WEEK 12

Balances on Transient Systems

Mass balances

- Transient (unsteady-state) processes: system variable changes with time
- Ex: Batch and semibatch process
- The general balance equation is still valid:
- Accumulation $=$ input - output + generation - consumption

$$
\frac{d M}{d t}=\dot{m}_{\text {in }}-\dot{m}_{\text {out }}+\dot{r}_{\text {gen }}-\dot{r}_{\text {cons }}
$$

- We need an initial condition $\mathrm{M}(\mathrm{t}=0)$
- To do in class: page 545, ex. 11.1-1
- Notice the difference between total mass balance and component balance.
- Pay close attention to the units

Example: Mass balances

- To do in class: page 548, ex. 11.2-1
- No reaction
- Solution of ordinary differential equations
- Concepts of practical ranges and domains
- To do in class: page 552, ex. 11.2-2

$$
V \frac{d C_{A}}{d t}=F_{\text {in }} C_{\text {Ain }}-F_{\text {out }} C_{\text {Aout }}+\dot{r}_{\text {gen }}-V V_{\text {coos }}
$$

- The steady-state concentration is obtained by setting the accumulation term to zero.
- Integration tables may be necessary

Energy Balances

- Single phase nonreactive processes: accumulation = input - output

$$
\begin{gathered}
\text { accumulation }=\Delta E_{\text {sys }}=\Delta U_{\text {sys }}+\Delta E_{k, \text { sys }}+\Delta E_{p}, \text { sys } \\
\text { input }=\dot{m}_{\text {in }}\left(\hat{H}_{\text {in }}+\frac{u_{\text {in }}^{2}}{2}+g z_{\text {in }}\right) \Delta t+\dot{Q} \Delta t \\
\text { output }=\dot{m}_{\text {out }}\left(\hat{H}_{\text {out }}+\frac{u_{\text {out }}^{2}}{2}+g z_{\text {out }}\right) \Delta t+\dot{W}_{s} \Delta t \\
\frac{d U_{\text {sys }}}{d t}+\frac{d E_{k, \text { sys }}}{d t}+\frac{d E_{p, \text { sys }}}{d t}=\dot{m}_{\text {in }}\left(\hat{H}_{\text {in }}+\frac{u_{\text {in }}^{2}}{2}+g z_{\text {in }}\right)-\dot{m}_{\text {out }}\left(\hat{H}_{\text {out }}+\frac{u_{\text {out }}^{2}}{2}+g z_{\text {out }}\right)+\dot{Q}-\dot{W}_{s}
\end{gathered}
$$

Energy Balances

- Simplifications
- Single input stream, single output stream, same flow rate: $\quad \dot{m}_{\text {in }}=\dot{m}_{\text {out }}=\dot{m}$
-Kinetic and potential energy changes in the system and between inlet and outlet streams are negligible:

$$
\frac{d E_{k, y y s}}{d t} \approx \frac{d E_{p, s y s}}{d t} \approx 0 \quad \dot{m}\left(\frac{u_{\text {in }}^{2}}{2}-\frac{u_{\text {out }}^{2}}{2}\right) \approx 0 \quad \dot{m}\left(g z_{\text {in }}-g Z_{\text {out }}\right) \approx 0
$$

As a result:

$$
\frac{d U_{s y s}}{d t}=\dot{m}\left(\hat{H}_{\text {in }}-\hat{H}_{\text {out }}\right)+\dot{Q}-\dot{W}_{s}
$$

Energy Balances

- Perfectly mixed: $T_{\text {out }}=T_{\text {sys }}=T$
- No phase change or reactions:

$$
\begin{aligned}
U_{s y s}=M \hat{U}_{s y s}= & M\left[\hat{U}\left(T_{r}\right)+C_{v}\left(T-T_{r}\right)\right] \\
& \quad{ }^{2}, M, \hat{U}\left(T_{r}\right), C_{v} \text { are constant } \\
\frac{d U_{\text {sys }}}{d t}= & M C_{v} \frac{d T}{d t} \\
\hat{H}_{\text {in }}= & C_{p}\left(T_{\text {in }}-T_{r}\right) \\
\hat{H}_{\text {out }}= & C_{p}\left(T_{\text {out }}-T_{r}\right) \longrightarrow \hat{H}_{\text {out }}=C_{p}\left(T-T_{r}\right)
\end{aligned}
$$

Open system: $\quad M C_{v} \frac{d T}{d t}=\dot{m} C_{p}\left(T_{i n}-T\right)+\dot{Q}-\dot{W}_{s}$
Closed system: $\quad M C_{v} \frac{d T}{d t}=\dot{Q}-\dot{W}$
To do in class: Page 556, Ex. 11.3-1; Page 557, Ex. 11.3-2

