WEEKS 9 and 10

Balances on Nonreactive Systems

Estimation of $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$

- Page 365 Changes in pressure at constant temperature
- Observe that at fixed $\mathrm{T}, \Delta \mathrm{U}$ is independent of pressure

$$
\begin{gathered}
\Delta \hat{U} \approx 0 \text { and } \Delta \hat{H}=\Delta \hat{U}+\Delta P \hat{V} \\
\Delta \hat{H}=\hat{V} \Delta P
\end{gathered}
$$

- Section 8.3. Changes in T

$$
\text { Closed system } \mathrm{Q}=\Delta \mathrm{U} ; \text { Open system: } \quad \dot{Q}=\Delta \dot{H}
$$

Heat Capacity at constant volume:

$$
C_{v}(T)=\lim \frac{\Delta \hat{U}}{\Delta T \rightarrow 0} \frac{\Delta T}{\Delta T}=\left(\frac{\partial \hat{U}}{\partial T}\right)_{V}
$$

$\Delta \hat{U}=\int_{T_{1}}^{T_{2}} C_{v}(T) d T$

- ideal gas: exact
- solid or liquid: good approximation
- Nonideal gas: valid if V is constant

Heat Capacity at constant pressure:

$$
C_{p}(T)=\lim \frac{\Delta \hat{H}}{\Delta T \rightarrow 0}=\left(\frac{\partial \hat{H}}{\partial T}\right)_{p}
$$

Estimation of $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$

- Change in enthalpy

$$
\begin{array}{ll}
\Delta \hat{H}=\int_{T_{1}}^{T_{2}} C_{p}(T) d T & \text { - ideal gas: exact } \\
\Delta \hat{H}=\hat{V} \Delta P+\int_{T_{1}}^{T_{2}} C_{p}(T) d T & \text { - Sonideal gas: exact if } \mathrm{P} \text { is constant }
\end{array}
$$

- 8.3 b Heat Capacity formulas

$$
\begin{aligned}
& C_{p} \approx C_{v} \text { - Solid or liquid } \\
& C_{p}=C_{v}+R \quad \text { - Ideal gas }
\end{aligned}
$$

Estimation of heat capacity

- Heat capacity of a mixture:

$$
C_{p M I X}(T)=\sum_{i} y_{i} C_{p i}(T)
$$

Heat capacity of a mixture Mass or mole fraction

$$
\Delta \hat{H}=\int_{T_{1}}^{T_{2}} C_{p \text { pMix }}(T) d T
$$

- These equations can be used to solve energy balance problems (closed-system and open-system)
- p 329, 7.5-3; p 330, 7.6-1; p 331, 7.6-2; p 335, 7.7-2; p 8.3-4; p 374, 8.3-5 To do in class
- Extra problems

