
Time Response

Chapter Learning Outcomes

After completing this chapter the student will be able to:

• Use poles and zeros of transfer functions to determine the time response of a

control system (Sections 4.1–4.2)

• Describe quantitatively the transient response of first-order systems (Section 4.3)

• Write the general response of second-order systems given the pole location

(Section 4.4)

• Find the damping ratio and natural frequency of a second-order system (Section 4.5)

• Find the settling time, peak time, percent overshoot, and rise time for an

underdamped second-order system (Section 4.6)

• Approximate higher-order systems and systems with zeros as first- or second-

order systems (Sections 4.7–4.8)

• Describe the effects of nonlinearities on the system time response (Section 4.9)

• Find the time response from the state-space representation (Sections 4.10–4.11)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case

studies as follows:

• Given the antenna azimuth position control system shown on the front

endpapers, you will be able to (1) predict, by inspection, the form of the

open-loop angular velocity response of the load to a step voltage input to
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the power amplifier; (2) describe quantitatively the transient response
of the open-loop system; (3) derive the expression for the open-loop

angular velocity output for a step voltage input; (4) obtain the open-loop

state-space representation; (5) plot the open-loop velocity step response

using a computer simulation.

• Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch control system shown on the back endpapers, you will be able to

predict, find, and plot the response of the vehicle dynamics to a step input

command. Further, you will be able to evaluate the effect of system zeros and

higher-order poles on the response. You also will be able to evaluate the roll

response of a ship at sea.

4.1 Introduction

In Chapter 2, we saw how transfer functions can represent linear, time-invariant systems.

In Chapter 3, systems were represented directly in the time domain via the state and output

equations. After the engineer obtains a mathematical representation of a subsystem,

the subsystem is analyzed for its transient and steady-state responses to see if these

characteristics yield the desired behavior. This chapter is devoted to the analysis of system

transient response.

It may appear more logical to continue with Chapter 5, which covers the modeling

of closed-loop systems, rather than to break the modeling sequence with the analysis

presented here in Chapter 4. However, the student should not continue too far into system

representation without knowing the application for the effort expended. Thus, this chapter

demonstrates applications of the system representation by evaluating the transient

response from the system model. Logically, this approach is not far from reality, since

the engineer may indeed want to evaluate the response of a subsystem prior to inserting it

into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin

analyzing our models to find the step response of first- and second-order systems. The order

refers to the order of the equivalent differential equation representing the system—the

order of the denominator of the transfer function after cancellation of common factors

in the numerator or the number of simultaneous first-order equations required for the

state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the forced response and the

natural response.1 Although many techniques, such as solving a differential equation or

taking the inverse Laplace transform, enable us to evaluate this output response, these

techniques are laborious and time-consuming. Productivity is aided by analysis and design

techniques that yield results in a minimum of time. If the technique is so rapid that we feel

we derive the desired result by inspection, we sometimes use the attribute qualitative to

describe the method. The use of poles and zeros and their relationship to the time response of

a system is such a technique. Learning this relationship gives us a qualitative “handle” on

problems. The concept of poles and zeros, fundamental to the analysis and design of control

1The forced response is also called the steady-state response or particular solution. The natural response is also

called the homogeneous solution.
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systems, simplifies the evaluation of a system’s response. The reader is encouraged to

master the concepts of poles and zeros and their application to problems throughout this

book. Let us begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable, s, that

cause the transfer function to become infinite or (2) any roots of the denominator of the

transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the definition.

For example, the roots of the characteristic polynomial in the denominator are values of

s that make the transfer function infinite, so they are thus poles. However, if a factor of

the denominator can be canceled by the same factor in the numerator, the root of this

factor no longer causes the transfer function to become infinite. In control systems, we

often refer to the root of the canceled factor in the denominator as a pole even though

the transfer function will not be infinite at this value. Hence, we include part (2) of the

definition.

Zeros of a Transfer Function
The zeros of a transfer function are (1) the values of the Laplace transform variable, s, that

cause the transfer function to become zero, or (2) any roots of the numerator of the transfer

function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this definition. For

example, the roots of the numerator are values of s that make the transfer function zero and

are thus zeros. However, if a factor of the numerator can be canceled by the same factor in

the denominator, the root of this factor no longer causes the transfer function to become

zero. In control systems, we often refer to the root of the canceled factor in the numerator as

a zero even though the transfer function will not be zero at this value. Hence, we include part

(2) of the definition.

Poles and Zeros of a First-Order System: An Example
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s � �5, and a zero exists at
�2. These values are plotted on the complex s-plane in Figure 4.1(b), using an× for the pole

and a ○ for the zero. To show the properties of the poles and zeros, let us find the unit

step response of the system. Multiplying the transfer function of Figure 4.1(a) by a step

function yields

C�s� � �s � 2�
s�s � 5� � A

s
� B

s � 5
� 2=5

s
� 3=5

s � 5
�4.1�

where

A � �s � 2�
�s � 5�

 

 

 

 

s®0

� 2

5

B � �s � 2�
s

 

 

 

 

s®�5
� 3

5

Thus,

c�t� � 2

5
� 3

5
e�5t �4.2�
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From the development summarized in Figure 4.1(c), we draw the following

conclusions:

1. A pole of the input function generates the form of the forced response (that is, the pole at

the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (that is, the pole

at �5 generated e�5t).

3. A pole on the real axis generates an exponential response of the form e�αt, where �α is

the pole location on the real axis. Thus, the farther to the left a pole is on the negative real

axis, the faster the exponential transient response will decay to zero (again, the pole at�5
generated e�5t; see Figure 4.2 for the general case).
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FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; c. evolution of a

system response. Follow blue arrows to see the evolution of the response component generated by the

pole or zero.
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FIGURE 4.2 Effect of a real-axis pole upon transient response.
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4. The zeros and poles generate the amplitudes for both the forced and natural responses

(this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles to obtain

the form of the system response. We will learn to write the form of the response by

inspection. Each pole of the system transfer function that is on the real axis generates an

exponential response that is a component of the natural response. The input pole generates

the forced response.

Example 4.1

Evaluating Response Using PolesEvaluating Response Using Poles

PROBLEM: Given the system of Figure 4.3, write the output, c(t), in

general terms. Specify the forced and natural parts of the solution.

SOLUTION: By inspection, each system pole generates an exponential

as part of the natural response. The input’s pole generates the forced

response. Thus,

C s� � � K1

s

Forced
response

� K2

s � 2
� K3

s � 4
� K4

s � 5

Natural
response

�4.3�

Taking the inverse Laplace transform, we get

c�t� � K1

Forced
response

�K2e
�2t � K3e

�4t � K4e
�5t

Natural
response

�4.4�

(s + 2)(s + 4)(s + 5)

C(s)
1
sR(s) = (s + 3)

FIGURE 4.3 System for Example 4.1

Skill-Assessment Exercise 4.1

PROBLEM: A system has a transfer function, G�s� � 10�s � 4��s � 6�
�s � 1��s � 7��s � 8��s � 10�.

