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Introduction Accounting for dependence
@ Spatial data - data about a phenomenon that includes e Key feature in spatial data is the dependence/correlation in
information about the locations at which the data-points are the observations
collected.

@ Need to account for the dependence in statistical models.

@ Examples - climate data (rainfall, temperature etc), soil pH in
a field /forest, household income o If assume independence, we are assuming we have more
information than we really do - underestimate the uncertainty

@ Usually, data collected from nearby locations are more similar

- that is, the data is dependent or correlated. @ Accounting for dependence can help with better estimates and
predictions.
@ More specific than applications with general dependent data.
The dependence is due to spatial locations - usual @ Often reasonable to assume that the dependences decreases
assumption, dependence decreases with distance apart. with distance apart
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Types of spatial data

o Geostatistical - spatial process in continuous space, with
observations at specific locations, e.g. ozone measured at a
number of monitoring stations; mining application

@ Spatial point processes - locations of objects in space, e.g.
trees in a forest, galaxies in space

@ Lattice data - data (usually counts) observed on a regular or
irregular grid, e.g. census data, counts by zip-code, brain maps
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Locations of a tree species in plot of land Measurements of elevation in the same plot of land
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Fastfood restaurants in NYC C 1v absorption systems
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Images Outline

© Geostatistics
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Geostatistics Random fields

Spatial process Z observed at locations s in continuous space,
s€ D cR%

Random fields - basic properties; Gaussian Random Fields
o Z(s) = p(s)+e(s)

e u(s) = E[Z(s)] is the mean

@ Mean function and error covariance structure

@ Some models for covariance function @ ¢(s) is the spatial error - model dependence through e.
@ Define covariance function C(s,t) = Cov(Z(s), Z(t))
@ Estimation - variogram, REML, ML . - d
e (C(s,t) has to be positive definite: Vn, s, dots,s, € D C R
and ¢1,...,c, € R,
e Kriging

Z Cz‘CjC(Si,Sj) >0

1,j=1
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Stationarity, isotropy and Gaussianity Models for the covariance function

Usually make some assumptions to simplify the model:

e Exponential:
@ Stationarity - properties of process are the same wherever you 9
are: C(s, s+ h) = C(h) C(h) =0 exp{—0h}, 6>0
@ Isotropy - properties of process are the same in any direction: o Gaussian:
C(s,s+h)=C(|h|) C(h) = 0% exp{—0h*}, >0
° Gaus.siarTity -, 51y- -5 On < D C.Rd' Z(s1), .- Z(sn) is @ Spherical:
multivariate Gaussian distribution, i.e.
C(h) = 0*(1 = 3h/2a + (h/a)?/2), h<
Z ~ N(u, %) (h) = o™ /20 + (h/a)*[2), h<a
o Matérn:

@ if covariates X are measured in D, can set y = X

@ Also, specify a parametric form for X that ensures that ¥ is C(h) = 20%(0h/2)" K, (6h)/T(v), v >0,0>0

positive definite.
K is a Bessel function
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Variogram Inference

@ Match estimated variogram with model variogram
The variogram is a measure of the spatial dependence: (exponential, Matérn etc) by (weighted) least squares

2y(si —s;) = VarlZ(s;) — Z(s;)] o Likelihood methods - Gaussian likelihood £(6, 5; Z)

= E[(Z(si) - Z(Sj))Q] if mean is constant e regular maximum likelihood
e Restricted maximum likelihood (REML) using likelihood based
v(si — sj) = v(|si — s;]) under stationarity and isotropy on contrasts
Simple estimator: o Composite likelihood - full likelihood of groups of observations,
A independence between groups
2v(h) = Y [Z(si) = Z(s;)]*/IN(h)],
N(h)

