PHEN 612

SPRING 2008
 WEEK 1 LAURENT SIMON

Chapter 1*

1.1 Rate of reactions $-r_{A}$

A+B->C
Species A, B, and C

- We are interested in the rate of disappearance of A
- The rate of reaction, -rA , is the number of moles of A reacting per unit time per unit volume (mole/s.m ${ }^{3}$).

[^0]
Chapter 1

- For heterogeneous system, $-\mathrm{r}_{\mathrm{A}}$ [mole/s.g catalyst).
- The rate law for r_{j} is independent of the type of reactor used: $f(T, P, t y p e ~ o f ~ c a t a l y s t, ~ p o s i t i o n) ~$
- The rate law is an algebraic expression (ex: $-\mathrm{r}_{\mathrm{A}}=$ k. C_{A}) \rightarrow based on experiments.
- Convention: r_{A} : rate of formation or generation of A; $-r_{A}$: rate of disappearance of A

Chapter 1

1.2 The general mole balance equation

- Accumulation $=$ input - output + generation

$$
\frac{d\left(N_{j}\right)}{d t}=F_{j o}-F_{j}+G_{j}
$$

If one assumes uniformity in the control volume: $\mathrm{G}_{\mathrm{j}}=\mathrm{r}_{\mathrm{j}} . \mathrm{V}$ (moles/time = moles/(time.volume).volume

Chapter 1

- In general:

$$
\Delta G_{j i}=r_{j i} \Delta V_{i}
$$

Total rate of generation: $G_{j}=\sum_{i=1}^{M} \Delta G_{j i}=\sum_{i=1}^{M} r_{j i} \Delta V_{i}$
In the limit: $\quad G_{j}=\int^{V} r_{j} d V \longrightarrow \frac{d\left(N_{j}\right)}{d t}=F_{j o}-F_{j}+G_{j}$

$$
\frac{d\left(N_{j}\right)}{d t}=F_{j o}-F_{j}+\int^{V} r_{j} d V
$$

We need to estimate the time (batch) or reactor volume (continuous flow) necessary to convert a desired amount of reactants into product.

Chapter 1

1.3 Batch reactors:

Constant volume, no flow in, no flow out

$$
\frac{d\left(N_{j}\right)}{d t}=r_{j} V \quad t_{1}=\int_{N_{A_{A}}}^{N_{A 0}} \frac{d N_{A}}{-r_{A} V}
$$

Time t_{1} is the time necessary to reduce the $\#$ of moles from $N_{A 0}$ to $N_{A 1}$. Also the time to form $N_{B 1}$ moles of B

1.4 Continuous-flow reactors: CSTR; PFR; PBR

Chapter 1

1.4.1Continuous stirred tank reactor

(CSTR)

$F_{j 0}$

Assuming steady-state operation: $\mathrm{d}\left(\mathrm{N}_{\mathrm{j}}\right) / \mathrm{dt}=0$
No spatial variation in the reaction rate (i.e., perfect mixing):

$$
V=\frac{F_{j 0}-F_{j}}{-r_{j}}
$$

Remember: $\mathrm{F}_{\mathrm{j}}=\mathrm{C}_{\mathrm{j}} \mathrm{v}$

$$
V=\frac{C_{j 0} v_{0}-C_{j} v}{-r_{j}}
$$

Chapter 1

1.4.1 Tubular reactor

$$
\begin{aligned}
& \text { Input-output + generation }=0 \\
& F_{j \mid V}-F_{j \mid V+\Delta V}+r_{j} \Delta V=0
\end{aligned}
$$

$$
\frac{F_{j V+\Delta V}-F_{j V}}{\Delta V}=r_{j}
$$

$$
\frac{d F_{j}}{d V}=r_{j} \quad V_{1}=\int_{F_{j 1}}^{F_{j 0}} \frac{d F_{j}}{-r_{j}}=\int_{F_{j 0}}^{F_{i n}} \frac{d F_{j}}{r_{j}} \begin{aligned}
& V_{1} \text { is the vilume necessary to reduce } \\
& \text { the entering molar flow rate from } \mathrm{F}_{\mathrm{j} 0} \\
& \text { to } \mathrm{F}_{\mathrm{ij}}
\end{aligned}
$$

Chapter 1

1.4.3 Packed-bed reactor

$$
\frac{d\left(N_{j}\right)}{d t}=F_{j o}-F_{j}+\int^{W} r_{j}^{\prime} d W
$$

$$
\text { Input-output + generation = } 0
$$

$$
F_{j \mid W}-F_{j \mid W+\Delta W}+r_{j}^{\prime} \Delta W=0
$$

$$
\frac{F_{j \mid W+\Delta W}-F_{j \mid W}}{\Delta W}=r_{j}^{\prime}
$$

$$
\frac{d F_{j}}{d W}=r_{j}^{\prime} \quad W_{1}=\int_{F_{11}}^{F_{j 0}} \frac{d F_{j}}{-r_{j}^{\prime}}=\int_{F_{j 0}}^{F_{j_{1}}} \frac{d F_{j}}{r_{j}^{\prime}}
$$

W_{1} is the catalyst necessary to reduce the entering molar flow rate $F_{j 0}$ to $F_{j 1}$

Chapter 1

1.5 Industrial reactors

- Liquid-phase reactions (Batch and CSTR)
- Gas-phase reactions (PFR and PBR). Fluidized-bed reactors are also used.

