WEEK 1

Engineering Calculations -

 Processes - Process Variables
2.1 Units and Dimensions

- Units and dimensions are important in science and engineering
- A measured quantity has a numerical value and a unit (ex: $25^{\circ} \mathrm{C}$)
- Dimension: Length, time, mass or temperature - These are properties that can be measured or obtained by multiplying other dimensions (ex: velocity = Length/time; volume $=$ Length 3)

Note: If the units are the same, they can be added or subtracted (ex: $3 \mathrm{~cm}-1 \mathrm{~cm}$). If they are different, conversion is required in order to obtain the same units.

2.2 Unit Conversion

- Measured quantity $-\rightarrow$ Unit having appropriate dimension.

Ex: Volume-- $3 \mathrm{~cm}^{3}-\rightarrow$ Length ${ }^{3}$
Measure qưantity- \rightarrow nừmerical value, proper unit $-\rightarrow$ proper dimension Note: The numerical value depends on the unit.
(Inside cover of the book)

- To convert from one unit to another, we multiply by a "conversion factor"
Ex: $36 \mathrm{mg}(1 \mathrm{~g} / 1000 \mathrm{mg})=0.036 \mathrm{~g}$ $36 \mathrm{mg}(0.001 \mathrm{~g} / 1 \mathrm{mg})=0.036 \mathrm{~g}$
Note: The old units should cancel out. All we have left is the desired unit.
- We also deal with compound units (Ex: miles/h). These units are formed by combining different dimensions (Ex: to do in class: 1 $\mathrm{cm} / \mathrm{s}^{2}$ in $\mathrm{km} / \mathrm{yr}^{2}$)

2.3 Systems of Units (SI, American Engineering System)

- Base units are units for mass, length, time, temperature, electrical current and light intensity (Page 11 in the textbook).
Ex1: Quantity: temperature, Base unit: Kelvin (SI), symbol: K.
Ex2: Quantity: time, Base unit: second, symbol: s.
- Multiple units: multiple or fraction of base units such as hours, milliseconds, year etc... Multiple unit prefixes are: Mega $(M)=10^{6}$, Kilo $(k)=10^{3}$, Centi (c): 10^{-2}, Milli $(m)=10^{-3}$, Micro $(\mu)=10^{-6}$, Nano (n) $=10^{-9}$.

Note: There are quantities which require derived units. It is imperative that we recognize units associated with quantities.
Ex: volume \rightarrow liter \rightarrow I or L
Force \rightarrow Newton (SI), dyne (CGS) $\rightarrow \mathrm{N}$
Pressure \rightarrow pascal (SI) $\rightarrow \mathrm{Pa}$
Energy, work \rightarrow joule (SI) \rightarrow J
Power \rightarrow watt \rightarrow W
Conversion: $\mathrm{W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3} ; 1 \mathrm{~N}=1 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
Example: Conversion between systems of units: $23 \mathrm{lbm} . \mathrm{ft} / \mathrm{min}^{2} \mathrm{in} \mathrm{kg} . \mathrm{cm} / \mathrm{s}^{2}$

2.4 Force and Weight

- For now, we are interested in force and weight in the context of units and unit conversion
- Force is proportional to mass X acceleration SI: kg.m/s²
CGS: $\mathrm{g} . \mathrm{cm} / \mathrm{s}^{2}$
American engineering: lbm.ft/s²
1 Newton (N) $=1 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}(\mathrm{SI})$
1 dyne $=1 \mathrm{~g} . \mathrm{cm} / \mathrm{s}^{2}$ (CGS)
$1 \mathrm{lbf}=32.174 \mathrm{lbm} . \mathrm{ft} / \mathrm{s}^{2}$ (American engineering)
(acceleration of gravity at sea level and 45° latitude)
Conversion factors: $1 \mathrm{~kg} .\left(\mathrm{m} / \mathrm{s}^{2}\right) / \mathrm{N}, 1 \mathrm{~g} .\left(\mathrm{cm} / \mathrm{s}^{2}\right) / \mathrm{dyne}, 32.174 \mathrm{lbm} .\left(\mathrm{ft} / \mathrm{s}^{2}\right) / \mathrm{lbf}$
- Weight is force exerted on an object by gravitational acceleration $\mathrm{W}=\mathrm{m} \mathrm{g}$
$\mathrm{g}=9.8066 \mathrm{~m} / \mathrm{s}^{2}=980 \mathrm{~cm} / \mathrm{s}^{2}=32.174 \mathrm{ft} / \mathrm{s}^{2}$
- There is a distinction between weight and mass (Go over example 2.4-1 on page 13 in class)