@ Bayesian methods

N (h) is set of all pairs (s;, ;) with |s; — s;| € (h — Ah, h + Ah).
With estimates of the parameters, can then use the model to make
predictions at other locations with no observations (kriging)
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Computin Example - modeling magnitudes of Type la Supernovae
g

e “Standardizing Type la Supernova Absolute Magnitudes Using
Gaussian Process Data Regression” - A. Kim et. al
(http://arxiv.org/abs/1302.2925)

@ Given time measurements of supernova photometry in 4
e WinBugs, JAGS for MCMC bands, want to estimate/predict the absolute magnitude

@ R packages - geoR, fields, RandomFields, spBayes

@ Borrow strength from other supernova data by using a

. . . . Gaussian process model
@ Matrix computations limit the data size that standard P

methods and R packages can handle @ Fill in the gaps in the multi-band light curves
@ Reduce dimension using principal components analysis (PCA)

@ Relate absolute magnitude to PCA coefficients; can then
predict abs. magnitude given light-curve shape and colors.

Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu) Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)



Gaussian process model Predicted mean plus ten interpolated light curves

-6 -155

4 -15.0

e At epoch ¢, filter A, photometric magnitude m y) is given by

E ~ta50 4

m.x ~ GP (m(t, N; o), ko (8, AN Tk ka)) * 1 * o 1
@ m based on templates, ] A ]
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Principal components First 4 principal components in the 4 bands
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Distribution of PCA coefficients Regression models

4 e With z(j) representing the j-th eigenvalue for light curve z,

2 3 can then build a model between absolute magnitude of
S ;++ supernova generating = and z(j)

:; % S @ Linear model:

-3

2 ' ' ' '+ + Np
_ | s L My(z;p) = Mo + Y pja(j)
g ol =
< PN * £ * J

1 - i rge

-2 @ Gaussian model:

3

f+ y o B My ~ GP (M, k),
™ + +
N # tf X
< 0 + % + — . .. .

» @ ¥ i @” M based on linear model, ks similar to previous GP model,

-2 but depending on x(j)'s.

420 2 4 6-32-1012834-2 -1 0 1 2
x(0) x(1) X(2)
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Outline Lattice data - Markov random fields

@ Random process Z observed on locations s on a lattice.

@ Examples - disease counts by zip code; intensity at pixels in an
image.

@ Usual to specify the dependence conditionally, i.e. we model
the conditional distribution of Z(s;) given Z(s;),j # 1.

© Lattice data @ Simplify the above by assuming a Markov property -
Z(si)|Z(sj),j # i becomes Z(s;)|Z(s;j),j ~ i, where j ~ i
means s; is a neighbor of s;, i.e. process at a location s is
independent of other locations given process at neighboring
locations s’.
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Gaussian Markov random fields Software

e Conditional distributions are Gaussian, resulting distribution is

multivariate Gaussian @ GeoDa R package by Luc Anselin

© Zi|Zj, j F i, T ~ N(”i_l ij’ Zj, (nim)™h) @ spdep R package by Roger Bivand

e With © the parameters of the precision matrix Q(O):
@ INLA by Havard Rue - includes stochastic partial differential

Z ~ N(XB,Q71(0)) equation (SPDE) approach to approximate Gaussian
Processes using GMRFs

e Estimate ©, 8 using MLE or Bayesian methods o
@ GeoBUGS which is part of WINBUGS

@ Because the matrices tend to be sparse (due to the Markov
property), computation is less challenging than with Gaussian
processes.
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Outline Point patterns

@ Locations of objects/points in space, e.g. trees in a forest,
locations of galaxies

@ Think of a random mechanism underlying the process that
can generate many point patterns. But often our data is only
one realization, i.e. no replication

@ Observation region/window is the region where the objects
can potentially be found. Lack of points within the
observation region provides information about the point
process.

@ Spatial point patterns
@ Can also think of it as a continuous random process X taking

values 0 or 1, observed at all points in the observation region.
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Some questions Locations of two tree species; measures of Elevation and
Nitrogen

@ How dense are the points? Number per unit area/volume:
Number density (also called intensity)

@ How clumpy or spread out (regular) are the points, i.e. do
they interact with one another? Correlation between where
points occur - 2PCF, K function etc
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@ Homogeneous (stationary), i.e. the statistical characteristics
stay the same in different locations, or inhomogeneous
(non-stationary)?

