe the in-
teractions between pairs of points of the process. More general interaction processes involve
higher-order interaction functions but are less often used in applications. Pairwise interaction
processes involve analytically intractable normalizing constants hence likelihood-based methods
for fitting such models are computationally intensive. These models are also more suited for reg-
ular point processes (Stoyan and Stoyan, 1994). We describe these three spatial point processes
in more detail in Section 2 and in particular, describe how these models are fit to data.

Variable selection via regularization became a very active research area with the introduction
of a penalized likelihood procedure by Tibshirani (1996), where a least absolute shrinkage and
selection operator (LASSO) penalty is added to the likelihood function and used to shrink small
coefficients to zeros while retaining large coefficients in the model. Minimizing the negative log
likelihood plus the LASSO penalty simultaneously performs variable selection and parameter
estimation. Since then, many regularization methods have been developed, e.g. SCAD (Fan and
Li, 2001), elastic net (Zou and Hastie, 2005) and adaptive LASSO (Zou, 2006). In particular, the
elastic net uses both the LASSO and the ridge-regression penalties to achieve a sparse solution
as well as shrink correlated coefficients to each other. The adaptive LASSO and SCAD have so-
called oracle properties, with asymptotic performance that is as good as if the true model were
known.

More recently, there has been work on implementing variable selection for spatial point mod-
els in order to reduce variance inflation from overfitting and bias from underfitting. Renner and
Warton (2013) used the LASSO penalty with a Poisson point process to introduce a maximum
entropy approach for modeling the spatial distribution of a species in ecology. Thurman and Zhu
(2014) employed an adaptive LASSO penalty to select variables for the Poisson point process
model. Note that in both cases, only the Poisson point process was considered. In this work, we
propose a unified yet flexible approach to perform variable selection when modeling spatial point
processes. The approach allows the use of a variety of shrinkage methods with a wide range of
inhomogeneous spatial point processes, essentially giving the investigator more control over the
process of variable selection and spatial modeling. To introduce the procedure, we consider the
use of the LASSO, adaptive LASSO and elastic net shrinkage methods to select variables for the
Poisson, the pairwise interaction as well as the cluster point process models. The procedure is
computationally efficient and can be easily implemented in R (R Core Team, 2013). We study
the proposed method using a comprehensive simulation study, comparing the use of these three
shrinkage methods together with the three types of point models. We also apply our method to
two real data sets: the Barro Colorado Island (BCI) forest dataset and a New York City (NYC)
fast food restaurant and school dataset.

1.1. Data sets

The BCI dataset used here is part of a series of censuses conducted on a 1000m by 500m plot
of tropical moist forest in the Barro Colorado Island in central Panama. The censuses were con-
ducted over a period of 25 years during which over 350,000 trees consisting of as many as 3000
tree species were inspected. For this paper, we focus on the census conducted in 1995. Spatial
covariates are available, including elevation and slope of the land, soil pH and concentrations of

The Canadian Journal of Statistics/ La revue canadienne de statistique DOIL:



2077 3

minerals such as nitrogen (N), potassium (K) and phosphorus (P) in the soil.

The NYC dataset consists of locations of fast food restaurants (FFRs) in NYC, NYC public
elementary school locations with demographic information, as well as city demographic and
infrastructure information at the census block group level. The FFR locations were obtained
from a 2005 online directory of restaurant inspections by the NYC Department of Health and
Mental Hygiene. There are various ways to characterize a fast food restaurant. The dataset we
use is the one analyzed by Kwate et al. (2009) and the paper describes the criteria used to select
the FFRs. There were a total of 818 FFRs consisting of both national chains and local stores.
Data on the NYC public elementary schools were obtained from the Department of Education.
Besides the actual locations of 913 elementary schools, there was school demographic and socio-
economic data such as racial composition and percent of students eligible for free lunch. Area
income, median age, racial composition and population density at the block group level were
obtained from the 2000 US Census Summary Files 1 and 3 (SF-1 and SF-3). Average household
expenditures for food (lunch, dinner and snacks) away from home for 2006 were derived from a
Consumer Expenditure Survey by the US Bureau of Labor Statistic and supplied by a commercial
GIS firm. Finally, information on zoning was obtained from NYC tax lot base map files.

The remainder of this paper is organized as follows. The Poisson, pairwise interaction and
cluster process models for spatial point data are described in Section 2, specifically describ-
ing how estimates of model parameters are obtained. We then describe the implementation of
LASSO, adaptive LASSO and elastic net selection techniques to these spatial point process mod-
els in Section 3. Simulation studies are presented in Section 4. The results of the applications to
the BCI forest data and NYC fast food restaurant data are described in Section 5. We conclude
the paper with a short discussion in Section 6.

2. STATISTICAL MODELS FOR SPATIAL POINT PROCESSES

Let X be a spatial point process on a domain D C R? with first- and second-order intensity
functions defined by

_ o ((ElX(ds)] @ L (E[X(dsl)X(dsz)}>
”(S)ﬂdifﬂo( |ds] )a“d” (s1,80) =~ Mlim |dsy||dso] @

where ds represents an infinitesimal region around location s, |ds| its area and X (ds) the
number of points in ds. The quantity p(s)|ds| can be thought of as the probability of observ-
ing one point in ds and p(®)(sy, s2)|ds;||ds2| the probability of observing one point in each
of ds; and dss. The first-order intensity function is often referred to as the intensity function
and, for an inhomogeneous point process, is often assumed to be a parametric function py that
depends on some spatial covariates through parameters 8. Moreover, we assume that the pro-
cess X is second-order intensity reweighted stationary (Baddeley and Turner, 2000), such that
P (s1,82) = p(s1)p(s2)g(s1 — 52), where g(-) is the pair correlation function. Under this as-
sumption, the so-called K-function is well-defined and given in terms of an integral involving
g. A parametric model gy, is often assumed for the pair correlation function and hypotheses re-
garding clustering may be formulated in terms of 1. See for example Waagepetersen and Guan
(2009). Yue and Loh (2011, 2013), however, estimated both the intensity function and the pair
correlation function non-parametrically. Diggle (2003), Mgller and Waagepetersen (2004) and
Illian et al. (2008) provide comprehensive introductions to spatial point processes.

