WEEK 5

Single-Phase Systems
 (Continued)

Ideal Gas Mixture

- One mole of an ideal gas at $0^{\circ} \mathrm{C}$ and 1 atm occupies 22.415 liters
- T in the gas law equation refers to the absolute temperature
- Values of the gas constant in different units are in the book
- Example 5.2-1 on page 192 in class (part 1)
- Example 5.2-2 on page 195 in class
- Example 5.2-3 on page 195 in class
- Page 196, section 5.2c Ideal Gas Mixtures: $\mathrm{p}_{\mathrm{A}}=\mathrm{y}_{\mathrm{A}} \cdot P \cdot \mathrm{p}_{\mathrm{A}}$ is the pressure that would be exerted by n_{A} moles of A alone in the same total volume V at the same temperature T of the mixture.
- $P=P_{A}+P_{B}+P_{C}+\ldots$

Ideal Gas Mixture

- $\mathrm{V}_{\mathrm{A}}=\mathrm{y}_{\mathrm{A}} \mathrm{V}$
- $\mathrm{V}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}+\ldots$
- v_{A} is the volume occupied by n_{A} moles of A alone in the same total volume P at the same temperature T of the mixture.
- Example 5.2-5 on page 197

5.3 Equations of State for Nonideal Gases

- Some gases deviate from ideal gas behaviors (especially at low and/or high pressure)
- Page 241- Phase diagram tells us about conditions substance exists as a solid, liquid or a gas.
- The highest temperature a species can coexist in 2 phases (liquid and vapor) is the critical temperature (Tc). The corresponding P is the critical pressure P_{c}.
- The critical conditions are used to generate empirical equations for nonideal gases.

5.3b Virial equations of state

 $\frac{P \hat{V}}{R T}=1+\frac{B}{\hat{V}}+\frac{C}{\hat{V}^{2}}+\frac{D}{\hat{V}^{3}}+\ldots$- Virial Equation

$$
\frac{P \hat{V}}{R T}=1+\frac{B}{\hat{V}}
$$

- Page 201-- ω :Pitzer acentric factor: a parameter that accounts for geometry and polarity of molecule
- \quad Steps in estimating volume
a) T_{c} and P_{c} (page 628)
- b) Calculate reduced temperature $T_{r}=T / T_{c}$
- C) Estimate B

$$
\begin{aligned}
B_{0} & =0.083-\frac{0.422}{T_{r}^{1.6}} \\
B_{1} & =0.139-\frac{0.172}{T_{r}^{4.2}} \\
B & =\frac{R T_{c}}{P_{c}}\left(B_{0}+\omega B_{1}\right)
\end{aligned}
$$

- \quad Substitute to calculate P or \hat{V}

5.3c Cubic equations of state

- Soave-Redlich-Kwong (SRK)
- Redlich-Kwong
- Peng-Robinson

Equations 5.3-6 to 5.3-12 (page 203)

- Example 5.3-2 (in class)

5.4 Compressibility Factor Equation of State

- Compressibility factor:

$$
Z=\frac{P \hat{V}}{R T}
$$

- Compressibility factor equation of state

$$
P \hat{V}=Z R T
$$

- Example 5.4-1 (Page 206)

HMK p 215 \# 5.5, p 230 \# 5.55, P 231 \# 5.58