0
0
I

@ Are there other measurements made of the points? For
example, width /height of the trees, magnitude of the galaxies.

@ Are there measurements of other variables within the
observation region? For example, pH of soil

100 200 300 400 500
100 200 300 400 500

0
0
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Some technical details More technical details - stationarity and isotropy

° A le.)atfl point process (I) s @ St(.)Cha;;C p}gdcess giving e Stationarity: process ® = {xz,} and translated process
realizations (1., ) in a region W C ®, = {x, + x} have the same distribution for all =
@ Note that n is random
e ‘“different regions of the observation region yield similar
@ For a region A C S, define N(A) = #points in A. configurations of points”

® N(A) is random. Define E(N(A)) to be A(A) forany AC S. @ Difficult to prove - stationary process can look non-stationary

within a bounded window and vice versa

If A(-) exists such that A(A) = [, A(s)ds, Ais called the

intensity function.
@ Isotropy: process ® = {z,,} and rotated process

A(s) = lim E(N(ds)) Ro® = {R,x,} have the same distribution for all «
ds|—0 |ds]|
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Some stationary point models Simulated realizations

© Poisson with constant intensity: independence between . e . -
points, just specified by the intensity .2 v oee e,

L] . ° s -

@ Neyman-Scott: parent-offspring model; locations of parent . .
points are Poisson spatial point process, Poisson number of . Y
offspring are distributed say, uniform on a disc centered about . . . o "
parents i B . .

© Inhibition processes, soft-core and hard-core processes . ¥

@ Gibbs or Markov processes: specified by interaction function . .
between pairs of points (or groups of n points, n = 3,...); g .
Strauss process is an example “ ‘
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A bit more on the Poisson process Log Gaussian Cox Process

e For BC W, N(B) ~ Poisson(A(B)) @ random intensity A(s) = log Z(s) where Z(s) is a Gaussian
process
@ Given number of points N(W), the point locations are
randomly and independently distributed in W according to @ Suppose Z is stationary and has mean i, variance o2 and
pdf proportion to A(s). correlation function p(t). Then,
o For two disjoint regions, Bi, By, N(B;) and N(Bj) are A = exp(p+0.50°)
independent. Cov(A(s1),A(s2)) = exp(a?p(t))

@ Used by Coles and Jones (1991) - MNRAS 248 “A lognormal

@ Cox processes - random intensity function; given the intensity . C
model for the cosmological mass distribution

function, the process is inhomogeneous Poisson.
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Inhibition processes Gibbs/Markov process

e Models for regular patterns that are more flexible than

@ Matérn hard core process: Poisson process with intensity p, inhibition processes

thinned by deleting all pairs of events less than ¢ apart e For a point configuration X, let f(x) represent how much
more likely the configuration is for that process, compared

) . ) o with the Poisson process with intensity 1.
@ Points of Poisson process marked independently with times of P y

birth (say uniform (0,1)). An event is removed if it lies within
distance § of an older event

@ Turns out that f(x) can always be factorized into

n

F0) = ][ i) [ 9is(@irz))--
ey i

@ Simple sequential inhibition process: put a sequence of events ' 7

in W, given {z;:j=1,...,i—1}, ; is uniformly distributed @ Pairwise interaction processes:
onWn{y:|ly—zj|>h,j=1,...,i—1}
700 o< T2 IT ¢t6.m
£ex (&m)

f is repulsive if <1 homogeneous if A is constant and

¢(&m) = o(§ —n).
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Strauss process Given a spatial point dataset, what can we do?

