WEEK 3

Materials Balances (Continued)

Degree of Freedom

Page 98. <u>Degree of Freedom Analysis</u>

 $N_{DF} = n_{unknowns} - n_{ind. equations}$ When - $N_{DF} = 0$ problem can be solved

- N_{DF} > 0 problem is underspecified
- N_{DF} < 0 problem is overspecified
 Keep in mind that the equations can come from conservation laws and empirical

relations.

4.4 Balances on Multiple-Unit Processes

- Notes: Learn how to solve:a1*x+b1*y = c1, a2*x+b2*y = c2
- Example 4.4-1 Two-Unit Process (in class)
- Example 4.4-2 Extraction-Distillation Process (in class): - <u>solute</u>, <u>diluent</u> in a mixture; <u>solvent</u> has more affinity for the solute; <u>raffinate</u>: phase rich in the diluent; <u>extract</u>: phase rich in the solvent; <u>stage</u> in a separation process.

4.5 Recycle and Bypass

- A chemical reaction (A->B) may not process to completion. The product is composed of B and some A.
- Separate A from B and recycle the unconsumed reactant A.
- Example 4.5-1 Recycle and bypass (to do in class)

4.6 Balances on reactive Systems -Chemical Reaction Stoichiometry

4.6a Stoichiometry

- Constraints posed by the stoichiometry (A->B)
- Stoichiometry: proportions at which chemicals combine with one another
- Stoichiometric equation: 2SO₂+O₂→2SO₃ The equation must be balanced. Note: SO₂: sulfur dioxide; SO₃: sulfur trioxide
- 2 mol of SO₃ generated / 1 mol of O₂ consumed
- 2 lb-mole of SO₂ consumed / 2 lb-mole of SO₃ generated. Note: *Not necessary to relate moles* of SO₂ consumed to mol of O₂ consumed!

Balances on reactive Systems

4.6b Limiting and excess reactants, fractional conversion, extent of reaction

- Are the 2 reactants (A,B) present in stoichiometric proportions?(i.e., (moles A present)/(moles B present) = the stoichiometric ratio?
- "Limiting reactant" would run out if reaction proceed to completion
- The other reactants are "excess reactants"
- (n_A)_{feed} is the number of moles of an excess reactant
- (n_A)_{stioch} is the stoichiometric requirement of A or the amount of A needed to react completely with the limiting reactant.
- (n_A)_{feed}- (n_A)_{stioch} amount by which A in feed exceeds amount needed to react completely if reaction goes to completion.
- "Fractional excess" of A = $[(n_A)_{feed} (n_A)_{stioch}]/(n_A)_{stioch}$
- "Percentage excess" of A = 100X(Fractional excess of A)

Ex: $C_2H_2 + 2H_2 \rightarrow C_2H_6$ (acetylene + hydrogen \rightarrow ethane)

20 .0 kmol/h of C_2H_2 (limiting) and 50 .0 kmol/h of H_2 (excess)

Feeding ratio: 2.5:1 (50:20)

"Percentage excess" of H_2 is (50.0- 40.0)/40.0 = 0.25

25% excess of hydrogen in the feed

Fractional conversion

- It is possible that some limiting reactants remain because the reactor was not designed for complete conversion.
- "Fractional conversion" f = moles reacted/moles fed
- Fraction unreacted = 1-f
- Ex: $C_2H_2 + 2H_2 \rightarrow C_2H_6$ (acetylene + hydrogen \rightarrow ethane) in a batch reactor: 20 kmol C_2H_2 , 50kmol H_2 , 50kmol C_2H_6 .

After some time, only 30.0 kmol of hydrogen has reacted. How much of each species we have at that time?

Ans. 50 – 30 = 20 kmol of H₂ left; C₂H₂: 30/2 = 15 -> 20 – 15 = 5 kmol of C₂H₂ left; C₂H₆: 50 + 15 = 65 kmol of C₂H₆ left

Stoichiometry and extent of reaction

 $C_2H_2 + 2H_2 \rightarrow C_2H_6$ $v_{C2H2} = -1$; $v_{H2} = -2$; $v_{C2H6} = 1 \rightarrow v$ is a stoichiometric coefficient In general: $n_i = n_{io} + v_i \zeta$ (for a continuous [flow rate] or batch system [number mole]) ζ is called "extent of reaction" [flow rate or number of moles]. Ex: $N_2 + 3H_2 - > 2NH_3$ Feed to reactor: 100 mol/s N_2 ; 300 mol/s H_2 ; 1 mol/s Argon (inert gas); No mole of NH_3 . $n_{N2} = 100 \text{ mol/s} - \zeta$ $n_{H_2} = 300 \text{ mol/s} - 3\zeta$ $n_{NH3} = + 2\zeta$ $n_{Argon} = 1 \text{ mol/s}$

Example 4.6-1 to do in class (page 120)

HMK Page 165: 4.28, 4.29, 4.39, 4.40