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Introduction

Spatial data - data about a phenomenon that includes
information about the locations at which the data-points are
collected.

Examples - climate data (rainfall, temperature etc), soil pH in
a field/forest, household income

Usually, data collected from nearby locations are more similar
- that is, the data is dependent or correlated.

More specific than applications with general dependent data.
The dependence is due to spatial locations - usual
assumption, dependence decreases with distance apart.
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Accounting for dependence

Key feature in spatial data is the dependence/correlation in
the observations

Need to account for the dependence in statistical models.

If assume independence, we are assuming we have more
information than we really do - underestimate the uncertainty

Accounting for dependence can help with better estimates and
predictions.

Often reasonable to assume that the dependences decreases
with distance apart
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Types of spatial data

Geostatistical - spatial process in continuous space, with
observations at specific locations, e.g. ozone measured at a
number of monitoring stations; mining application

Spatial point processes - locations of objects in space, e.g.
trees in a forest, galaxies in space

Lattice data - data (usually counts) observed on a regular or
irregular grid, e.g. census data, counts by zip-code, brain maps
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Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)

SDSS and CfA2
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Morristown laborshed
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Locations of a tree species in plot of land
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Measurements of elevation in the same plot of land
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Fastfood restaurants in NYC
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C iv absorption systems
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Geostatistics

Random fields - basic properties; Gaussian Random Fields

Mean function and error covariance structure

Some models for covariance function

Estimation - variogram, REML, ML

Kriging
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Random fields

Spatial process Z observed at locations s in continuous space,
s ∈ D ⊂ Rd.

Z(s) = µ(s) + ε(s)

µ(s) = E[Z(s)] is the mean

ε(s) is the spatial error - model dependence through ε.

Define covariance function C(s, t) = Cov(Z(s), Z(t))

C(s, t) has to be positive definite: ∀n, s1, dots, sn ∈ D ⊂ Rd
and c1, . . . , cn ∈ R,

n∑

i,j=1

cicjC(si, sj) > 0
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Stationarity, isotropy and Gaussianity

Usually make some assumptions to simplify the model:

Stationarity - properties of process are the same wherever you
are: C(s, s+ h) = C(h)

Isotropy - properties of process are the same in any direction:
C(s, s+ h) = C(|h|)
Gaussianity - ∀n, s1, . . . , sn ∈ D ⊂ Rd, Z(s1), . . . Z(sn) is
multivariate Gaussian distribution, i.e.

Z ∼ N(µ,Σ)

if covariates X are measured in D, can set µ = Xβ

Also, specify a parametric form for Σ that ensures that Σ is
positive definite.
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Models for the covariance function

Exponential:

C(h) = σ2 exp{−θh}, θ > 0

Gaussian:
C(h) = σ2 exp{−θh2}, θ > 0

Spherical:

C(h) = σ2(1− 3h/2α+ (h/α)2/2), h ≤ α

Matérn:

C(h) = 2σ2(θh/2)νKν(θh)/Γ(ν), ν > 0, θ > 0

K is a Bessel function
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Variogram

The variogram is a measure of the spatial dependence:

2γ(si − sj) = Var[Z(si)− Z(sj)]

= E[(Z(si)− Z(sj))
2] if mean is constant

γ(si − sj) ≡ γ(|si − sj |) under stationarity and isotropy
Simple estimator:

2 ˆγ(h) =
∑

N(h)

[Z(si)− Z(sj)]
2/|N(h)|,

N(h) is set of all pairs (si, sj) with |si − sj | ∈ (h−∆h, h+ ∆h).
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Inference

Match estimated variogram with model variogram
(exponential, Matérn etc) by (weighted) least squares

Likelihood methods - Gaussian likelihood L(θ, β;Z)

regular maximum likelihood
Restricted maximum likelihood (REML) using likelihood based
on contrasts
Composite likelihood - full likelihood of groups of observations,
independence between groups

Bayesian methods

With estimates of the parameters, can then use the model to make
predictions at other locations with no observations (kriging)
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Computing

R packages - geoR, fields, RandomFields, spBayes

WinBugs, JAGS for MCMC

Matrix computations limit the data size that standard
methods and R packages can handle
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Example - modeling magnitudes of Type Ia Supernovae

“Standardizing Type Ia Supernova Absolute Magnitudes Using
Gaussian Process Data Regression” - A. Kim et. al
(http://arxiv.org/abs/1302.2925)

Given time measurements of supernova photometry in 4
bands, want to estimate/predict the absolute magnitude

Borrow strength from other supernova data by using a
Gaussian process model

Fill in the gaps in the multi-band light curves

Reduce dimension using principal components analysis (PCA)

Relate absolute magnitude to PCA coefficients; can then
predict abs. magnitude given light-curve shape and colors.
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Gaussian process model