Write, by inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER: c�t� � A � Be�t � Ce�7t � De�8t � Ee�10t

In this section, we learned that poles determine the nature of the time response:

Poles of the input function determine the form of the forced response, and poles

of the transfer function determine the form of the natural response. Zeros and poles

of the input or transfer function contribute to the amplitudes of the component

parts of the total response. Finally, poles on the real axis generate exponential

responses.
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4.3 First-Order Systems

We now discuss first-order systems without zeros to define a performance

specification for such a system. A first-order system without zeros can be

described by the transfer function shown in Figure 4.4(a). If the input is a

unit step, where R�s� � 1=s, the Laplace transform of the step response is

C(s), where

C�s� � R�s�G�s� � a

s�s � a� �4.5�

Taking the inverse transform, the step response is given by

c�t� � cf �t� � cn�t� � 1 � e�at �4.6�

where the input pole at the origin generated the forced response cf �t� � 1, and the system

pole at �a, as shown in Figure 4.4(b), generated the natural response cn�t� � �e�at .
Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter a, the only parameter needed to describe

the transient response. When t � 1=a,

e�at j t�1=a � e�1 � 0:37 �4.7�
or

c�t�j t�1=a � 1 � e�at j t�1=a � 1 � 0:37 � 0:63 �4.8�

We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance

specifications.

Time Constant
We call 1/a the time constant of the response. From Eq. (4.7), the time constant can be

described as the time for e�at to decay to 37% of its initial value. Alternately, from Eq. (4.8)

the time constant is the time it takes for the step response to rise to 63% of its final value

(see Figure 4.5).

aR(s)  

(a)

jω

–a

(b)

s + a
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C(s)

s-plane

σ

FIGURE 4.4 a. First-order system; b. pole plot
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Put theory into practice and find

a first-order transfer function

representing the Quanser

Rotary Servo. Then validate the

model by simulating it in

LabVIEW. Such a servo motor

is used in mechatronic gadgets

such as cameras.

Virtual experiments are found

on Learning Space.
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The reciprocal of the time constant has the units (1/seconds), or frequency. Thus, we

can call the parameter a the exponential frequency. Since the derivative of e�at is �a when

t � 0, a is the initial rate of change of the exponential at t � 0. Thus, the time constant can be

considered a transient response specification for a first-order system, since it is related to the

speed at which the system responds to a step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)). Since

the pole of the transfer function is at �a, we can say the pole is located at the reciprocal of

the time constant, and the farther the pole from the imaginary axis, the faster the transient

response.

Let us look at other transient response specifications, such as rise time, T r, and settling

time, T s, as shown in Figure 4.5.

Rise Time,Tr
Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final value. Rise

time is found by solving Eq. (4.6) for the difference in time at c�t� � 0:9 and c�t� � 0:1.
Hence,

Tr � 2:31

a
� 0:11

a
� 2:2

a
�4.9�

Settling Time,Ts
Settling time is defined as the time for the response to reach, and stay within, 2% of its

final value.2 Letting c�t� � 0:98 in Eq. (4.6) and solving for time, t, we find the settling

time to be

T s � 4

a
�4.10�

First-Order Transfer Functions via Testing
Often it is not possible or practical to obtain a system’s transfer function analytically.

Perhaps the system is closed, and the component parts are not easily identifiable. Since the

transfer function is a representation of the system from input to output, the system’s step

response can lead to a representation even though the inner construction is not known. With

a step input, we can measure the time constant and the steady-state value, from which the

transfer function can be calculated.

Consider a simple first-order system, G�s� � K=�s � a�, whose step response is

C�s� � K

s�s � a� � K=a

s
� K=a

�s � a� �4.11�

If we can identify K and a from laboratory testing, we can obtain the transfer function of the

system.

For example, assume the unit step response given in Figure 4.6. We determine that it

has the first-order characteristics we have seen thus far, such as no overshoot and nonzero

initial slope. From the response, we measure the time constant, that is, the time for the

amplitude to reach 63% of its final value. Since the final value is about 0.72, the time

constant is evaluated where the curve reaches 0:63 � 0:72 � 0:45, or about 0.13 second.

Hence, a � 1=0:13 � 7:7.

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for example 5%, also can be used.

We will use settling time throughout the book to mean 2% settling time.
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To find K, we realize from Eq. (4.11) that the forced response reaches a steady-state

value of K=a � 0:72. Substituting the value of a, we find K � 5:54. Thus, the transfer

function for the system is G�s� � 5:54=�s � 7:7�. It is interesting to note that the response of
Figure 4.6 was generated using the transfer function G�s� � 5=�s � 7�.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-order

systems. Compared to the simplicity of a first-order system, a second-order system exhibits

a wide range of responses that must be analyzed and described. Whereas varying a

first-order system’s parameter simply changes the speed of the response, changes in the

parameters of a second-order system can change the form of the response. For example, a

second-order system can display characteristics much like a first-order system, or, depending

on component values, display damped or pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our

discussion in the next section, we take a look at numerical examples of the second-order

system responses shown in Figure 4.7. All examples are derived from Figure 4.7(a), the

general case, which has two finite poles and no zeros. The term in the numerator is simply a

scale or input multiplying factor that can take on any value without affecting the form of the

derived results. By assigning appropriate values to parameters a and b, we can show all

possible second-order transient responses. The unit step response then can be found using
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FIGURE 4.6 Laboratory results of a system step response test

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, G�s� � 50

s � 50
. Find the time constant, Tc,

settling time, Ts, and rise time, T r.

ANSWER: Tc � 0:02 s; T s � 0:08 s; and T r � 0:044 s:

The complete solution is located at www.wiley.com/college/nise.
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C�s� � R�s�G�s�, where R�s� � 1=s, followed by a partial-fraction expansion and the inverse
Laplace transform. Details are left as an end-of-chapter problem, for which you may want to

review Section 2.2.

We now explain each response and show how we can use the poles to determine the

nature of the response without going through the procedure of a partial-fraction expansion

followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)
For this response,

C�s� � 9

s�s2 � 9s � 9� � 9

s�s � 7:854��s � 1:146� �4.12�

This function has a pole at the origin that comes from the unit step input and two real poles

that come from the system. The input pole at the origin generates the constant forced

response; each of the two system poles on the real axis generates an exponential natural

response whose exponential frequency is equal to the pole location. Hence, the output

initially could have been written as c�t� � K1 � K2e
�7:854t � K3e

�1:146t. This response,

b

s2 + as + b
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t
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shown in Figure 4.7(b), is called overdamped.3 We see that the poles tell us the form of the

response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)
For this response,

C�s� � 9

s�s2 � 2s � 9� �4.13�

This function has a pole at the origin that comes from the unit step input and two complex poles

that come from the system. We now compare the response of the second-order system to the

poles that generated it. First wewill compare the pole location to the time function, and thenwe

will compare the pole location to the plot. FromFigure 4.7(c), the poles that generate the natural

response are at s � �1� j
ffiffiffi

8
p

. Comparing these values to c(t) in the samefigure,we see that the

real part of the polematches the exponential decay frequencyof the sinusoid’s amplitude,while

the imaginary part of the pole matches the frequency of the sinusoidal oscillation.