2.1. Poisson point processes

Suppose = {1, 2, ...,y denotes arealization of a spatial point process X observed within
a bounded region D, where n is random and x;,7? = 1, ..., n represent the locations of the ob-
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served points. If X is a Poisson point process, then the likelihood of X is given by

) o Hpe ) exp ( /DPG(S) dS) ) (2)

where py(s) is the intensity function with vector parameter 8. To estimate @ one may maximize
L(0) using the Berman-Turner device (Berman and Turner, 1992). More explicitly, we approxi-
mate the integral in (2) by

N
/Pe(s)dS%Zw‘jpo(Sj)’ j=1...,N,
D °

Jj=1

where the set S = {s; }5\/21 of N points in D consist of the n data points and N — n dummy
points. The so-called quadrature weights w; > 0 are such that Z?Zl w; = |D|. This yields an
approximation to the weighted log-likelihood,

log L(6 Zlogpg ijpg (s;5)

N
Z {yj log po(s;) pg(sj)}wj, 3)

j=1

where y; = 1/w; if s; is a data point and y; = 0 if s; is a dummy point. It is easy to see
that the right-hand side of (3) is equivalent to the log-likelihood of independent Poisson vari-
ables Y; with mean py(s;) and weights w;. This use of this procedure allows for any choice of
dummy points and quadrature weights. Waagepetersen (2008) suggested two ways of obtaining
the dummy points, using stratified dummy points combined with grid-type weights or binomial
dummy points with the Dirichlet-type weights. In general, a large number of dummy points are
required in order to obtain accurate parameter estimates.

To study the spatial heterogeneity determined by specified covariates, we assume that the
intensity function has a parametric form

po(s) = exp{fo + 21(s)B1 + - + 2(s)Bp}, s€D, )
where zx(s), k=1,...,p, are p covariates measured at location s, and 6 =3 =
(Bo, B1,---,0Bp) s the vector of corresponding regression coefficients. To estimate 3 one can

maximize the approximate log-likelihood (3) using standard software for fitting generalized lin-
ear models (Baddeley and Turner, 2005). This procedure has also been applied to spatial point
processes that are not Poisson. The resulting estimates are referred to as Poisson estimates.
Schoenberg (2005) showed that estimates of 3 obtained from maximizing the Poisson likelihood
(2) are consistent under certain regularity conditions on the point process. More specifically, the
regularity conditions (A1)-(A3) of Schoenberg (2005) ensure that the parameter space contains
the Poisson likelihood maxima, restrict the variability of the point process, and ensure that pj
is sufficiently different from py for 6 outside a neighborhood of 0. See Schoenberg (2005) for
further details.

However, since the procedure ignores any dependence between the points in the process, the
estimates may have poor efficiency for finite spatial point patterns with strong interaction.
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2.2. Pairwise interaction processes

A pairwise interaction process on D with trend/activity function bg and interaction function A
has likelihood function

L(0) = ag [ [ bs(xi) [ | by (@i, 7)), 5)
=1

i1<j

where @ = (3,7) and «ay is a normalizing constant (Ripley, 1991). The function bg influences
the intensity of points while h. controls the interaction (or dependence) among the points in
the pattern. If the interaction function h. = 1, the process becomes inhomogeneous Poisson
with intensity function bg. A simple pair interaction process is the Strauss process (Strauss,
1975), where the interaction function is constant with value 0 < v < 1 for point pairs closer than
distance r apart, and equal to 1 otherwise. Hence there is repulsion up to a range of r, with
smaller values of v representing stronger repulsion.

It is generally difficult to maximize the likelihood (5) because the constant ayy is an intractable
function of 6. An alternative to likelihood function is pseudo-likelihood function (Besag, 1975),
defined as the product of the conditional likelihoods of each random variable given the other
variables. Besag (1977) defined the pseudo-likelihood of a spatial point process over a subset

D C W tobe
PL(0:x) = ( 11 p9<mi;w>> e (= [ plsis)

z; €D

where py(s;x) is the Papangelou conditional intensity function at location s. It can be shown
that the general pairwise interaction process (5) has conditional intensity

n

po(s;x) =bga(s) H hy(s,23)I(z; # s), (6)

i=1

and therefore its pseudo-likelihood can be written as

PL(O;x) = Hbﬁ(xi)Hhv(miamj) exp (‘/Dbﬁ(s)Hhv(Sami)‘k)' (7)

i#j i=1

Note that if the process is Poisson the pseudo-likelihood (7) coincides with the likelihood (2)
up to the factor exp(|D|), suggesting that the pseudo-likelihood is a useful approximation to the
likelihood. When the process has ‘weak interactions’, the maximum pseudo-likelihood estimator
(MPLE) should be efficient. However, it is believed to be inefficient for strong interactions.

To allow for covariate effects and spatial interactions, we assume that bg(s) = exp(fy +
Z'(s)B) and h(s,t) = exp(H'(s,t)7y), where z(s) are vectors of covariates and H (s, t) the
interaction functions, defined for every s,¢ € D. Then, the conditional intensity (6) becomes

po(s; ) = exp <50 +2'(s)B + ZH’(S,:@)*}/) .