At epoch t, filter λ, photometric magnitude m(t,λ) is given by

m(t,λ) ∼ GP
(
m̄(t, λ;m0), km(t, λ, t′, λ′, lkm , σkm)

)

m̄ based on templates,

km(t, λ, t′, λ′, θ) = σ2km(λ)δλλ′ exp

[
−
(
t− t′
lkm

)2
]

Note that the km does not correlate across bands

The parameters lkm , σkm and other parameters are estimated
from data
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Predicted mean plus ten interpolated light curves
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Principal components

Express light curves in terms of principal components that
account for 95% of the variance

Have 4 eigenvectors and for each light curve, a set of 4
eigenvalues for each band

Also have values of absolute magnitude for these data
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First 4 principal components in the 4 bands
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Distribution of PCA coefficients
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Regression models

With x(j) representing the j-th eigenvalue for light curve x,
can then build a model between absolute magnitude of
supernova generating x and x(j)

Linear model:

Mλ(x;p) = M̄0 +

Np∑

j=1

pjx(j)

Gaussian model:

Mλ ∼ GP
(
M̄, kM

)
,

M̄ based on linear model, kM similar to previous GP model,
but depending on x(j)’s.
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Lattice data - Markov random fields

Random process Z observed on locations s on a lattice.

Examples - disease counts by zip code; intensity at pixels in an
image.

Usual to specify the dependence conditionally, i.e. we model
the conditional distribution of Z(si) given Z(sj), j 6= i.

Simplify the above by assuming a Markov property -
Z(si)|Z(sj), j 6= i becomes Z(si)|Z(sj), j ∼ i, where j ∼ i
means sj is a neighbor of si, i.e. process at a location s is
independent of other locations given process at neighboring
locations s′.
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Gaussian Markov random fields

Conditional distributions are Gaussian, resulting distribution is
multivariate Gaussian

Zi|Zj , j 6= i, τ ∼ N(n−1i
∑

j∼i Zj , (niτ)−1)

With Θ the parameters of the precision matrix Q(Θ):

Z ∼ N(Xβ,Q−1(Θ))

Estimate Θ, β using MLE or Bayesian methods

Because the matrices tend to be sparse (due to the Markov
property), computation is less challenging than with Gaussian
processes.
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Software

GeoDa R package by Luc Anselin

spdep R package by Roger Bivand

INLA by Havard Rue - includes stochastic partial differential
equation (SPDE) approach to approximate Gaussian
Processes using GMRFs

GeoBUGS which is part of WINBUGS
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Point patterns

Locations of objects/points in space, e.g. trees in a forest,
locations of galaxies

Think of a random mechanism underlying the process that
can generate many point patterns. But often our data is only
one realization, i.e. no replication

Observation region/window is the region where the objects
can potentially be found. Lack of points within the
observation region provides information about the point
process.

Can also think of it as a continuous random process X taking
values 0 or 1, observed at all points in the observation region.
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Some questions

How dense are the points? Number per unit area/volume:
Number density (also called intensity)

How clumpy or spread out (regular) are the points, i.e. do
they interact with one another? Correlation between where
points occur - 2PCF, K function etc

Homogeneous (stationary), i.e. the statistical characteristics
stay the same in different locations, or inhomogeneous
(non-stationary)?

Are there other measurements made of the points? For
example, width/height of the trees, magnitude of the galaxies.

Are there measurements of other variables within the
observation region? For example, pH of soil
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Locations of two tree species; measures of Elevation and
Nitrogen
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Some technical details

A spatial point process Φ is a stochastic process giving
realizations (x1, . . . , xn) in a region W ⊂ Rd

Note that n is random

For a region A ⊂ S, define N(A) = #points in A.

N(A) is random. Define E(N(A)) to be Λ(A) for any A ⊂ S.

If λ(·) exists such that Λ(A) =
∫
A λ(s) ds, λ is called the

intensity function.

λ(s) = lim
|ds|→0

E(N(ds))

|ds|
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More technical details - stationarity and isotropy

Stationarity: process Φ = {xn} and translated process
Φx = {xn + x} have the same distribution for all x

“different regions of the observation region yield similar
configurations of points”

Difficult to prove - stationary process can look non-stationary
within a bounded window and vice versa

Isotropy: process Φ = {xn} and rotated process
RαΦ = {Rαxn} have the same distribution for all α
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Some stationary point models

1 Poisson with constant intensity: independence between
points, just specified by the intensity

2 Neyman-Scott: parent-offspring model; locations of parent
points are Poisson spatial point process, Poisson number of
offspring are distributed say, uniform on a disc centered about
parents

3 Inhibition processes, soft-core and hard-core processes

4 Gibbs or Markov processes: specified by interaction function
between pairs of points (or groups of n points, n = 3, ...);
Strauss process is an example
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Simulated realizations
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A bit more on the Poisson process

For B ⊂W , N(B) ∼ Poisson(Λ(B))

Given number of points N(W ), the point locations are
randomly and independently distributed in W according to
pdf proportion to λ(s).