Let us now compare the pole location to the plot. Figure 4.8

shows a general, damped sinusoidal response for a second-order

system. The transient response consists of an exponentially decaying

amplitudegeneratedbytherealpartof thesystempole timesasinusoidal

waveformgenerated by the imaginary part of the systempole. The time

constant of the exponential decay is equal to the reciprocal of the real

part of the system pole. The value of the imaginary part is the actual

frequency of the sinusoid, as depicted in Figure 4.8. This sinusoidal

frequency is given the name damped frequency of oscillation, ωd.

Finally, the steady-state response (unit step) was generated by the

input pole located at the origin. We call the type of response shown in

Figure 4.8 an underdamped response, one which approaches a steady-

state value via a transient response that is a damped oscillation.

The following example demonstrates how a knowledge of the

relationship between the pole location and the transient response

can lead rapidly to the response form without calculating the inverse

Laplace transform.

c(t)

Exponential decay generated by 
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

t

FIGURE 4.8 Second-order step response components

generated by complex poles

Example 4.2

Form of Underdamped Response Using PolesForm of Underdamped Response Using Poles

PROBLEM: By inspection, write the form of the step response of the system in Figure 4.9.

SOLUTION: First we determine that the form of the forced response is a step.

Next we find the form of the natural response. Factoring the denominator of the

transfer function in Figure 4.9, we find the poles to be s � �5� j13:23. The real
part, �5, is the exponential frequency for the damping. It is also the reciprocal

of the time constant of the decay of the oscillations. The imaginary part, 13.23,

is the radian frequency for the sinusoidal oscillations. Using our previous discussion

and Figure 4.7(c) as a guide, we obtain c�t� � K1 � e�5t �K2 cos 13:23t �K3 sin 13:23t� �
K1 � K4e

�5t�cos 13:23t � ϕ�, where ϕ � tan�1K3=K2; K4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
2 � K2

3

p
, and c(t) is a

constant plus an exponentially damped sinusoid.

200
C(s)

s2 + 10s + 200

1
s

R(s) = 

FIGURE 4.9 System for

Example 4.2

3 So named because overdamped refers to a large amount of energy absorption in the system, which inhibits the

transient response from overshooting and oscillating about the steady-state value for a step input. As the energy

absorption is reduced, an overdamped system will become underdamped and exhibit overshoot.
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We will revisit the second-order underdamped response in Sections 4.5 and 4.6,

where we generalize the discussion and derive some results that relate the pole position to

other parameters of the response.

Undamped Response, Figure 4.7(d)
For this response,

C�s� � 9

s�s2 � 9� �4.14�

This function has a pole at the origin that comes from the unit step input and two imaginary

poles that come from the system. The input pole at the origin generates the constant forced

response, and the two system poles on the imaginary axis at � j3 generate a sinusoidal

natural response whose frequency is equal to the location of the imaginary poles. Hence, the

output can be estimated as c�t� � K1 � K4 cos�3t � ϕ�. This type of response, shown in

Figure 4.7(d), is called undamped. Note that the absence of a real part in the pole pair

corresponds to an exponential that does not decay. Mathematically, the exponential is

e�0t � 1.

Critically Damped Response, Figure 4.7 (e)
For this response,

C�s� � 9

s�s2 � 6s � 9� � 9

s�s � 3�2 �4.15�

This function has a pole at the origin that comes from the unit step input and two multiple

real poles that come from the system. The input pole at the origin generates the constant

forced response, and the two poles on the real axis at �3 generate a natural response

consisting of an exponential and an exponential multiplied by time, where the exponential

frequency is equal to the location of the real poles. Hence, the output can be estimated as

c�t� � K1 � K2e
�3t � K3te

�3t. This type of response, shown in Figure 4.7(e), is called

critically damped. Critically damped responses are the fastest possible without the over-

shoot that is characteristic of the underdamped response.

We now summarize our observations. In this section we defined the following natural

responses and found their characteristics:

1. Overdamped responses

Poles: Two real at �σ1; �σ2
Natural response: Two exponentials with time constants equal to the reciprocal of the

pole locations, or

c�t� � K1e
�σ1t � K2e

�σ2t

2. Underdamped responses

Poles: Two complex at �σd � jωd

Natural response: Damped sinusoid with an exponential envelope whose time

constant is equal to the reciprocal of the pole’s real part. The radian frequency of

the sinusoid, the damped frequency of oscillation, is equal to the imaginary part of the

poles, or

c�t� � Ae�σd t cos�ωdt � ϕ�

4.4 Second-Order Systems: Introduction 167



3. Undamped responses

Poles: Two imaginary at � jω1

Natural response: Undamped sinusoid with radian frequency equal to the imaginary part

of the poles, or

c�t� � A cos�ω1t � ϕ�
4. Critically damped responses

Poles: Two real at �σ1
Natural response: One term is an exponential whose time constant is equal to the

reciprocal of the pole location. Another term is the product of time, t, and an exponential

with time constant equal to the reciprocal of the pole location, or

c�t� � K1e
�σ1t � K2te

�σ1t

The step responses for the four cases of damping discussed in this section are

superimposed in Figure 4.10. Notice that the critically damped case is the division between

the overdamped cases and the underdamped cases and is the fastest response without

overshoot.
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FIGURE 4.10 Step responses for second-order system damping cases

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the

general form of the step response:

a. G�s� � 400

s2 � 12s � 400

b. G�s� � 900

s2 � 90s � 900

c. G�s� � 225

s2 � 30s � 225

d. G�s� � 625

s2 � 625
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In the next section, we will formalize and generalize our discussion of second-

order responses and define two specifications used for the analysis and design of

second-order systems. In Section 4.6, we will focus on the underdamped case and

derive some specifications unique to this response that we will use later for analysis and

design.

4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses, we

generalize the discussion and establish quantitative specifications defined in such a way that

the response of a second-order system can be described to a designer without the need for

sketching the response. In this section, we define two physically meaningful specifications

for second-order systems. These quantities can be used to describe the characteristics of the

second-order transient response just as time constants describe the first-order system

response. The two quantities are called natural frequency and damping ratio. Let us

formally define them.

Natural Frequency, ωn

The natural frequency of a second-order system is the frequency of oscillation of the system

without damping. For example, the frequency of oscillation of a series RLC circuit with the

resistance shorted would be the natural frequency.

Damping Ratio, ζ
Before we state our next definition, some explanation is in order. We have already seen

that a second-order system’s underdamped step response is characterized by damped

oscillations. Our definition is derived from the need to quantitatively describe this

damped oscillation regardless of the time scale. Thus, a system whose transient

response goes through three cycles in a millisecond before reaching the steady state

would have the same measure as a system that went through three cycles in a

millennium before reaching the steady state. For example, the underdamped curve

in Figure 4.10 has an associated measure that defines its shape. This measure

remains the same even if we change the time base from seconds to microseconds or

to millennia.