2.5 Numerical Calculations and Estimations

- Scientific notation, significant figures, and precision: $a \times 10^{b}$ (b is a negative or positive integer) Ex: $123,000,000=1.23 \times 10^{8} ; 0.000028=2.8 \times 10^{-5}$
Significant figures:
a) There is a decimal point: 0.000028 (2 significant figures)

First nonzero digit on the left to the last digit (zero or nonzero) on the right
b) There is no decimal point: 123000000 (3 significant figures)

First nonzero digit on the left to the last nonzero digit of the number
More examples: 2300 : 2; 2300. : 4; 2300.0:5; 23040 : 4; 0.035 : 2; $0.03500: 4$.
When using scientific notations, make sure that the significant digits are shown.
$2.3 \times 10^{3} ; 2.300 \times 10^{3} ; 2.3000 \times 10^{3} ; 2.304 \times 10^{4} ; 3.5 \times 10^{-2} ; 3.500 \times 10^{-2}$.
Note: high precision: close to each other
High accuracy: very near the target
Significant figures have to do with precision of a reported (or measured) quantity.
Ex1: 3 significant figures: the value of the third of the figures may be off by ass much as one half.
Ex2: 8.3 g lies between 8.25 g and 8.35 g
Ex3: 8.300 g lies between 8.2995 g and 8.3005 g

2.5 Numerical Calculations and Estimations

- When doing multiplication or division, keep the lowest number of significant figures of any of the multiplicands or divisors.
Ex1: $3.57 \times 4.286=15.30102=15.3$
(3) (4)
(3)

Ex2: $\left(5.2 \times 10^{-4}\right)\left(0.1635 \times 10^{7}\right) / 2.67=$
${ }^{(2)} \quad{ }^{(4)}$
$318.426966=3.2 \times 10^{2}=320$
(9)
(2)

- Addition and subtraction: the number of decimal places in the answer = the number of decimal places in the quantity with the smallest number of decimal places
Ex: $\left(2.75 \times 10^{6}\right)+\left(3.400 \times 10^{4}\right)=2.78 \times 10^{6}$
(3) (4) (3)

Note: Equations must be dimensionally homogeneous (End of Chapter 2)

Chapter 3

- Processes and process variables
- "Process": any operation or series of operations that causes a physical or chemical change in a substance or a mixture of substances

- "Process Unit": apparatus in which one of the operations that constitutes of a process is carried out

Examples of "process units"" reactors, distillation columns, heat exchanger

We need to introduce definitions and measurement techniques to help understand and design process units

Chapter 3

- Density: mass/volume of substance ($\mathrm{kg} / \mathrm{m}^{3}$, $\mathrm{g} / \mathrm{cm}^{3}, \mathrm{lbm} / \mathrm{ft}^{3}$)
- Specific volume of a substance: volume of substance/mass ($\mathrm{m}^{3} / \mathrm{kg}, \mathrm{cm}^{3} / \mathrm{g}, \mathrm{ft}^{3} / \mathrm{lbm}$)
Density of solid and liquid are weak functions of temperature and pressure.
Ex1: density of carbon tetrachloride: $1.595 \mathrm{~g} / \mathrm{cm}^{3}$
Ex2: mass of $20.0 \mathrm{~cm}^{3}$ of carbon tetrachloride? $20.0 \mathrm{~cm}^{3} \times 1.595 \mathrm{~g} / \mathrm{cm}^{3}=31.9 \mathrm{~g}$
Ex3: volume of 6.20 lbm of tetrachloride: 6.20 lbm $x(454 \mathrm{~g} / 1 \mathrm{lbm}) \times\left(1 \mathrm{~cm}^{3} / 1.595 \mathrm{~g}\right)=1760 \mathrm{~cm}^{3}$

Chapter 3

- "Specific gravity" of a substance: SG $=\rho / \rho$ ref. ρ ref $\left(\mathrm{H}_{2} 0,4^{\circ} \mathrm{C}\right)=1.000 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}=$ $62.43 \mathrm{lbm} / \mathrm{ft}^{3} . \mathrm{SG}=0.620^{\circ} / 4^{\circ}$ (Example 3.1-1 in class)
- 3.2 Flow rate: Mass and volumetric flow rate
-Flow rate of a material = rate at which a material is transported through a process line. Mass flow rate (mass/time); volumetric flow rate (volume/time)
- How do we measure flow rate? (Page 46: rotameter - float and orifice meter - pressure drop).
- 3.3 Chemical composition