For two disjoint regions, B1, B2, N(B1) and N(B2) are
independent.

Cox processes - random intensity function; given the intensity
function, the process is inhomogeneous Poisson.
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Log Gaussian Cox Process

random intensity Λ(s) = logZ(s) where Z(s) is a Gaussian
process

Suppose Z is stationary and has mean µ, variance σ2 and
correlation function ρ(t). Then,

λ = exp(µ+ 0.5σ2)

Cov(Λ(s1),Λ(s2)) = exp(σ2ρ(t))

Used by Coles and Jones (1991) - MNRAS 248 “A lognormal
model for the cosmological mass distribution”
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Inhibition processes

Matérn hard core process: Poisson process with intensity ρ,
thinned by deleting all pairs of events less than δ apart

Points of Poisson process marked independently with times of
birth (say uniform (0,1)). An event is removed if it lies within
distance δ of an older event

Simple sequential inhibition process: put a sequence of events
in W , given {xj : j = 1, . . . , i− i}, xi is uniformly distributed
on W ∩ {y : |y − xj | ≥ h, j = 1, . . . , i− 1}
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Gibbs/Markov process

Models for regular patterns that are more flexible than
inhibition processes

For a point configuration χ, let f(χ) represent how much
more likely the configuration is for that process, compared
with the Poisson process with intensity 1.

Turns out that f(χ) can always be factorized into

f(χ) = α
n∏

i=1

gi(xi)
∏

j>i

gij(xi, xj)...

Pairwise interaction processes:

f(χ) ∝
∏

ξ∈χ
λ(ξ)

∏

(ξ,η)

φ(ξ, η)

f is repulsive if φ < 1 homogeneous if λ is constant and
φ(ξ, η) = φ(ξ − η).
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Strauss process

φ(r) = γ1{r≤R}, γ ∈ [0, 1], R > 0; R is the range of
interaction

f(x) ∝ βn(x)γs(x), n(x) is number of points, s(x) is number
of R-close pairs

γ = 1 gives the Poisson processs; γ < 1 has repulsion between
R-close pairs; γ = 0 gives a hard core process with core
distance R.
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Given a spatial point dataset, what can we do?

Test for Complete Spatial Randomness (CSR) or Poissonity:
quadrant count method, and various distance methods
(distribution of event-event distances, nearest neighbor
distances, point-event distances)

Estimate the constant intensity: λ̂ = N(W )/|W |

Estimate the second-order properties: K function, pair
correlation function, two-point correlation function

Fit a model

Model the inhomogeneous intensity as a function of measured
covariates
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Second-order properties

Second-order intensity function of a spatial point process:

λ(2)(s1, s2) = lim
|ds1|→0

lim
|ds2|→0

E[N(ds1)N(ds2)]

|ds1||ds2|

Under stationarity, λ(2)(s1, s2) = λ(2)(s2 − s1).

Under stationarity and isotropy, λ(2)(s1, s2) = λ(2)(|s2 − s1|).

λ(2) is hard to interpret; second-order product density ρ(2) is a
bit easier: ρ(2)(s1, s2)ds1 ds2 is the probability of finding a
point each in the infinitesimal volumes at s1 and s2.
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Second-order properties (cont)

Pair correlation function: g(r) = ρ(2)(r)/λ2

Ripley’s K function: λK(r) is the expected number of points
within distance r of a randomly selected point.

In R2, K(r) = πr2 for the homogeneous Poisson process

Some formulas (for R3):

g(r) =
1

4πr2
dK(r)

dr
ρ(2)(r) =

λ2

4πr2
dK(r)

dr

L(r) =

(
K(r)

π

)1/2
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Estimating the K function

Usually, estimate λ2|W |K(r) then divide by estimate of
λ2|W |, i.e. N2/|W | or N(N − 1)/|W |.

Naive estimator of λ2|W |K(r):

n∑

i=1

n∑

j=1
j 6=i

1(0,r](|xi − xj |)

Does not take into account the boundary of the observation
region, hence is an under-estimate.

Can restrict points i to be far enough from the boundary, but
discards some information, especially for large r.
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Edge effects

Neighborhood around points
near the boundary is partially
unobserved and may create
bias in estimates

Can use a buffer zone to avoid
the boundary, or use correction
adjustments to account for
unobserved events

Correction adjustments allow
all the data to be used, elim-
inate bias, but increases the
standard errors
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Estimating the K function with edge effects

Essentially, give each pair of points a weight: if a point pair is
near a boundary, give it a higher weight.