The pseudo-likelihood (7) can then be maximized to obtain an MPLE for € using the Berman-
Turner procedure (Baddeley and Turner, 2000). The MPLE is known to be consistent and asymp-
totically normal, at least for stationary pairwise interaction processes whose interaction functions
satisfy suitable regularity conditions.
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2.3. Cluster point processes

A cluster point process can be represented as X = U.cc X, so that X is a superposition of
clusters X, of “offspring” points associated with “parent” points ¢ from a process C'. A popu-
lar cluster process is the inhomogeneous Neyman-Scott process, introduced by Waagepetersen
(2007), where the parent process C' is stationary Poisson with intensity x > 0 and the clusters
X, are independent Poisson processes with intensity functions

peo(s) = ak(s — c;w)exp (2'(s)8),

where « > 0 is the expected number of offspring for each parent point and k(-) is a probability
density determining the distribution of offspring points around the parent points. The intensity is
modulated by the covariates z through the expression exp (z’(s)3). When k is the density of a
bivariate normal distribution N (0,wI), a so-called modified Thomas process is obtained. For a
large x and a small w, the Thomas process has many spatially tight clusters whereas a small x
and a large w produce few and widely dispersed clusters.

The intensity function of the cluster process X is

po(s) = ravexp(2'(s)B) = exp(Bo + 2'(s)B), (8)

where fy = log(ka). Although likelihood-based inference can be performed using Markov
Chain Monte Carlo methods, this can be very computationally intensive (Mgller and
Waagepetersen, 2004). Waagepetersen (2007) and Waagepetersen and Guan (2009) suggested
a two-step estimation procedure. First, they maximize the Poisson likelihood (2) with intensity
function (8) to obtain unbiased regression coefficient estimates BO and ,é' This can be easily
done using the estimation procedure presented in Section 2.1. Second, they estimate the inho-
mogeneous K -function for X with the estimated intensity function obtained in the first step,
and obtain estimates & and w by minimizing the contrast between the estimated and theoretical
inhomogeneous K-functions. Finally, & = exp(Bo) /k. These estimates have been shown to be
consistent and asymptotically normal (Waagepetersen and Guan, 2009).

3. VARIABLE SELECTION VIA REGULARIZATION METHODS

3.1. Penalized likelihoods for spatial point processes

The three inhomogeneous spatial point process models described above share a common prop-
erty: their intensity functions are log-linear and the parameters can be estimated by maximizing
a weighted Poisson log-likelihood of form

N
0(00,0) = [y;(00 + Z}0) — exp (60 + Z,0)] w;,
j=1

where 6 is the intercept and 6 = (61, 6,,...,0,) is a vector of ¢ regression coefficients for
covariates Z; = (Zj1,Zj2, ..., Z;q) that include spatial covariates and interaction terms. For
simplicity the covariates are standardized to have zero mean and unit variance. To simultane-
ously select and estimate 8, we incorporate regularization into the above log-likelihood function.
Specifically, we maximize the penalized likelihood function

1

— —_\P

NE(QO, 0) — \P(0) ©))
with respect to (g, 8), where P(-) is a penalty function.
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We here focus on three specific forms for the penalty function. Zou and Hastie (2005) pro-
posed an elastic net penalty Pg so that the selection and estimation procedure becomes

q

1 1
max —0(00,0) — \Pg(0)|, Pr(0)= —(1—a)0? +albyl|, (10)
o | 000 < APE(O)] P =D |50~ a)f e

where A is a tuning (or smoothing) parameter. The function Pr balances between the ridge-
regression penalty (a = 0) and the LASSO penalty (¢ = 1). Ridge regression shrinks the coeffi-
cients of correlated covariates towards each other, while the LASSO shrinks many coefficients to
zero, leaving a small subset of nonzero coefficients. Therefore, the elastic-net penalty is partic-
ularly useful in the situation where ¢ > N, or when there are many correlated covariates. Note
that with a = 1 — € for small € > 0 the elastic net performs much like the LASSO, but avoids
any degeneracies or unstable behavior caused by extreme correlations.

It is known that the LASSO penalty procedure does not have the so-called oracle property
of asymptotically performing as well as if the true underlying model were known (Fan and Li,
2001). It may also produce biased estimates of the large coefficients and suffer from a conflict
between optimal prediction and consistent variable selection. To address these issues, Zou (2006)
proposed the adaptive LASSO penalty

q
0) = 16k]/10k]", (11)
k=1

where 0, are the ordinary least square estimates and v > 0 is a fixed number. Zou (2006) proved
that the adaptive LASSO exhibits the oracle property, even in generalized linear models, under
mild regularity conditions. Similar to the LASSO, it yields a near minimax-optimal estimator. It is
worth noting that the oracle property does not necessarily yield optimal prediction performance,
and the LASSO can still be advantageous in some difficult prediction problems.

3.2. Cyclical coordinate descent algorithm

To model spatial point processes, a large value of N is often needed for the Berman-Turner device
to work properly. As a result, fitting such generalized linear models with regularization penal-
ties can be computationally intensive. Therefore we adopt cyclical coordinate descent methods
(Friedman et al., 2007, 2010), which can work remarkably efficiently on very large datasets and
can take advantage of sparsity in the set of covariates. The algorithm for fitting a Poisson linear
regression model with the elastic net penalty is presented below.

