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Chapter 6*

Types of reactions: series, parallel, complex, 
and independent 

1) Parallel (or competing) reactions: A

2) Series (or consecutive reactions): A B C
3) Complex reactions: parallel + series reactions
4) Independent reactions: A B+C

D E+F

*Elements of Chemical Reaction Engineering – Fourth Edition
by H. Scott Fogler, Prentice Hall, 2006 
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Chapter 6
5) Desired or undesired reactions

D is the desired product; U is undesired.
Also A     D     U
Instantaneous selectivity of D with respect to U

Overall selectivity = FD /FU = (exit molar flow rate of desired 
product)/(exit molar flow rate of undesired product)

For batch systems: Overall selectivity = ND /NU

DA
kD

A U
kU

kD kU

SD/U = rD /rU = (rate of formation of D)/(rate of formation of U)
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6) Instantaneous reaction yield: YD = rD /-rA

Overall reaction yield (batch) = ND /(NA0 -NA ) 
Overall reaction yield (flow) = FD /(FA0 -FA ) 

6.2 Parallel Reactions
Undesired products (U) can be minimized through 

selection of the reactor types and conditions. 
A       D
A       U

kD
kU

The rate laws: rD = kD CA
α1; rU = kU CA

α2
1 2

A D U D A U Ar r r k C k Cα α− = + = +
α1 and α2 are positive reaction orders Goal: we want rD to be high with

respect to rU
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• Selectivity parameter:

6.2.1 Maximizing the desired product for one reactant

Maximize SD/U

Case 1: α1 > α2
Let a = α1 - α2, 
For gas phase: high pressure; for liquid phase: minimum diluent
-- A batch or plug flow reactor should be used
--- In a CSTR, the concentration of the reactant is at its lowest value

Case 2: α2 > α1
Let b = α2 – α1,
SD/U is large if A is kept as low as possible
--- A CSTR should be used; dilution of feed

( )/ / a
D U D U AS k k C=

( ) 1 2
/ / /D U D U D U AS r r k k Cα α−= =

( )/ / b
D U D U AS k k C=

Note: Temperature also has an effect on selectivity Page 312, Example 6-2
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6.2.2 Reactor Selection and Operating Conditions

Rate selectivity parameter: 

• Different reactors and schemes are shown in Fig. 6.3

• Tubular or batch if we need to keep conc. high. CSTR if 
we need to keep conc. Low.
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+ ⎯⎯→

+ ⎯⎯→
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1 2;D A B U A Br k C C r k C Cα β α β= =

1 2 1 21
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D
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6.3 Maximizing the desired product in series reactions

To optimize B, one need to pay attention to how fast both B 
and C are being formed.

6.4 Algorithm for solution of complex reactions
Mathematical software should be used to solve most of 

these problems

6.4.1 Mole balances: Mole balances for multiple reactions 
are summarized in Table 6-1, page 327.

1 2k kA B C⎯⎯→ ⎯⎯→
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6.4.2 Net Rates of Reaction
We need to write the net rate of formation for 

each species. We have q reactions:

rA = r1A + r2A + r3A +…+rqA =

1

2

3

3
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∑
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r
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q
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i

r r
=

= ∑

6.4.2-B Rate laws ( ),, ,..., ,...,ij ij i A B j nr k f C C C C=
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6.4.2-C Stoichiometry: Relative Rates of 
Reaction

aA+bB cC+dD
(-rA /a)=(-rB /b)=(rC /c)=(rD /d)
• Reaction (1):
(-r1A /1)=(-r1B /1)=(r1C /3)=(r1D /1)

As a result:

1 3AkA B C D+ ⎯⎯→ + 1 1A A A Br k C C= −

1 1B A A Br k C C= −

The same calculations can be done for reactions 2 and 3.
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6.4.2-D Combine individual rate laws to find 

the net rate

6.4.3 For gas phase, we have to take changes 
in volumetric flow rate (v) into account and 
use appropriate equations.
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r r r k C C k C C
r r k C C

r r r k C C k C C
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Chapter 7*

Reaction mechanisms, pathways, 
bioreactions, and bioreactors

• An active intermediate (A*) is a high- 
energy molecule that reacts virtually as 
fast as it is formed: A+M A*+M

7.1.1. Pseudo-steady state hypothesis: 
rA* =0: Net rate of formation is zero

*Elements of Chemical Reaction Engineering – Fourth Edition
by H. Scott Fogler, Prentice Hall, 2006
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Ex:

* * * * *1 2 31 2 3
; ;A M MA A A A A

r k C C r k C C r k C= = − = −
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k
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Activation A M A M
Deactivation A M A M

Decomposition A P

+ ⎯⎯→ +

+ ⎯⎯→ +

⎯⎯→

Rate of product formation: *3p A
r k C=

Since CM is constant (i.e., inert)

p Ar kC=
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M
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k k Ck
k C k

=
+
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Chain reactions
1) Initiation: formation of an active 

intermediate
2) Propagation or chain transfer: interaction 

of an active intermediate with the 
reactant or product to produce another 
active intermediate

3) Termination: deactivation of the active 
intermediate to form products
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Enzyme: high-molecular-weight protein that accelerates a biological reaction: 

7.2.1 Enzyme-substrate complex

Two models for enzyme-substrate interactions:
1) Lock and key model: topographical, structural compatibility between 

enzyme and substrate
2) Induced model: enzyme and substrate molecules are distorted

7.2.2 Mechanisms

1) Complex formation
2) Decomposition of complex
3) Product formation

.S E E S E P+ ⇔ → +
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7.2.3 Michaelis-Menten Equation

Since water is in excess and 

Kcat (1/time) is the Turnover number = number of substrate molecules
converted to product in  a given time on a single-enzyme molecule when the
enzyme is saturated with the substrate

KM (mole/volume): Michaelis constant = affinity constant  = measure of the 
attraction of the enzyme for the substrate.

( )3catk k W=

2

1

cat
M

k kK
k
+

=

( )( )
( )
cat t

S
M

k E S
r

S k
− =

+

called Michaelis-Menten equation



Chapter 7

• Vmax = kcat [Et ]
Maximum rate of reaction for a given total enzyme 

concentration

• Evaluation of Michaelis-Menten parameters: 
Vmax and KM :

( )max
S

M

V S
r

k S
− =

+
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( ) ( )
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max max

max max
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S
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− − = − ⎜ ⎟⎜ ⎟

⎝ ⎠



Chapter 7

• The product-enzyme complex:

• Briggs-Haldane rate law:
• 7.2.4 Batch reactor calculations for 

enzyme reactions

.E S E S P E+ ⇔ ⇔ +
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∫

• Effect of temperature is the result of arrhenius equation and 
enzyme de-activation
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