Moles and molecular weights. Atomic weight of an element = mass of an atom. Molecular weight of a compound = sum of the atomic weights of all the atoms that make up the molecule of the compound

Ex: atomic weight (O): 16; Molecular weight of O_{2} is about 32.
Unit: 1 gram-mole (g -mole or mole in SI) = amount of that species (\# moles) that is numerically equal to its molecular weight. Instead of g-mole, we may write moles (ex: 2 g -moles $=2$ moles)
Ex: Carbon monoxide $(\mathrm{CO})=28 \mathrm{~g} /$ mole $->1 \mathrm{~g}$-mole of CO contains 28 g . Also 1 lb -mole of CO contains 28 lbm

Conversion: $34 \mathrm{~kg} \mathrm{NH}_{3} \times(1 \mathrm{kmol} / 17 \mathrm{~kg} \mathrm{NH} 3)=2 \mathrm{kmol} \mathrm{NH}_{3}$ 4 lb -mole $\mathrm{NH}_{3} \times\left(17 \mathrm{lbm} / 1 \mathrm{lb}\right.$-mole $\left.\mathrm{NH}_{3}\right)=68 \mathrm{lbm} \mathrm{NH}_{3}$

In class Page 48 Example 3.3-1

Chapter 3

- Notes: Avogadro's number: 6.02×10^{23} molecules/mole
- Molecular formula: CxOy means x mole of C and y mole of O . But we have 1 mole of Cx and 1 mole of Oy. Also: 1 mole of CxOy .

Mass, mole fractions and average molecular weight Mass fraction $=X_{A}=$ mass of A/total mass
Mole fraction $=Y_{A}=$ mole of A/total moles
Example 3.3.2 to do in class
In this example, we use conversion of mass and mole fractions. You are giving mass \%. 1) Use 100 (g, kg, Ibm) basis, 2) Obtain the mass, 3) Convert mass to moles using molecular weight. When giving mole \%, the procedure is similar.

Chapter 3

- Average molecular weight (or mean molecular weight) of a mixture: $\bar{M}(\mathrm{~kg} / \mathrm{Kmol}$ or lbm/lbmol).

$$
\bar{M}=y_{1} M_{1}+y_{2} M_{2}+\ldots .=\sum y_{i} M_{i}
$$

- M_{i} : molecular weight of compound $\mathrm{i} ; \mathrm{y}_{\mathrm{i}}$: mole fraction of compound i.

$$
\frac{1}{\bar{M}}=\frac{x_{1}}{M_{1}}+\frac{x_{2}}{M_{2}}+\ldots=\sum \frac{x_{i}}{M_{i}}
$$

x_{i} : mass fraction of i

- Example 3.3-4 page 51 to do in class

3.4 Pressure

- 3.4a Fluid pressure and hydrostatic head:
$\mathrm{P}=\mathrm{F} / \mathrm{A}=\mathrm{N} / \mathrm{m}^{2}$; dynes $/ \mathrm{cm}^{2}$; lbf/in²
$1 \mathrm{~N} / \mathrm{m}^{2}=1$ pascal (Pa)
$P=P o+\rho g h$
P is the hydrostatic pressure of the fluid
"Head" of a particular fluid $P_{\text {head }}=\rho_{\text {fluid }} g h$

Example 3.4-1 page 55 to do in class

We need to use $1 \mathrm{~N}=1 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2} ; 1$ dyne $=1 \mathrm{~g} . \mathrm{cm} / \mathrm{s}^{2} ; 1 \mathrm{lbf}=32.174 \mathrm{lbm} . \mathrm{ft} / \mathrm{s}^{2}$ to obtain proper units.

- 3.4b Atmospheric pressure, absolute pressure and gauge pressure: $P_{\text {abs }}=P_{\text {gauge }}+$ $\mathrm{P}_{\text {atmospheric }}$
- 3.4c Fluid pressure measurement: Bourdon gauge; Manometer. Read Page 58 and 59

3.5 Temperature

- $\mathrm{T}(\mathrm{K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15$
- $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)=\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)+459.67$
- $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)=1.8 \mathrm{~T}(\mathrm{~K})$
- $\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=1.8 \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32$

HMK: 2.2, 2.3, 2.8, 2.9, 3.2, 3.3, 3.14