A viable definition for this quantity is one that compares the exponential decay

frequency of the envelope to the natural frequency. This ratio is constant regardless of the

time scale of the response. Also, the reciprocal, which is proportional to the ratio of

the natural period to the exponential time constant, remains the same regardless of the

time base.

ANSWERS:

a. c�t� � A � Be�6t cos�19:08t � ϕ�
b. c�t� � A � Be�78:54t � Ce�11:46t

c. c�t� � A � Be�15t � Cte�15t

d. c�t� � A � B cos�25t � ϕ�

The complete solution is located at www.wiley.com/college/nise.
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We define the damping ratio, ζ, to be

ζ � Exponential decay frequency

Natural frequency �rad=second� � 1

2π

Natural period �seconds�
Exponential time constant

Let us now revise our description of the second-order system to reflect the new

definitions. The general second-order system shown in Figure 4.7(a) can be transformed to

show the quantities ζ and ωn. Consider the general system

G�s� � b

s2 � as � b
�4.16�

Without damping, the poles would be on the jω-axis, and the response would be an

undamped sinusoid. For the poles to be purely imaginary, a � 0. Hence,

G�s� � b

s2 � b
�4.17�

By definition, the natural frequency, ωn, is the frequency of oscillation of this system. Since

the poles of this system are on the jω-axis at � j
ffiffiffi

b
p

,

ωn �
ffiffiffi

b
p

�4.18�

Hence,

b � ω2
n �4.19�

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the

complex poles have a real part, σ, equal to �a=2. The magnitude of this value is then the

exponential decay frequency described in Section 4.4. Hence,

ζ � Exponential decay frequency

Natural frequency �rad=second� � jσ j
ωn

� a=2

ωn

�4.20�

from which

a � 2ζωn �4.21�

Our general second-order transfer function finally looks like this:

G�s� � ω2
n

s2 � 2ζωns � ω2
n

�4.22�

In the following example we find numerical values for ζ and ωn by matching the

transfer function to Eq. (4.22).
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Now that we have defined ζ and ωn, let us relate these quantities to the pole location.

Solving for the poles of the transfer function in Eq. (4.22) yields

s1; 2 � �ζωn �ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 � 1

q

�4.24�

From Eq. (4.24) we see that the various cases of second-order response are a function of ζ;

they are summarized in Figure 4.11.4

Example 4.3

Finding ζ and ωn For a Second-Order SystemFinding ζ and ωn For a Second-Order System

PROBLEM: Given the transfer function of Eq. (4.23), find ζ and ωn.

G�s� � 36

s2 � 4:2s � 36
�4.23�

SOLUTION: Comparing Eq. (4.23) to (4.22), ω2
n � 36, from which ωn � 6. Also,

2ζωn � 4:2. Substituting the value of ωn; ζ � 0:35.

Poles Step response

FIGURE 4.11 Second-order

response as a function of

damping ratio

4The student should verify Figure 4.11 as an exercise.
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In the following example we find the numerical value of ζ and determine the nature

of the transient response.

This section defined two specifications, or parameters, of second-order systems:

natural frequency,ωn, and damping ratio, ζ. We saw that the nature of the response obtained

was related to the value of ζ. Variations of damping ratio alone yield the complete range of

overdamped, critically damped, underdamped, and undamped responses.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do the

following: (1) Find the values of ζ and ωn; (2) characterize the nature of the response.

ANSWERS:

a. ζ � 0:3; ωn � 20; system is underdamped

b. ζ � 1:5; ωn � 30; system is overdamped

c. ζ � 1; ωn � 15; system is critically damped

d. ζ � 0; ωn � 25; system is undamped

The complete solution is located at www.wiley.com/college/nise.

Example 4.4

Characterizing Response from theValue of ζCharacterizing Response from theValue of ζ

PROBLEM: For each of the systems shown in Figure 4.12, find the value of ζ and report

the kind of response expected.

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16) and

(4.22). Since a � 2ζωn and ωn �
ffiffiffi

b
p

,

ζ � a

2
ffiffiffi

b
p �4.25�

Using the values of a and b from each of the systems of Figure 4.12, we find

ζ � 1:155 for system (a), which is thus overdamped, since ζ > 1; ζ � 1 for system (b),

which is thus critically damped; and ζ � 0:894 for system (c), which is thus underdamped,

since ζ < 1.

12

(a)

16

(b)

20 C(s)

(c)

s2 + 8s + 12

C(s)C(s)

R(s)

R(s)R(s)

s2 + 8s + 16

s2 + 8s + 20

FIGURE 4.12 Systems for Example 4.4
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4.6 Underdamped Second-Order Systems

Now that we have generalized the second-order transfer function in terms of ζ and ωn, let us

analyze the step response of an underdamped second-order system. Not only will this

response be found in terms of ζ and ωn, but more specifications indigenous to the

underdamped case will be defined. The underdamped second-order system, a common

model for physical problems, displays unique behavior that must be itemized; a detailed

description of the underdamped response is necessary for both analysis and design. Our first

objective is to define transient specifications associated with underdamped responses. Next

we relate these specifications to the pole location, drawing an association between pole

location and the form of the underdamped second-order response. Finally, we tie the pole

location to system parameters, thus closing the loop: Desired response generates required

system components.

Let us begin by finding the step response for the general second-order system of

Eq. (4.22). The transform of the response, C(s), is the transform of the input times the

transfer function, or

C�s� � ω2
n

s�s2 � 2ζωns � ω2
n�

� K1

s
� K2s � K3

s2 � 2ζωns � ω2
n

�4.26�

where it is assumed that ζ < 1 (the underdamped case). Expanding by partial fractions,

using the methods described in Section 2.2, Case 3, yields

C�s� � 1

s
�

�s � ζωn� � ζ
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
q

�s � ζωn�2 � ω2
n�1 � ζ2� �4.27�

Taking the inverse Laplace transform, which is left as an exercise for the student,

produces

c�t� � 1 � e�ζωnt cosωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p

t � ζ
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p sinωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
q

t

 !

� 1 � 1
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p e�ζωnt cos�ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
q

t � ϕ�
�4.28�

where ϕ � tan�1�ζ=
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p

�.
A plot of this response appears in Figure 4.13 for various values of ζ, plotted along a

time axis normalized to the natural frequency. We now see the relationship between the

value of ζ and the type of response obtained: The lower the value of ζ, the more oscillatory

the response. The natural frequency is a time-axis scale factor and does not affect the nature

of the response other than to scale it in time.

We have defined two parameters associated with second-order systems, ζ and ωn.

Other parameters associated with the underdamped response are rise time, peak time,

percent overshoot, and settling time. These specifications are defined as follows (see also

Figure 4.14):

1. Rise time, T r. The time required for the waveform to go from 0.1 of the final value to 0.9

of the final value.

2. Peak time, TP. The time required to reach the first, or maximum, peak.

4.6 Underdamped Second-Order Systems 173



3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-state, or

final, value at the peak time, expressed as a percentage of the steady-state value.