@ Test for Complete Spatial Randomness (CSR) or Poissonity:
quadrant count method, and various distance methods
(distribution of event-event distances, nearest neighbor
distances, point-event distances)

o ¢(r) =~4"=B} ~ € 0,1],R > 0; R is the range of
interaction

o f(z) ox BM®)45@) n(z) is number of points, s(x) is number

of R-close pairs @ Estimate the constant intensity: A = N(W)/|W|

@ Estimate the second-order properties: K function, pair

@ v =1 gives the Poisson processs; v < 1 has repulsion between correlation function, two-point correlation function
R-close pairs; v = 0 gives a hard core process with core .
distance R o Fit a model

@ Model the inhomogeneous intensity as a function of measured
covariates
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Second-order properties (cont)

Second-order properties

@ Second-order intensity function of a spatial point process:

E[N(d81)N(d82)]
|d81 ’ |d82|

)\(2)(81, 82) = lim lim
|ds1]—0 |ds2|—0

o Under stationarity, A\(2)(s1,s2) = A®) (53 — 51).
@ Under stationarity and isotropy, A (s1, s2) = A& (|sg — s1]).
o A\ is hard to interpret; second-order product density p2) is a

bit easier: p(®)(sy, s2)dsy dso is the probability of finding a
point each in the infinitesimal volumes at s; and so.
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e Pair correlation function: g(r) = p®)(r)/\2

@ Ripley's K function: AK(r) is the expected number of points
within distance r of a randomly selected point.

e In R?, K(r) = 7r? for the homogeneous Poisson process

e Some formulas (for R?):

1 dK(r)
g(r)_47rr2 dr

K(r))1/2

N2 dK(r)
@2)(py = & B\
) Amr?  dr
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Edge effects

Estimating the K function

o Usually, estimate A\?|W|K (r) then divide by estimate of
AW, i.e. N2/|W|or N(N —1)/|W|.

e Naive estimator of \2|W|K (r):

ZZ Lo, (| — ;)

=1 j=1
J#i

Does not take into account the boundary of the observation
region, hence is an under-estimate.

@ Can restrict points i to be far enough from the boundary, but
discards some information, especially for large r.

Neighborhood around points
near the boundary is partially
unobserved and may create
bias in estimates

Can use a buffer zone to avoid
the boundary, or use correction

o8 adjustments to account for
:-' unobserved events
®
L] ~..
°.% Correction adjustments allow
. o all the data to be used, elim-
o ‘et inate bias, but increases the

standard errors

Ji Meng Loh (loh@njit.edu)

Ji Meng Loh (loh@njit.edu)
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Estimating the K function with edge effects Estimating K (cont)

e Essentially, give each pair of points a weight: if a point pair is

near a boundary, give it a higher weight. @ Translation estimator:
@ Ripley's estimator: Z Z Lo (@i = 24]) /W, 0 W, |
DD Yol — )by,
where b;; represents the proportion of the circle of radius
|z; — x| centered at z; that is in |[W| We | ey
7
Wy
w ¥

0

@ Rotation (Ohser's) estimator: use an averaged version of
We, NV,

Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu) Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)

Two-point correlation function Astronomers’ estimates of the 2PCF

@ D: dataset, R: random set

° {(r)=g(r)—1 DD(r) = ZZI{|x—y|€(r—Ar,r+Ar)}
zeD yeD
DR(r) = ZZl{\x—gA €(r—Ar,r+Ar)}
@ “over-density” - excess probability of finding 2 points zeDyeR
separated by distance r, compared to the Poisson

@ Some estimators:
- DD ' A DD ' A DD — DR
@ Astronomers tend to use the 2PCF, estimating it using a N = RR L §pp = pr — L e = RR

numerical method to account for edge effects f _ DDxRR _{ ¢ . _ DD —-2DR+ RR
Ham — ~—pR2 €LS = RR
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Estimating errors Marked point bootstrap

@ Poisson errors (Ripley 1988; Landy and Szalay 1993)

@ Parametric bootstrap - simulate from a model of the process
(Einsenstein et al. 2005) and estimate quantity from
simulated data