Ripley’s estimator:

∑∑
1(0,r](|xi − xj |)bij ,

where bij represents the proportion of the circle of radius
|xi − xj | centered at xi that is in |W |
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Estimating K (cont)

Translation estimator:

∑∑
1(0,r](|xi − xj |)/|Wxi ∩Wxj |

Rotation (Ohser’s) estimator: use an averaged version of
|Wxi ∩Wxj |
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Two-point correlation function

ξ(r) = g(r)− 1

“over-density” - excess probability of finding 2 points
separated by distance r, compared to the Poisson

Astronomers tend to use the 2PCF, estimating it using a
numerical method to account for edge effects
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Astronomers’ estimates of the 2PCF

D: dataset, R: random set

DD(r) =
∑

x∈D

∑

y∈D
1{|x− y| ∈ (r −∆r, r + ∆r)}

DR(r) =
∑

x∈D

∑

y∈R
1{|x− y| ∈ (r −∆r, r + ∆r)}

Some estimators:

ξ̂N =
DD

RR
− 1; ξ̂DP = DD

DR − 1; ξ̂He =
DD −DR

RR

ξ̂Ham = DD×RR
DR2 − 1 ξ̂LS =

DD − 2DR+RR

RR
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Estimating errors

Poisson errors (Ripley 1988; Landy and Szalay 1993)

Parametric bootstrap - simulate from a model of the process
(Einsenstein et al. 2005) and estimate quantity from
simulated data

Non-parametric bootstrap - block bootstrap, marked point
bootstrap

Block bootstrap - randomly place blocks in the observation
region to copy the point pattern; join multiple blocks together
to get a “new” sample; estimate quantity from the resamples
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Marked point bootstrap

Estimate is of the form
∑

i

∑
j 6=i 1(0,r](|xi − xj |)wij ≡

∑
imi

Assign mi to each point xi as marks

Copy points using blocks, but instead of making a new point
pattern and re-computing estimate from scratch, just add up
the resampled marks m∗i .
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Fitting a model

Likelihood methods tend to be difficult except for the Poisson or
Markov models. A simple way is to fit using minimum contrast:

With a point model with parameter(s) θ and theoretical K(r; θ)
function, can estimate θ by finding the value that minimizes

D(θ) =

∫ r0

0
w(t)[K̂(r)c −K(r; θ)c]2 dr

Find standard errors by simulating realizations from the fitted
model and repeating the above procedure for the simulated
realizations.

Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)

Estimating the intensity function

Using a kernel with bandwidth h:

λ̂h(x) =

n∑

i=1

kh(x− xi)

Examples of kh:

kh(z) = 1b(0,h)(z)/πh
2

kh(z) = 8eh(||z||)/3πh eh(t) =

{
3
4h

(
1− t2

h2

)
|t| < h

0 otherwise

Optimal h can be chosen using cross-validation methods.
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Estimating the intensity function (cont)

for an inhomogeneous Poisson point process X with intensity
function λ(s), the log-likelihood is given by

l(λ;X) =

N∑

i=1

log λ(xi)−
∫

W
λ(s) ds

Intensity function can be expressed in terms of covariates
and/or coordinates (s1, s2):

log λ(s) =

p∑

j=1

βjzj(s) or something like

log λ(s) = α+ β1s1 + β2s2 + γ1s
2
1 + γ2s

2
2

The z’s have to be observed at more locations than just the
event locations.
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Poisson likelihood as estimating equations

Even for non-Poisson processes, can use the Poisson likelihood
to model the intensity function. Schoenberg (2005) provided
conditions for the estimates of θ to be consistent.

Can fit using the ppm function in the spatstat R package

Waagepetersen (2007) introduced an inhomogeneous
Neyman-Scott process (INSP) by randomly thinning
(removing) points from a homogeneous NS process.
Parameters for the intensity are estimated from the Poisson
estimating equations, parameters for the Neyman-Scott
process estimated using minimum contrast for the K function.
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An application

Estimation of K function or 2PCF requires a bin size. Using
optimal bin sizes can reduce standard errors. May also expect
optimal bin size to vary with distance separation r.

A bootstrap bandwidth selection method:

ξ̂p(r) is a pilot estimate of ξ; ξ̂h(r) is estimate using bin
size(s) h

ξ̂∗b (r), b = 1, . . . , B are bootstrap estimates of ξ

Find h that minimizes

∑

r

[ξ̂p(r)− ξ̂h(r)]2 + Var(ξ̂∗)
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An application (cont)

Astrostatistics Summer School: Spatial Statistics Ji Meng Loh (loh@njit.edu)



An application (cont)

Use optimal bin sizes to estimate 2PCF for, say, SDSS LRGs

Do the same for mock catalogs from various cosmologies

Compute discrepancy D:

D =
∑

r

(
ξ̂(r)− ξ̂(r; θ)

σ̂

)2
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Applied to 2dF GRS and 2dF mock catalogs
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