Since ¢(6y, 0) is a concave function of the parameters, the Newton-Raphson algorithm for
maximizing (10) amounts to the iteratively reweighted least squares (IRLS) method. Letting
(50, é) be current estimates of the parameters, we construct a quadratic approximation to the
log-likelihood ¢y, 0) using Taylor’s expansion:

N
1 , o
lo(8o,0) = —NZ (y; — 60 — Z,0)* + C(0o,6),

where C (90, ) is a constant, y; are the working response values and v; the weights updated in
the IRLS procedure,
y; = éo + Z§0~+yj/vj -1

v; = wjexp (éo + Zj’é) )
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For each value of the tuning parameter A, an outer loop is created to compute /g, and then
coordinate descent is used to solve the penalized weighted least-squares problem in (10) with
£(6o, ) replaced by £ (6o, 8). More specifically, suppose we wish to partially optimize (10)
with respect to §;, and have estimates éo and 6, for ¢ # k. Donoho and Johnstone (1995) show
that the coordinate-wise update is

S(Zﬁﬂwzwwj*ﬁM%A@

ék «—
Z;'V:l ijgzkz +A(1—a)

. 12)

where g§"‘> =00+, K Z;oBy is the fitted value excluding the contribution from Z;;, and

S(z, A) is the soft-thresholding operator with value

z—Xifz>0and X < |2
sign(z)(|z| = A)+ =< z+ Aif z <0and A < |z]
0 if A > |z|.

The details of this derivation can be found in Friedman et al. (2007). The update (12) is repeated
for kK =1,2,...,q until convergence. Since the intercept is not regularized, this means that 90
is the mean of the y;’s for all values of A and a. Starting with the smallest value of the tuning
parameter )\ for which the entire vector 6 = 0, the solutions for a decreasing sequence of values
of A\ are obtained. With such a path of solutions in A, the user can select a particular value
of \ that gives the best prediction performance measured by, for instance, cross-validation. To
implement adaptive LASSO shrinkage, we can simply let a = 1 and replace A by A, = \/|0 |
in the procedure.

In summary, cyclical coordinate descent methods are a natural approach for solving convex
problems. Each coordinate-descent step is fast, with an explicit formula for each coordinate-wise
optimization. The method also exploits the sparsity of the model, and its computational speed
both for large N and g are quite remarkable (Friedman et al., 2010).

4. SIMULATION STUDIES

We performed a simulation study to compare the three regularization methods: LASSO, adap-
tive LASSO and elastic net, when they were applied to modeling spatial point data. We gener-
ated twenty independent Gaussian random fields with exponential covariance functions to use
as covariates. We chose for the intensity function a log-linear form, py(s) = exp{3y + 2'(s)3}
with Bp =0 and 5 = (1,2,3,4,5,0,...,0)". Thus only the first five covariates are in the true
model. With this intensity function we simulated 200 spatial point patterns each from a Poisson
process, a Strauss process and a Thomas process, using the spatstat R package (Baddeley
and Turner, 2005). The Strauss process is a pairwise interaction process, while the Thomas
process is a special case of the Neyman-Scott process. The Poisson point patterns were gen-
erated using rpoispp function in a [0, 1] x [0, 1] window and had about 6,000 points each. In
a [0,500] x [0,1000] window, we used the rStrauss and rThomas functions to generate the
Strauss and Thomas point patterns respectively. For the Strauss process we set v = 0.5 for the in-
teraction parameter and = 5 for the range, which yields about 2,500 points in each realization.
For the Thomas process we chose parameters £ = 5 x 10~%, & = 20 and w = 10, corresponding
to about 20 offspring points distributed around each of an average of 250 parent points, so that
each realization has about 5,000 points.

We fitted the point process models to the simulated point patterns using all twenty covari-
ates, without regularization and also with each of the three regularization methods. The ordinary
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Method B B2 Bs Ba Bs Be B Bs B9 B1o

PPM 0742 .0441 .0427 .0351 .0183 .0718 .0524 .0264 .0246 .0044
Lasso 1181 .0552 .1106 .0695 .0315 .0290 .0159 .0066 .0079 .0017
Adaptive Lasso | .0806 .0464 .0485 .0372 .0180 .0247 .0131 .0042 .0042 .0006

l
| .
| .
Elastic Net | 1115 .0452 .1082 .0658 .0401 .0357 .0234 0101 .0114 .0024
l
| .
| .

Method B11 Bi2 B3 Bia Bis Bis Bi7 Bi1s B9 B20

PPM 0868 .0482 .0163 .0227 .0035 .0665 .0482 .0311 .0251 .0054
Lasso 0277 .0152 .0046 .0084 .0011 .0177 .0147 .0093 .0122 .0021
Adaptive Lasso | .0297 .0099 .0013 .0052 .0001 .0166 .0127 .0041 .0061 .0005

Elastic Net ‘.0423 .0237 .0066 .0118 .0015 .0256 .0221 .0159 .0170 .0029

TABLE 1: Simulation results of Poisson process: MSE of Bk fork =1,2,...,20, using ppm, LASSO,
adaptive LASSO and elastic net.