4. Settling time, Ts. The time required for the transient’s damped oscillations to reach and

stay within � 2% of the steady-state value.

Notice that the definitions for settling time and rise time are basically the same as the

definitions for the first-order response. All definitions are also valid for systems of order

higher than 2, although analytical expressions for these parameters cannot be found unless

the response of the higher-order system can be approximated as a second-order system,

which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the

transient response. This information can help a designer determine if the speed and

the nature of the response do or do not degrade the performance of the system. For

example, the speed of an entire computer system depends on the time it takes for a hard

drive head to reach steady state and read data; passenger comfort depends in part on the
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FIGURE 4.13 Second-order underdamped responses for damping ratio values
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suspension system of a car and the number of oscillations it goes through after hitting

a bump.

We now evaluate Tp, %OS, and T s as functions of ζ and ωn. Later in this chapter we

relate these specifications to the location of the system poles. A precise analytical expression

for rise time cannot be obtained; thus, we present a plot and a table showing the relationship

between ζ and rise time.

Evaluation of Tp
Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing after t � 0.

This task is simplified by “differentiating” in the frequency domain by using Item 7 of

Table 2.2. Assuming zero initial conditions and using Eq. (4.26), we get

ℒ� _c�t�� � sC�s� � ω2
n

s2 � 2ζωns � ω2
n

�4.29�

Completing squares in the denominator, we have

ℒ� _c�t�� � ω2
n

�s � ζωn�2 � ω2
n�1 � ζ2� �

ωn
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
q

�s � ζωn�2 � ω2
n�1 � ζ2� �4.30�

Therefore,

_c�t� � ωn
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p e�ζωntsinωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
q

t �4.31�

Setting the derivative equal to zero yields

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
q

t � nπ �4.32�
or

t � nπ

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p �4.33�

Each value of n yields the time for local maxima or minima. Letting n � 0 yields t � 0, the

first point on the curve in Figure 4.14 that has zero slope. The first peak, which occurs at the

peak time, Tp, is found by letting n � 1 in Eq. (4.33):

Tp � π

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p �4.34�

Evaluation of %OS
From Figure 4.14 the percent overshoot, %OS, is given by

%OS � cmax � cfinal

cfinal
� 100 �4.35�

The term cmax is found by evaluating c(t) at the peak time, c(Tp). Using Eq. (4.34) for Tp and

substituting into Eq. (4.28) yields

cmax � c �Tp� � 1 � e��ζπ=
ffiffiffiffiffiffiffiffi

1�ζ2
p

� cos π � ζ
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p sin π

 !

� 1 � e��ζπ=
ffiffiffiffiffiffiffiffi

1�ζ2
p

�
�4.36�

For the unit step used for Eq. (4.28),

cfinal � 1 �4.37�
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Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

%OS � e��ζπ=
ffiffiffiffiffiffiffiffi

1�ζ2
p

� � 100 �4.38�

Notice that the percent overshoot is a function only of the damping ratio, ζ.

Whereas Eq. (4.38) allows one to find%OS given ζ, the inverse of the equation allows

one to solve for ζ given %OS. The inverse is given by

ζ � �ln �%OS=100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 � ln2�%OS=100�
q �4.39�

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or,

equivalently, (4.39)) is plotted in Figure 4.15.

Evaluation of Ts
In order to find the settling time, we must find the time for which c(t) in Eq. (4.28) reaches

and stays within � 2% of the steady-state value, cfinal. Using our definition, the settling time

is the time it takes for the amplitude of the decaying sinusoid in Eq. (4.28) to reach 0.02, or

e�ζωnt
1
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p � 0:02 �4.40�

This equation is a conservative estimate, since we are assuming that

cos�ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p

t � ϕ� � 1 at the settling time. Solving Eq. (4.40) for t, the settling time is

Ts � �ln�0:02
ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p

�
ζωn

�4.41�

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as ζ varies from

0 to 0.9. Let us agree on an approximation for the settling time that will be used for all values

of ζ; let it be

Ts � 4

ζωn

�4.42�

Evaluation of Tr
A precise analytical relationship between rise time and damping ratio, ζ, cannot be found.

However, using a computer and Eq. (4.28), the rise time can be found.We first designateωnt
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as the normalized time variable and select a value for ζ. Using the computer, we solve for the

values of ωnt that yield c�t� � 0:9 and c�t� � 0:1. Subtracting the two values of ωnt yields

the normalized rise time, ωnTr, for that value of ζ. Continuing in like fashion with other

values of ζ, we obtain the results plotted in Figure 4.16.5 Let us look at an example.
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FIGURE 4.16 Normalized rise time versus damping ratio for a second-order underdamped response

Example 4.5

Finding Tp , %OS,Ts , and Tr from a Transfer FunctionFinding Tp , %OS,Ts , and Tr from a Transfer Function

PROBLEM: Given the transfer function

G�s� � 100

s2 � 15s � 100
�4.43�

find Tp, %OS, T s, and Tr.

SOLUTION: ωn and ζ are calculated as 10 and 0.75, respectively. Now substitute

ζ and ωn into Eqs. (4.34), (4.38), and (4.42) and find, respectively, that Tp � 0:475
second, %OS � 2:838, and T s � 0:533 second. Using the table in Figure 4.16, the

normalized rise time is approximately 2.3 seconds. Dividing by ωn yields T r � 0:23
second. This problem demonstrates that we can find Tp, %OS, T s, and T r without the

tedious task of taking an inverse Laplace transform, plotting the output response, and

taking measurements from the plot.

Virtual Experiment 4.2

Second-Order

System Response

Put theory into practice studying

the effect that natural frequency

and damping ratio have on

controlling the speed response

of the Quanser Linear Servo in

LabVIEW. This concept is

applicable to automobile cruise

controls or speed controls of

subways or trucks.

Virtual experiments are found

on Learning Space.

5 Figure 4.16 can be approximated by the following polynomials: ωnT r � 1:76ζ3 � 0:417ζ2 � 1:039ζ � 1 (maximum

error less than 1
2
% for 0 < ζ < 0:9), and ζ � 0:115�ωnT r�3 � 0:883�ωnT r�2 � 2:504�ωnT r� � 1:738 (maximum error

less than 5% for 0:1 < ζ < 0:9). The polynomials were obtained using MATLAB’s polyfit function.
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We now have expressions that relate peak time, percent overshoot,

and settling time to the natural frequency and the damping ratio. Now let

us relate these quantities to the location of the poles that generate these

characteristics.

The pole plot for a general, underdamped second-order system,

previously shown in Figure 4.11, is reproduced and expanded in

Figure 4.17 for focus. We see from the Pythagorean theorem that the

radial distance from the origin to the pole is the natural frequency,ωn, and

the cos θ � ζ.

Now, comparing Eqs. (4.34) and (4.42) with the pole location, we

evaluate peak time and settling time in terms of the pole location. Thus,

Tp � π

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p � π

ωd

�4.44�

T s � 4

ζωn

� π

σd
�4.45�

where ωd is the imaginary part of the pole and is called the damped frequency of

oscillation, and σd is the magnitude of the real part of the pole and is the exponential

damping frequency.