Chapter 2*

Conversion and reactor sizing
2.1 Defining conversion aA+bB->cC+dD

- A: basis of calculation

A+(b/a)B->(c/a)C+(d/a)D
"per mole of A" basis
A is the limiting reactant

- $X_{A}=$ (moles of A reacted)/(moles of A fed)

Chapter 2

2.2 Batch reactor design equation

 $t=0--->N_{A 0} ; t-->N_{A 0} X$$$
N_{A}=N_{A 0}-N_{A 0} X=N_{A 0}(1-X)
$$

$$
N_{A 0} \frac{d X}{d t}=-r_{A} V
$$

In terms of concentration, we use $N_{A}=C_{A} V-->d C_{A} / d t=r_{A}$

$$
t=N_{A 0} \int_{0}^{X} \frac{d X}{-r_{A} V}
$$

Chapter 2

2.5 CSTRs in series

- $X_{i}=($ total moles of A reacted up to point $i) /$ (moles of A fed to the first reactor)

Should we use 2 reactors: V_{1} and V_{2} Or just one reactor $\mathrm{V}_{1}+\mathrm{V}_{2}$?

Two CSTRs in series:
Reactor 1: input - output + generation $=0 \mid$ Reactor 2: input - output + generation $=0$
$F_{A 0}-F_{A 1}+r_{A 1} V_{1}=0$
$\mathrm{F}_{\mathrm{A} 1}-\mathrm{F}_{\mathrm{A} 2}+\mathrm{r}_{\mathrm{A} 2} \mathrm{~V}_{2}=0$
But $\mathrm{F}_{\mathrm{A} 1}=\mathrm{F}_{\mathrm{A} 0}-\mathrm{F}_{\mathrm{A} 0} \mathrm{X}_{1}$
As a result
As a result

$$
V_{2}=F_{A 0}\left(1 /-r_{A}\right)\left(X_{2}-X_{1}\right)
$$

Chapter 3*

Rate laws and Stoichiometry

- Basic definitions
- Homogeneous reaction: one phase
- Heterogeneous reaction: more than one phase
- Irreversible reaction: \qquad
- Reversible reaction:
- Unimolecular: involving one atom (or molecule)
- Bimolecular: two atoms (or molecules)
- Termolecular: Three atoms

Chapter 3

3.1.1 Relative rates of reaction

$$
\mathrm{A}+(\mathrm{b} / \mathrm{a}) \mathrm{B}->(\mathrm{c} / \mathrm{a}) \mathrm{C}+(\mathrm{d} / \mathrm{a}) \mathrm{D}
$$

-For every mole of A consumed, c/a moles of C appear.
-Rate of formation of $\mathrm{C}=(\mathrm{c} / \mathrm{a})$ rate of disappearance of A :
$r_{C}=(c / a)\left(-r_{A}\right)=-(c / a) r_{A}$
Also: $r_{C}=(c / d)\left(r_{D}\right)$
In general: $\left(-r_{A} / a\right)=\left(-r_{B} / b\right)=\left(r_{C} / c\right)=\left(r_{D} / d\right)$

3.2 Reaction order and rate law

$$
-r_{A}=k_{A}(T) f\left(C_{A}, C_{B}, \ldots\right)
$$

This is called a kinetic expression or a rate law

Chapter 3

3.2.1 Power law model and elementary rate laws

$$
-r_{A}=k_{A} C_{A}^{\alpha} C_{B}^{\beta}
$$

-The order of a reaction: the power to which the concentrations are raised in the rate law.