Method B1 B2 B3 Ba Bs Be Br Bs Bo B1o
Lasso 1.00 1.00 1.00 1.00 1.00 0420 0.335 0.190 0.215 0.130
Adaptive Lasso 0.99 1.00 1.00 1.00 1.00  0.195 0.135 0.060 0.090 0.005

Method B11 B2 B3 Ba Bis Bie Bz Bis B9 B20

|
|
Elastic Net ‘ 1.00 1.00 1.00 1.00 1.00 0455 0450 0.270 0.290 0.175
|
|

Lasso 0.095 0.180 0.115 0.285 0.250 0.310 0.245 0365 0495 0.090
Adaptive Lasso ‘ 0.025 0.055 0.020 0.075 0.020 0.145 0.065 0.090 0.115 0.025
Elastic Net ‘ 0.130 0.190 0.180 0.345 0355 0400 0325 0.550 0.640 0.150

TABLE 2: Simulation results of Poisson process: Proportions of samples where Bk # 0 for
k=1,2,...,20,using LASSO, adaptive LASSO and elastic net.

| Method | B B2 B3 Ba Bs Bs B Bs Bo Bro |
| PPM | 4019 4437 4279 3818 3787 3943 3728 3538 3768 3717 |
| Lasso | 1295 3.024 6459 7.086 7.628 6191 6246 8532 7138 5884 |
| Adaptive Lasso | 3.053 3967 4.526 3.945 33823 2700 2457 2561 2506 2509 |
| ElasticNet | 1296 2911 6246 6.672 7.120 .7244 6951 8258 .8209 .6283 |
’ Method ‘ B P12 P13 B4 Bis B1e Bz Bis B9 B20 ‘
| PPM | 3977 4346 4472 3651 3503 4484 3076 4514 4033 3994 |
| Lasso | 6821 8412 9163 6454 4752 8784 4877 8083 .6025 .7264 |
| Adaptive Lasso | 2.703 3.063 3.149 2346 2287 3.021 1863 3.166 2763 2734 |
| ElasticNet | 7318 9633 1.000 .7071 5271 8411 4861 7953 7056 7254 |

TABLE 3: Simulation results of Strauss process: MSE of Bk fork=1,2,...,20, using ppm, LASSO,
adaptive LASSO and elastic net.

DOL The Canadian Journal of Statistics/ La revue canadienne de statistique
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’Method ‘ B1 B2 Ba Ba Bs Bs Br Bs Bo B1o ‘
[ Lasso [ 0320 0430 0455 0745 0890 0310 0295 0265 0290 0265 |
| Adaptive Lasso | 0.695 0725 0815 0945 0975 0650 0610 0565 0.650 0580 |
| Elastic Net | 0375 0480 0495 0785 0915 0340 0310 0295 0330 0305 |
| Method | Bu B2 Bis Bia B1s B1e Bi7 B1s B9 B2 |
[ Lasso [ 0270 0300 0280 0245 0305 0340 0260 0310 0235 0265 |
| Adaptive Lasso | 0.620 0.640 0.605 0570 0.610 0.645 0.645 0.605 0580 0.580 |
| Elastic Net | 0300 0335 0315 0280 0315 0350 0270 0325 0240 0.280 |

TABLE 4: Simulation results of Strauss process: Proportions of samples where ﬁk # 0 for
k=1,2,...,20,using LASSO, adaptive LASSO and elastic net.

’ Method ‘ b1 B2 Ba Ba Bs Bs Br Bs Bo B1o ‘
| KPPM [ 1714 2398 1757 2336 1955 1870 1.632 2429 1821 1819 |
| Lasso | 0951 1919 3704 2619 5774 0280 0200 0469 0275 0300 |
| Adaptive Lasso | 1.045 2429 3421 2189 3.620 0480 0267 079 0375 0446 |
| ElasticNet | 0966 1.839 3.575 2471 5780 0271 0210 0497 0314 0321 |
’ Method ‘ B11 B12 B1s Bia Bis Bis Bir Bis B9 B20 ‘
| KPPM [ 1533 1926 1992 1692 2188 2629 1973 2136 1899 1809 |
| Lasso | 0147 0284 0400 0278 0383 0499 0397 0451 0354 0359 |
| Adaptive Lasso | 0235 0431 0.584 0373 0678 0823 0562 0673 0514 0492 |
| ElasticNet | 0.193 0327 0435 0295 0424 0507 0429 0479 0423 0383 |

TABLE 5: Simulation results of Thomas process: MSE of Bk fork =1,2,...,20, using kppm, LASSO,
adaptive LASSO and elastic net.

’ Method ‘ B1 B2 B3 Ba Bs Be Br Bs Bo B1o ‘
’ Lasso ‘ 0310 0.750 0.800 0.975 0980 0.175 0.110 0.035 0.175 0.145 ‘
‘ Adaptive Lasso ‘ 0.285 0.725 0.795 0980 0.985 0.145 0.105 0.025 0.095 0.115 ‘
‘ Elastic Net ‘ 0335 0.765 0.835 0980 0.985 0.18 0.110 0.050 0.150 0.150 ‘
’ Method ‘ B11 B2 B3 Bia Bis Bis Bi7 Bis B9 B20 ‘
[Lasso [0.135 0145 0065 0130 0050 0315 0185 0.35 0095 0.160 |
‘ Adaptive Lasso ‘ 0.105 0.125 0.150 0.125 0.040 0.280 0.130 0.110 0.100 0.095 ‘
‘ Elastic Net ‘ 0.150 0.165 0.180 0.155 0.065 0.360 0.195 0.160 0.120 0.170 ‘

TABLE 6: Simulation results of Thomas process: Proportions of samples where Bk # 0 for
k=1,2,...,20,using LASSO, adaptive LASSO and elastic net.

regression models were fitted using ppm function for the Poisson and Strauss point patterns and
kppm function for the Thomas point patterns. The regularized models were fitted using modified
internal functions in spatstat and glmnet (Friedman et al., 2010). We evaluated the per-
formance of these methods using the mean squared error (MSE) of the estimated coefficients as
well as their selection probabilities, i.e. the proportions of the fitted models where the coefficient
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FIGURE 1: The distributions of overall MSEs for Poisson (left), Strauss (middle) and Thomas (right)
processes.

estimates are nonzero.