Equation (4.44) shows that Tp is inversely proportional to the imaginary part of

the pole. Since horizontal lines on the s-plane are lines of constant imaginary value, they

are also lines of constant peak time. Similarly, Eq. (4.45) tells us that settling time is

inversely proportional to the real part of the pole. Since vertical lines on the s-plane are

lines of constant real value, they are also lines of constant settling time. Finally, since

ζ � cos θ, radial lines are lines of constant ζ. Since percent overshoot is only a function

of ζ, radial lines are thus lines of constant percent overshoot, %OS. These concepts

are depicted in Figure 4.18, where lines of constant Tp, T s, and %OS are labeled on the

s-plane.

At this point, we can understand the significance of Figure 4.18 by examining the

actual step response of comparative systems. Depicted in Figure 4.19(a) are the step

responses as the poles are moved in a vertical direction, keeping the real part the same.
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FIGURE 4.17 Pole plot for an underdamped

second-order system
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FIGURE 4.18 Lines of

constant peak time, Tp, settling

time, T s, and percent overshoot,

%OS. Note: T s2 < Ts1 ;

Tp2 < Tp1; %OS1 < %OS2.
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As the poles move in a vertical direction, the frequency increases, but the envelope remains

the same since the real part of the pole is not changing. The figure shows a constant

exponential envelope, even though the sinusoidal response is changing frequency. Since all

curves fit under the same exponential decay curve, the settling time is virtually the same for

all waveforms. Note that as overshoot increases, the rise time decreases.

Let us move the poles to the right or left. Since the imaginary part is now

constant, movement of the poles yields the responses of Figure 4.19(b). Here the

frequency is constant over the range of variation of the real part. As the poles move to

the left, the response damps out more rapidly, while the frequency remains the same.

Notice that the peak time is the same for all waveforms because the imaginary part

remains the same.

Moving the poles along a constant radial line yields the responses shown in

Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the responses

look exactly alike, except for their speed. The farther the poles are from the origin, the more

rapid the response.

We conclude this section with some examples that demonstrate the relationship

between the pole location and the specifications of the second-order underdamped

response. The first example covers analysis. The second example is a simple design problem

consisting of a physical systemwhose component valueswewant to design tomeet a transient
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response specification. An animation PowerPoint presentation (PPT) demonstrating

second-order principles is available for instructors at www.wiley.com/college/nise. See

Second-Order Step Response.

Example 4.6

Finding Tp , %OS, and Ts from Pole LocationFinding Tp , %OS, and Ts from Pole Location

PROBLEM: Given the pole plot shown in Figure 4.20, find
ζ; ωn; Tp;%OS, and T s.

SOLUTION: The damping ratio is given by ζ � cos θ � cos�arctan �7=3�� �
0:394. The natural frequency,ωn, is the radial distance from the origin to the

pole, or ωn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

72 � 32
p

� 7:616. The peak time is

Tp �
π

ωd

� π
7
� 0:449 second �4.46�

The percent overshoot is

%OS � e��ζπ=
ffiffiffiffiffiffiffiffi

1�ζ2
p

� � 100 � 26% �4.47�

The approximate settling time is

Ts �
4

σd
� 4

3
� 1:333 seconds �4.48�

Students who are using MATLAB should now run ch4p1 in Appendix B.
You will learn how to generate a second-order polynomial from two
complex poles as well as extract and use the coefficients of the
polynomial to calculate Tp, %OS, and Ts. This exercise uses MATLAB
to solve the problem in Example 4.6.

s-plane

θ

d

j7 = jωd

–j7 = –jωd

jω

3– = –
σ

σ

FIGURE 4.20 Pole plot for Example 4.6

Example 4.7

Transient Response Through Component DesignTransient Response Through Component Design

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20%

overshoot and a settling time of 2 seconds for a step input of torque T(t).

J

D

T(t) θ

K = 5 N-m/rad

(t)

FIGURE 4.21 Rotational mechanical system for Example 4.7
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Second-Order Transfer Functions via Testing
Just as we obtained the transfer function of a first-order system experimentally, we can do

the same for a system that exhibits a typical underdamped second-order response. Again, we

can measure the laboratory response curve for percent overshoot and settling time, from

which we can find the poles and hence the denominator. The numerator can be found, as in

the first-order system, from a knowledge of the measured and expected steady-state values.

A problem at the end of the chapter illustrates the estimation of a second-order transfer

function from the step response.

SOLUTION: First, the transfer function for the system is

G�s� � 1=J

s2 � D

J
s � K

J

�4.49�

From the transfer function,

ωn �
ffiffiffiffi

K

J

r

�4.50�

and

2ζωn �
D

J
�4.51�

But, from the problem statement,

Ts � 2 � 4

ζωn

�4.52�

or ζωn � 2. Hence,

2ζωn � 4 � D

J
�4.53�

Also, from Eqs. (4.50) and (4.52),

ζ � 4

2ωn

� 2

ffiffiffiffi

J

K

r

�4.54�

From Eq. (4.39), a 20% overshoot implies ζ � 0:456. Therefore, from Eq. (4.54),

ζ � 2

ffiffiffiffi

J

K

r

� 0:456 �4.55�

Hence,

J

K
� 0:052 �4.56�

From the problem statement, K � 5 N-m/rad. Combining this value with Eqs. (4.53) and

(4.56), D= 1.04 N-m-s/rad, and J � 0:26 kg-m2.
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Now that we have analyzed systems with two poles, how does the addition of another

pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles

In the last section, we analyzed systems with one or two poles. It must be emphasized that

the formulas describing percent overshoot, settling time, and peak time were derived

only for a system with two complex poles and no zeros. If a system such as that shown in

Figure 4.22 has more than two poles or has zeros, we cannot use the formulas to calculate the

performance specifications that we derived. However, under certain conditions, a system

with more than two poles or with zeros can be approximated as a second-order system that

has just two complex dominant poles. Once we justify this approximation, the formulas for

percent overshoot, settling time, and peak time can be applied to these higher-order systems

by using the location of the dominant poles. In this section, we investigate the effect of an

additional pole on the second-order response. In the next section, we analyze the effect of

adding a zero to a two-pole system.

Let us now look at the conditions that would have to exist in order to approximate the

behavior of a three-pole system as that of a two-pole system. Consider a three-pole system

with complex poles and a third pole on the real axis. Assuming that the complex poles are at

�ζωn � jωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p

and the real pole is at �αr, the step response of the system can be

determined from a partial-fraction expansion. Thus, the output transform is

C�s� � A

s
� B�s � ζωn� � Cωd

�s � ζωn�2 � ω2
d

� D

s � αr
�4.57�

or, in the time domain,

c�t� � Au�t� � e�ζωnt�B cosωdt � C sin ωdt� � De�αr t �4.58�
The component parts of c(t) are shown in Figure 4.23 for three cases of αr. For Case I,

αr � αr1 and is not much larger than ζωn; for Case II, αr � αr2 and is much larger than ζωn;

and for Case III, αr � ∞:

Skill-Assessment Exercise 4.5

PROBLEM: Find ζ; ωn; T s; Tp; Tr, and %OS for a system whose transfer

function is G�s� � 361

s2 � 16s � 361
.