@ Non-parametric bootstrap - block bootstrap, marked point
bootstrap

@ Block bootstrap - randomly place blocks in the observation

region to copy the point pattern; join multiple blocks together

to get a “new” sample; estimate quantity from the resamples

Astrostatistics Summer School: Spatial Statistics

Ji Meng Loh (loh@njit.edu)

o Estimate is of the form >=, 5", 1o (|2 — xj|)wij = 32, my

@ Assign m; to each point x; as marks

e Copy points using blocks, but instead of making a new point
pattern and re-computing estimate from scratch, just add up
the resampled marks m;.

Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)

Fitting a model

Likelihood methods tend to be difficult except for the Poisson or
Markov models. A simple way is to fit using minimum contrast:

With a point model with parameter(s) 6 and theoretical K (r;0)
function, can estimate 6 by finding the value that minimizes

T0 R
DO) = [ WO ()~ K(ri0)P dr
0
Find standard errors by simulating realizations from the fitted

model and repeating the above procedure for the simulated
realizations.

Estimating the intensity function

@ Using a kernel with bandwidth h:

j\h(m) = Z k:h(ac — xz)
=1

@ Examples of ky:
kn(z) = Lo (2)/mh?

3 (1 _ 2
b = sen(loll)seh eny =4 (- F) ld<h
0 otherwise

@ Optimal h can be chosen using cross-validation methods.
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Estimating the intensity function (cont) Poisson likelihood as estimating equations

e for an inhomogeneous Poisson point process X with intensity

function A(s), the log-likelihood is given by @ Even for non-Poisson processes, can use the Poisson likelihood

to model the intensity function. Schoenberg (2005) provided
N conditions for the estimates of 8 to be consistent.
I X) = log Az;) — /W A(s) ds
i=1

e Can fit using the ppm function in the spatstat R package

@ Intensity function can be expressed in terms of covariates

_ e Waagepetersen (2007) introduced an inhomogeneous
and/or coordinates (s, $2):

Neyman-Scott process (INSP) by randomly thinning
(removing) points from a homogeneous NS process.

P

log A(s) = Zﬁjzj(s) or something like Parameters for the intensity are estimated from the Poisson
j=1 estimating equations, parameters for the Neyman-Scott

log\(s) = a+ Bis) + Pasa + 718% + 728% process estimated using minimum contrast for the K function.

The z's have to be observed at more locations than just the
event locations.
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An application An application (cont)

Estimation of K function or 2PCF requires a bin size. Using
optimal bin sizes can reduce standard errors. May also expect o
optimal bin size to vary with distance separation 7.

A bootstrap bandwidth selection method:

° ép(r) is a pilot estimate of &; &,(r) is estimate using bin o
SiZG(S) h 2I0 4I0 elo 80 100

° ég‘(r), b=1,...,B are bootstrap estimates of £

@ Find h that minimizes

Y 6(r) = & (r)]? + Var(€)

T

0.50 5.00
11 L1

g

0.01 0.05

5 10 20 50 100

Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu) Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)



An application (cont)
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References

@ Use optimal bin sizes to estimate 2PCF for, say, SDSS LRGs

@ Do the same for mock catalogs from various cosmologies

e Compute discrepancy D:

Statistics for Spatial Data - Cressie (comprehensive reference)

Spatial Statistics - Ripley

Introduction to Geostatistics - Kitanidis (readable intro, based
on hydrology)

Hierarchical Modeling and Analysis for Spatial Data -
Banerjee, Carlin and Gelfand (Bayesian)

Gaussian Markov Random Fields - Rue and Held

Stochastic Geometry and its Applications - Stoyan, Kendall
and Mecke

Modern Statistics for Spatial Point Processes - Moller and
Waagepeterson

e Statistics of the Galaxy Distribution - Martinez and Sarr
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Applied to 2dF GRS and 2dF mock catalogs
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