- The reaction is α order with respect to reactant A
- The reaction is β order with respect to reactant B
- $N=\alpha+\beta$ is the overall order of the reaction
-Units: $-r_{A}$ (concentration/time)
- k_{A} (vary with the reaction order)

Ex: $-r_{A}=k_{A} C_{A}^{3}$
$\mathrm{k}_{\mathrm{A}}\left(\mathrm{dm}^{3} / \mathrm{mol}^{2}\right)^{2} \mathrm{~s}^{-1}$

Chapter 3

- Elementary reaction involves a single step. The stoichiometric coefficients are identical to the power in the rate law.

$$
\begin{aligned}
& 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \\
& -r_{\mathrm{NO}}=k C_{\mathrm{NO}}^{2} \mathrm{C}_{\mathrm{O}_{2}}
\end{aligned}
$$

3.2.2 Non elementary rate laws

A large number of both homogeneous and heterogeneous reactions do not
follow single reaction lawsPhosgene: carbonyl dichloride

- Homogeneous: $\mathrm{CO}+\mathrm{Cl}_{2}->\mathrm{COCl}_{2} \quad-r_{\mathrm{CO}}=k C_{\mathrm{CO}} C_{C l_{2}}^{3 / 2} \quad$ gas phase
- Heterogeneous: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{H}_{2} \quad-\quad \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{4}$ Methane: M

$$
\text { Toluene: } T
$$

Solid cat
Benzene: B
$-r_{T}=\frac{k P_{H_{2}} P_{T}}{1+K_{B} P_{B}+K_{T} P_{T}}$
K_{B} and K_{T} are absorption rate constants

Chapter 3

3.2.3 Reversible reactions

$a A+b B \rightleftarrows c C+d D$

$K_{c}=\frac{C_{C C_{D e}^{c}}^{c} C_{D}^{d}}{C_{A s}^{c} C_{B e}^{b}}$ Thermodynamic equilibrium (e) relationship
Unit of K_{c} : $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)^{\mathrm{d}+\mathrm{c}-\mathrm{b}-\mathrm{a}}$

$$
2 C_{6} H_{6} \underset{k_{-B}}{\stackrel{k_{B}}{\leftrightarrows}} C_{12} H_{10}+H_{2}
$$

How do we derive rate laws?

benzene diphenyl

$$
2 B \underset{k_{-B}}{\stackrel{k_{B}}{\leftrightarrows}} D+H_{2}
$$

Forward:

$$
-r_{B, f}=k_{B} C_{B}^{2} ; \quad r_{B, f}=-k_{B} C_{B}^{2}
$$

Reverse:

$$
\begin{aligned}
r_{B, r}= & k_{-B} C_{B} C_{H_{2}} \quad \begin{aligned}
& r_{B}=r_{B, \text { net }}=r_{B, t}+r_{B, r} \\
& \text { Concentration equilibrium constant }
\end{aligned} \\
& -r_{B}=k_{B}\left(C_{B}^{2}-\frac{k_{-B}}{k_{B}} C_{D} C_{H_{2}}\right) ;-r_{B}=k_{B}\left(C_{B}^{2}-\frac{C_{D} C_{H_{2}}}{K_{c}}\right) ; K_{c}=\frac{k_{B}}{k_{-B}}
\end{aligned}
$$

Chapter 3

- $\mathrm{Kc} \backslash$ as $\mathrm{T} \nearrow$ for exothermic reaction
- Kc as T \quad for endothermic reaction
- Keep in mind that $\left(-r_{A} / a\right)=\left(-r_{B} / b\right)=\left(r_{C} / c\right)=$
$\left(r_{\mathrm{D}} / \mathrm{d}\right) \quad \frac{r_{D}}{1}=\frac{r_{\mathrm{B}}}{-2}=\frac{k_{\mathrm{B}}}{2}\left(C_{B}^{2}-\frac{C_{D} C_{H_{H}}}{K_{c}}\right) ; k_{D}=\frac{k_{B}}{2}$
This is why we need to define a rate constant in term of particular species
At equilibrium: $\quad K_{c}=\frac{C_{D_{D}} C_{H_{2} e}}{C_{B e}^{2}}$

$$
K_{c}(T)=K_{c}\left(T_{1}\right) \exp \left[\frac{\Delta H_{R X}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T}\right)\right] \quad \Delta \mathrm{H}_{\mathrm{RX}} \text { : heat of reaction }
$$

Chapter 3

3.3 The reaction rate constant

$$
k_{A}(T)=A e^{-E /(R T)}
$$

A: pre-exponential factor or frequency factor
Arrhenius equation

E : activation energy in $\mathrm{J} / \mathrm{mol}$, cal/mol
R: gas constant $=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol} . \mathrm{K}$
T : absolute temperature in K

$$
\begin{aligned}
& \ln k_{A}=\ln A-\frac{E}{R}\left(\frac{1}{T}\right) \\
& k(T)=k\left(T_{0}\right) e^{\frac{E}{R}\left(\frac{1}{T_{0}}-\frac{1}{T}\right)}
\end{aligned}
$$

E : energy to break bonds and overcome repulsion forces between reactants
"reaction coordinate" helps to visualize the process.
Energy distribution of reactant molecules: compare fraction of collisions at two different temperatures. As the temperature increases, more molecules have sufficient energy to react.

[^0]: *Elements of Chemical Reaction Engineering - Fourth Edition
 by H. Scott Fogler, Prentice Hall, 2006