The results are shown in Tables 1 to 6, two tables each for the Poisson, Strauss and Thomas
models, showing the MSEs of the estimated regression coefficients and the selection probabilities
of nonzero coefficients. We find, from Table 1, that the non-regularized method yields slightly
smaller MSEs for the nonzero coefficients but much bigger MSEs on the zero coefficients, com-
pared with the regularized methods. Among the three regularization methods, adaptive LASSO
provides the best estimation results with smallest MSEs on both the nonzero and zero coeffi-
cients. The left plot in Figure 1 shows the distributions of overall MSEs of each method (i.e.
the sum of the MSEs of the twenty covariates), where we can clearly see that adaptive LASSO
outperforms the other methods in terms of the MSE. With respect to selection accuracy for the
three regularization methods, Table 2 shows that the LASSO and elastic net select all nonzero
coefficients 100% of the time while adaptive LASSO selects the smallest nonzero coefficient 51
99% of the time and the other nonzero coefficients 100% of time. For the zero coefficients, the
adaptive LASSO has significantly smaller selection probabilities than the other two methods.
These simulation results suggest that adaptive LASSO has the best performance for the Poisson
point patterns.

The results for the Strauss process are similar, although the individual MSEs become larger
overall. Comparatively speaking, the MSEs are larger for the nonzero coefficients with regu-
larization than without regularization, but smaller for the zero coefficients (see Table 3). The
adaptive LASSO seems to perform worse than the LASSO and elastic net methods. This can also
be seen from the middle plot in Figure 1, where we find that overall MSEs for LASSO and elas-
tic net are similar and quite a bit smaller than both the adaptive LASSO and the non-regularized
method (with adaptive LASSO yielding slightly smaller overall MSEs of the two). In terms of
the selection probabilities (Table 4), the smaller nonzero coefficients are poorly selected, with
e.g. B1 selected about 30% of the time, not much higher than for the zero coefficients. The reg-
ularization methods fair better for the larger coefficients, selecting them from 70% to 90% of
the time. Adaptive LASSO seems to perform differently and worse than LASSO and elastic net:
although it selects nonzero coefficients with the highest probabilities of the three methods, it also
selects zero coefficients about 60% of the time.

For the Thomas point patterns, we find that, compared to the non-regularized method, the
three regularization methods yield smaller MSEs on the small and zero coefficients, but bigger
MSE:s on the relatively large coefficients (see Table 5). The reason may be due to the poor es-
timation of zero coefficients by kppm, whose estimates are included in the penalty function of
adaptive LASSO (see (11)). The overall MSEs in Figure 1 show that the three regularization
methods perform equally well and outperform the non-regularized method. Regarding selection
accuracy, adaptive LASSO consistently selects the zero coefficients less often than LASSO and
elastic net do. However, the three methods all poorly select the smaller nonzero coefficients: for

DOL: The Canadian Journal of Statistics/ La revue canadienne de statistique



12 YU (RYAN) YUE AND JI MENG LOH Vol. xx, No. yy

example, they select 51 = 1 only about 30% of the time. With respect to the estimates of x and
w, their MSEs (not shown) are small and quite close across all four methods. It appears that
no method has an oracle property when the point patterns are clustered, but the regularization
methods clearly outperform the non-regularized method.

As suggested by the referees, we also performed a couple of variations to the above simu-
lation study. The detailed results are not shown, but we report a summary here. First, we re-did
simulations for the Thomas process using realizations with about 1000 points, i.e. with smaller
number of points than described above. We find that the relative performance between the meth-
ods still hold, with the regularized methods yielding slightly larger MSE’s for the nonzero coef-
ficients, but much smaller MSE’s for the zero coefficients. The individual MSEs were larger in
absolute values than with the larger sample sizes, as expected.

We also did a simulation study where the covariates are less sparse, i.e. with fewer num-
ber of zero coefficients. Specifically, we kept the 5 non-zero coefficients but included only 5
zero coefficients instead of the 15 zero coefficients previously used. The results are similar. The
regularization models outperform the non-regularized model in estimating the zero and small
coefficients but underperform in estimating relatively big coefficients. We note that the outper-
formance of the regularization methods in estimating zero coefficients becomes less when the
covariates are less sparse. This is not surprising, since the need for regularization is less when
there is less sparsity.

5. APPLICATIONS TO DATA
5.1. Barro Colorado Island (BCI) trees

For this analysis we used the 1995 BCI census of trees and considered in particular the positions
of live specimens of the three species: Acalypha diversifolia (536 trees), Lonchocarpus hepta-
phyllus (836 trees) and Capparis frondosa (3300 trees). These three species are known to have
different seed dispersals: for Acalypha the seeds are dispersed by exploding capsules, for Lon-
chocarpus by wind and for Capparis by birds and mammals. It is hypothesized that the modes
of seed dispersal are reflected in the spatial patterns of tree locations with tight clusters for ex-
ploding capsules, loose clusters for bird and mammal dispersal and intermediate clustering for
species with wind dispersal (Seidler and Plotkin, 2006). Following Waagepetersen and Guan
(2009), we considered an inhomogeneous Thomas process for each species with soil minerals
and topological attributes as covariates. The two-step estimation procedure in Waagepetersen
and Guan (2009) was implemented using spatstat R package. More specifically, we used
kppm function to obtain regression estimates ,3 and clustering estimates (K, &). The asymptotic
standard errors of B were computed by vcov . kppm function and those of (&, ) were obtained
using a parametric bootstrap method. We used the three regularization methods, LASSO, adap-
tive LASSO and elastic net in turn to select non-zero covariates and estimated their coefficients.
In each case, the tuning parameter was chosen by cross-validation. The results are shown in Table
7 and 8.