ANSWERS:

ζ � 0:421; ωn � 19; Ts � 0:5 s; Tp � 0:182 s; T r � 0:079 s; and%OS � 23:3%:

The complete solution is located at www.wiley.com/college/nise.

TryIt 4.1

Use the following MATLAB

statements to calculate the

answers to Skill-Assessment

Exercise 4.5. Ellipses mean

code continues on next line.

numg=361;
deng=[1 16 361];
omegan=sqrt(deng(3)...
/deng(1))

zeta=(deng(2)/deng(1))...
/(2*omegan)

Ts=4/(zeta*omegan)
Tp=pi/(omegan*sqrt...
(1-zeta^2))

pos=100*exp(-zeta*...
pi/sqrt(1-zeta^2))

Tr=(1.768*zeta^3 -...
0.417*zeta^2+1.039*...
zeta+1)/omegan
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FIGURE 4.22 Robot follows

input commands from a human

trainer

Au(t) + e–     nt(B cos    d t + C sin    d t)

α– r1
– n

p2

p1

p3
s-plane

Case I Case II

(a)

Case III

α– r2
ζ– n

p2

p1

p3

ζ– n

p2

p1

s-plane s-plane

II

Case I

III

II

Case I

Response

Time

(b)

0

jω jω jω

De–αri
t

ζω ω ω

ζω ω ω

σ σ σ

FIGURE 4.23 Component

responses of a three-pole

system: a. pole plot;

b. component responses:

Nondominant pole is near

dominant second-order

pair (Case I), far from the

pair (Case II), and at infinity

(Case III)
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Let us direct our attention to Eq. (4.58) and Figure 4.23. If αr � ζωn (Case II), the

pure exponential will die out much more rapidly than the second-order underdamped step

response. If the pure exponential term decays to an insignificant value at the time of the

first overshoot, such parameters as percent overshoot, settling time, and peak time will be

generated by the second-order underdamped step response component. Thus, the total

response will approach that of a pure second-order system (Case III).

If αr is not much greater than ζωn (Case I), the real pole’s transient response will not

decay to insignificance at the peak time or settling time generated by the second-order pair.

In this case, the exponential decay is significant, and the system cannot be represented as a

second-order system.

The next question is, How much farther from the dominant poles does the third pole

have to be for its effect on the second-order response to be negligible? The answer of course

depends on the accuracy for which you are looking. However, this book assumes that the

exponential decay is negligible after five time constants. Thus, if the real pole is five times

farther to the left than the dominant poles, we assume that the system is represented by its

dominant second-order pair of poles.

What about the magnitude of the exponential decay? Can it be so large that its

contribution at the peak time is not negligible? We can show, through a partial-fraction

expansion, that the residue of the third pole, in a three-pole system with dominant

second-order poles and no zeros, will actually decrease in magnitude as the third pole is

moved farther into the left half-plane. Assume a step response, C(s), of a three-pole

system:

C�s� �
bc

s�s2 � as � b��s � c�
�
A

s
�

Bs � C

s2 � as � b
�

D

s � c
�4.59�

where we assume that the nondominant pole is located at �c on the real axis and that the

steady-state response approaches unity. Evaluating the constants in the numerator of

each term,

A � 1; B �
ca � c2

c2 � b � ca
(4.60a)

C �
ca2 � c2a � bc

c2 � b � ca
; D �

�b

c2 � b � ca
(4.60b)

As the nondominant pole approaches ∞; or c®∞,

A � 1; B � �1; C � �a; D � 0 �4.61�

Thus, for this example, D, the residue of the nondominant pole and its response, becomes

zero as the nondominant pole approaches infinity.

The designer can also choose to forgo extensive residue analysis, since all system

designs should be simulated to determine final acceptance. In this case, the control systems

engineer can use the “five times” rule of thumb as a necessary but not sufficient condition to

increase the confidence in the second-order approximation during design, but then simulate

the completed design.

Let us look at an example that compares the responses of two different three-pole

systems with that of a second-order system.
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Example 4.8

Comparing Responses of Three-Pole SystemsComparing Responses of Three-Pole Systems

PROBLEM: Find the step response of each of the transfer functions shown in Eqs. (4.62)

through (4.64) and compare them.

T1�s� �
24:542

s2 � 4s � 24:542
(4.62)

T2�s� �
245:42

�s � 10��s2 � 4s � 24:542�
�4.63�

T3�s� �
73:626

�s � 3��s2 � 4s � 24:542�
�4.64�

SOLUTION: The step response, Ci�s�, for the transfer function, T i�s�, can be found by

multiplying the transfer function by 1/s, a step input, and using partial-fraction expansion

followed by the inverse Laplace transform to find the response, ci�t�. With the details left

as an exercise for the student, the results are

c1�t� � 1 � 1:09e�2tcos �4:532t � 23:8°� �4.65�

c2�t� � 1 � 0:29e�10t � 1:189e�2tcos �4:532t � 53:34°� �4.66�

c3�t� � 1 � 1:14e�3t � 0:707e�2tcos �4:532t � 78:63°� �4.67�

The three responses are plotted in Figure 4.24. Notice that c2�t�, with its third pole at

�10 and farthest from the dominant poles, is the better approximation of c1�t�, the pure

second-order system response; c3�t�, with a third pole close to the dominant poles,

yields the most error.
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FIGURE 4.24 Step responses of system T1�s�, system T2�s�, and system T3�s�
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4.8 System Response with Zeros

Now that we have seen the effect of an additional pole, let us add a zero to the second-order

system. In Section 4.2, we saw that the zeros of a response affect the residue, or amplitude,

of a response component but do not affect the nature of the response—exponential, damped

sinusoid, and so on. In this section, we add a real-axis zero to a two-pole system. The zero

Students who are using MATLAB should now run ch4p2 in Appendix B.
You will learn how to generate a step response for a transfer
function and how to plot the response directly or collect the
points for future use. The example shows how to collect the points
and then use them to create a multiple plot, title the graph, and
label the axes and curves to produce the graph in Figure 4.24 to
solve Example 4.8.
System responses can alternately be obtained using Simulink.
Simulink is a software package that is integrated with MATLAB
to provide a graphical user interface (GUI) for defining systems
and generating responses. The reader is encouraged to study
Appendix C, which contains a tutorial on Simulink as well as some
examples. One of the illustrative examples, Example C.1, solves
Example 4.8 using Simulink.
Another method to obtain systems responses is through the use of
MATLAB's LTI Viewer. An advantage of the LTI Viewer is that it
displays the values of settling time, peak time, rise time, maximum
response, and the final value on the step response plot. The reader
is encouraged to study Appendix E at www.wiley.com/college/nise,
which contains a tutorial on the LTI Viewer as well as some
examples. Example E.1 solves Example 4.8 using the LTI Viewer.