We found that although kppm provides estimates for all the covariates, many of these are not
significant at the 0.05 level based on the asymptotic standard errors. In particular, none of the
covariates are significant for Acalypha diversifolia, while three and one covariates are signficant
for Lonchocarpus heptaphyllus (P, Zn and altitude) and Capparis frondosa (K) respectively.

The three variable selection methods give generally very similar results. and roughly matches
what is found using kppm. For Acalypha diversifolia, all three variable selection methods re-
turned O for all the coefficients. For the other two species, the adaptive LASSO was slightly
more sparse than the LASSO and elastic net methods, yielding one or two fewer non-zero coef-
ficients. Using the results of adaptive LASSO, we find that Lonchocarpus trees occurred more in
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Method | K x 10" w

KPPM | 7.612(5.924,10.95) 2.843(2.176,3.391)
Lasso | 4.253(2.905,5.973) 5.812 (4.808, 7.666)
A.Lasso | 5.646 (3.981,7.149)  4.216 (3.495, 5.249)
E.Net | 4253(2.807,5.943) 5.812(4.691,7.418)

’ Species ‘ ‘
\ \ |
| | |
| | |
| | |
| Loncla | KPPM | 5311(3.787,8.612) 7.430(5.436,8.791) |
| | |
| | |
| | |
| \ |

|

Acaldi

Lasso | 4.082(2.740,6.300) 9.487 (7.737, 12.26)
A.Lasso | 4.177 (2951, 6.843)  9.225(7.132,11.92)
E.Net | 4.007 (2.601,6.433) 9.571(7.501, 12.24)
KPPM | 9.484 (6.226,13.69) 1176 (9.866, 13.96)
Lasso | 6.271(4.034,9.813) 14.45(11.77, 18.56)
A.Lasso | 6.821(4.043,9.426)  15.63 (12.40, 19.04)
| | E.Net | 6709 (4.347,10.06) 14.67 (11.52, 17.36)

TABLE 8: Barro Colorado Island data analysis: Point estimates and 95% confidence intervals (in

Cappfr

parenthesis) of clustering parameters for Acalypha (Acaldi), Lonchocarpus (Loncla) and Capparis
(Cappfr) trees, given by KPPM, Lasso, adaptive Lasso (A. Lasso) and elastic net (E. net) methods.

areas with lower levels of Phosphorus (P) and Zinc (Zn). while the presence of Capparis trees is
positively correlated with Potassium (K), minimum Nitrogen (N.min) and altitude.

The three regularizaton methods yield similar estimates of w, slightly larger than those ob-
tained with kppm. This quantity w is the variable of interest in terms of capturing the degree of
clustering of the different species of trees. The different seed dispersal mechanisms employed by
the trees should affect the clustering of these trees which in turn should be reflected in the rela-
tive sizes of the w estimates. We find that this is indeed the case, with Acalypha diversifolia trees,
which disperses seeds using exploding capsules, having the smallest estimate of w, followed by
Lonchocarpus heptaphyllus, dispersed by wind and Capparis frondosa, dispersed by animals.

The full BCI data consist of censuses taken over 25 years. The regularized procedures de-
scribed in this paper should be able to accommodate the covariate selection for the full data
set, given an appropriate space-time model for p. As an alternative, the covariate selection can
be performed for each year separately and the sets of selected covariates are examined to see
how informative covariates change over time. However, these topics are beyond the scope of this

paper.

5.2. NYC fast food restaurants (FFR)

Since the locations of FFRs are expected to be affected by the locations of other nearby FFRs, we
fit a pairwise interaction point process model to the data set. To describe the interaction between
points x; and x;, we use a piecewise constant potential function h(z;, z;) that is defined as

W(wi,x) = Y I {|lws — x| € I},
k

where there is an interaction of h; between points z; and x; whose distance separation lies in
I, = [rg—1, %) with 7o being zero. Here we used two values of r, r; = 400m and r, = 800m,
which are the two distance cutoffs that we believe are appropriate for the interactions between
FFR restaurants. The use of piecewise constant interaction terms was first suggested by Takacs
(1986). Then, together with a parameter b controlling the intensity of the points, the pseudo-
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’ Covariates ‘ PPM ‘ Lasso ‘ . Lasso ‘ E. Net ‘
| AGE | 088 (-.006,.237) | -] - ] - |
| MHI | -007 (-261,.247) | -031 | -] -038 |
| pOP | *.159 (-287,-.032) | .008 | - 012
| LUNCH | 423(172,257 | - | - -
| DINNER | #-16.3(-22.6,-10.1) | -] 1467 | -
| SNACKS | 11.9(-6.9,30.7) | -] 1450 | -
| BLK | 002 (-.136,.140) | - | - -
| WHT | #-230(-417,-042) | -169 | -176 | -155 |
| NATIONAL | *235(185,.285) | 258 | 271 | 259 |
| LOCALS | -.037(-086,.011) | - | - -
| DIST | -137(-280,.006) |  -.046 | -] -0z
| COUNT | .012(-099, .123) | 103 | - 104 |
| ZONE: Residential Medium | 026 (-.104,.15) | 016 | - 015
| ZONE: Residential High | .113(-0006,.226) | ~ .059 | - 057 |
| ZONE: Commercial | *152(056,.247) | .100 | - 0% |
| 1(400) | 086(-005,.177) | 71| 065 | 169 |
| 1(800) | *073(036,.111) | 092 | 015 | .09 |

TABLE 9: NYC fast restaurant data analysis: Point estimates of regression coefficients and interaction
parameters and their 95% confidence intervals; For the PPM estimates, those labeled with ‘x’ are
statistically significant at 5% level. For Lasso, adaptive Lasso (A. Lasso) and elastic net (E. Net), the
estimates shown are for variables selected by the procedure.

likelihood of this pairwise interaction point process is given by formula in (7).

We study how the intensity of FFRs is related to Census variables based on the census block
group that the FFRs fall in. In particular, we use the median age (AGE), median household
income (MHI), population density (POP), average household expenditure on food away from
home (LUNCH, DINNER, SNACKS), percent black (BLK), percent white (WHT). In addition,
we also have a categorical variable for the zone type as classified by the NYC Department of
City Planning (ZONE), as well as the number of National-chain and local FFR stores in the block
group (NATIONAL and LOCAL). The ZONE variable corresponds to residential classifications
of low, medium and high density as well as a category comprising manufacturing and commercial
areas. In order to study the inter-relationship between FFR and school locations, we also include
two variables associated with proximity of schools: DIST which is the distance to the nearest
school, and COUNT which is the number of schools within a 400m radius (roughly walking
distance).

We tried all three regularization methods (LASSO, adaptive LASSO and elastic net) in our se-
lection procedure, with the tuning parameter selected using cross-validation. We also fit a model
without regularization, using ppm function in spatstat R package. The results are shown in
Table 9. Focusing on the regularization methods, we find that the elastic net and LASSO agree
on all the selected variables and the coefficient estimates are also very similar. The Adaptive
LASSO differs from these two methods, dropping the school variables and variables associated
with ZONE. It, however, retains the DINNER and SNACKS variables. We note, though, that
the variables LUNCH, DINNER and SNACKS are highly positively correlated with correlations
greater than 0.99, suggesting that the elastic net may yield more reliable estimates.
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We find that COUNT is positively associated with FFR intensity, i.e. there will be more FFRs
if there are more schools nearby. Similarly, an increase in the distance from the nearest school
(DIST) is associated with a drop in FFR intensity. This corroborates the finding of Kwate and
Loh (2010) using K function analysis. Note that for the adaptive LASSO method, neither of
these two variables are retained. Neither of these variables is significant in the PPM method as
well.

For all regularization and PPM methods, we find that a higher number of National FFR stores
in the block group is associated with higher FFR intensity. Similarly, we find that percent white
is significant and negatively associated with FFR intensity. This is in agreement with relevant lit-
erature on this subject. From both the LASSO and Elastic Net estimates, we find that increasing
FFR intensity is associated with higher residential density, with the greatest FFR intensity asso-
ciated with commercial areas. This last category is also significant for ppm as well. Commercial
areas tend to be either tourist areas or areas where there are many workers and hence it is not
unusual for such areas to have a lot of eating places, including fast food restaurants.

We also note that with the elastic net and LASSO methods, mean household income (MHI)
is retained in the model with higher MHI associated with lower FFR intensity. This is again
in agreement with the literature. However, this variable is not significant in the PPM method
and also not selected by the adaptive LASSO method. Finally, the two parameters used in the
piecewise constant interaction function are selected by all the regularization methods, which
suggests that there is some repulsion between FFR locations within 400m and, to a lesser degree,
within 800m.

6. DISCUSSION

We introduced a simple method for incorporating existing variable selection methods in the pro-
cedures for fitting models to spatial point data. By setting up the non-regularized model fit-
ting procedure into a generalized linear model framework, it is straightforward to incorporate
in the model the penalty terms of many existing regularization methods. A cyclical coordinate
descent algorithm allows for a fast computation. We examined the use of the LASSO, adaptive
LASSO and elastic net methods in a simulation study. In our simulations, we found that adaptive
LASSO method performed the best for the Poisson process, which agrees with what was found
in Thurman and Zhu (2014). For the Strauss and Thomas processes, adaptive LASSO, however,
tends to give worse estimation on small regression coefficients than LASSO and elastic net do.
As aresult, there is not a uniformly best method, and it appears more appropriate to use LASSO
or elastic net when the covariates are highly sparse. More investigation is needed to examine
if the relative performance we found hold more generally. In our applications, we find that the
clustering parameter estimates for the 3 species of trees agree qualitatively with what is expected
based on their different seed dispersal methods. For the locations of FFR restaurants in NYC,
we find decreased intensity of FFRs with increased percent White in agreement with findings in
other studies.

The proposed variable selection method is quite a general framework, under which a vari-
ety of spatial point processes and penalty functions could be used. This generality comes from
using the pseudo-likelihood together with the Berman-Turner device, which converts the objec-
tive function into a form similar to that for fitting generalized linear models. Besides Poisson,
pairwise interaction and cluster point processes, the same procedure can be used with more com-
plicated spatial point process models such as area-interaction models, and with marked point
processes. Moreover, other regularization methods could be used as long as they can be applied
to generalized linear models. Thus, for example, grouped LASSO (Yuan and Lin, 2006) and non-
concave penalties such as SCAD (Fan and Li, 2001) could be used in addition to the ones we
considered here.
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Future work will consist of investigating the theoretical properties of the proposed procedure
as well as studying its performance under additional scenarios. Many theoretical results have
been derived for the various shrinkage methods in non-spatial settings. It will be interesting
to see which of these results carry over to spatial point modeling.We will first consider tuning
parameter selection and how this affects variable selection consistency, i.e. whether the set of
selected covariates tends asymptotically to the true set of covariates. Work is also in progress to
convert the R code developed for this work into an R package for wider use.
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