Skill-Assessment Exercise 4.6

PROBLEM: Determine the validity of a second-order approximation for each of these

two transfer functions:

a. G�s� �
700

�s � 15��s2 � 4s � 100�

b. G�s� �
360

�s � 4��s2 � 2s � 90�

ANSWERS:

a. The second-order approximation is valid.

b. The second-order approximation is not valid.

The complete solution is located at www.wiley.com/college/nise.

TryIt 4.2

Use the following MATLAB

and Control System Toolbox

statements to investigate the

effect of the additional pole

in Skill-Assessment

Exercise 4.6(a). Move the

higher-order pole originally

at �15 to other values by

changing “a” in the code.

a=15
numga=100*a;
denga=conv([1 a],...
[1 4 100]);
Ta=tf (numga,denga);
numg=100;
deng=[1 4 100];
T=tf (numg,deng);
step(Ta,'.',T,'-')
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will be added first in the left half-plane and then in the right half-plane and its effects noted

and analyzed. We conclude the section by talking about pole-zero cancellation.

Starting with a two-pole system with poles at ��1� j 2:828�, we consecutively add

zeros at �3, �5, and �10. The results, normalized to the steady-state value, are plotted in

Figure 4.25.We can see that the closer the zero is to the dominant poles, the greater its effect on

the transient response. As the zero moves away from the dominant poles, the response

approaches that of the two-pole system. This analysis can be reasoned via the partial-fraction

expansion. If we assume a group of poles and a zero far from the poles, the residue of each pole

will be affected the same by the zero. Hence, the relative amplitudes remain appreciably the

same. For example, assume the partial-fraction expansion shown in Eq. (4.68):

T�s� �
�s � a�

�s � b��s � c�
�

A

s � b
�

B

s � c

�
��b � a�=��b � c�

s � b
�
��c � a�=��c � b�

s � c
�4.68�

If the zero is far from the poles, then a is large compared to b and c, and

T�s�≈ a
1=��b � c�

s � b
�
1=��c � b�

s � c

 !

�
a

�s � b��s � c�
�4.69�

Hence, the zero looks like a simple gain factor and does not change the relative amplitudes of

the components of the response.

Another way to look at the effect of a zero, which is more general, is as follows

(Franklin, 1991): Let C(s) be the response of a system, T(s), with unity in the numerator. If

we add a zero to the transfer function, yielding �s � a�T�s�, the Laplace transform of the

response will be

�s � a�C�s� � sC�s� � aC�s� �4.70�

Thus, the response of a system with a zero consists of two parts: the derivative of the original

response and a scaled version of the original response. If a, the negative of the zero, is very

large, the Laplace transform of the response is approximately aC(s), or a scaled version of

the original response. If a is not very large, the response has an additional component

consisting of the derivative of the original response. As a becomes smaller, the derivative

term contributes more to the response and has a greater effect. For step responses, the

derivative is typically positive at the start of a step response. Thus, for small values of a,

we can expect more overshoot in second-order systems because the derivative term will be

additive around the first overshoot. This reasoning is borne out by Figure 4.25.

TryIt 4.3

Use the following MATLAB and

Control System Toolbox

statements to generate

Figure 4.25.

deng=[1 2 9];
Ta=tf([1 3]*9/3,deng);
Tb=tf([1 5]*9/5,deng);
Tc=tf([1 10]*9/10,deng);
T=tf(9,deng);
step(T,Ta,Tb,Tc)
text(0.5,0.6,'no zero')
text(0.4,0.7,...
'zero at �10')
text(0.35,0.8,...
'zero at �5')
text(0.3,0.9,'zero at �3')
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FIGURE 4.25 Effect of adding a zero to a two-pole system
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An interesting phenomenon occurs if a is negative, placing the zero in the right

half-plane. From Eq. (4.70) we see that the derivative term, which is typically positive

initially, will be of opposite sign from the scaled response term. Thus, if the derivative term,

sC(s), is larger than the scaled response, aC(s), the response will initially follow the

derivative in the opposite direction from the scaled response. The result for a second-order

system is shown in Figure 4.26, where the sign of the input was reversed to yield a positive

steady-state value. Notice that the response begins to turn toward the negative direction even

though the final value is positive. A system that exhibits this phenomenon is known as a

nonminimum-phase system. If a motorcycle or airplane was a nonminimum-phase system, it

would initially veer left when commanded to steer right.

Let us now look at an example of an electrical nonminimum-phase network.

1.5

1.0 3.0 4.0 5.0

Time (seconds)

c(
t)

–0.5

2.0 6.0

1.0

0.5

0

FIGURE 4.26 Step response of a nonminimum-phase system

Example 4.9

Transfer Function of a Nonminimum-Phase
System
Transfer Function of a Nonminimum-Phase
System

PROBLEM:

a. Find the transfer function, Vo�s�=V i�s� for the operational

amplifier circuit shown in Figure 4.27.

b. If R1 � R2, this circuit is known as an all-pass filter, since it

passes sine waves of a wide range of frequencies without

attenuating or amplifying their magnitude (Dorf, 1993). We

will learn more about frequency response in Chapter 10. For

now, let R1 � R2; R3C � 1=10, and find the step response of the
filter. Show that component parts of the response can be

identified with those in Eq. (4.70).

SOLUTION:
a. Remembering fromChapter 2 that the operational amplifier has a high input impedance,

the current, I(s), through R1 and R2, is the same and is equal to

I�s� �
V i�s� � Vo�s�

R1 � R2

�4.71�

Vi(s)

R2
V1(s)

R1

I(s)

R3

V2(s)

Vo(s)

C

+

–

FIGURE 4.27 Nonminimum-phase electric circuit6

6Adapted from Dorf, R. C. Introduction to Electric Circuits, 2nd ed. (New York: JohnWiley & Sons, 1989, 1993),

p. 583.  1989, 1993 John Wiley & Sons. Reprinted by permission of the publisher.
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Also,

Vo�s� � A V2�s� � V1�s�� � �4.72�

But,

V1�s� � I�s�R1 � Vo�s� �4.73�

Substituting Eq. (4.71) into (4.73),

V1�s� �
1

R1 � R2

R1V i�s� � R2V0 �s�� � �4.74�

Using voltage division,

V2�s� � V i�s�
1=Cs

R3 �
1

Cs

�4.75�

Substituting Eqs. (4.74) and (4.75) into Eq. (4.72) and simplifying yields

Vo�s�

V i�s�
�

A�R2 � R1R3Cs�

�R3Cs � 1��R1 � R2�1 � A��
�4.76�

Since the operational amplifier has a large gain,A, let A approach infinity. Thus, after

simplification

Vo�s�

V i�s�
�
R2 � R1R3Cs

R2R3Cs � R2

� �
R1

R2

s �
R2

R1R3C

" #

s �
1

R3C

" # �4.77�

b. Letting R1 � R2 and R3C � 1=10,

Vo�s�

V i�s�
�

s �
1

R3C

" #

s �
1

R3C

" # � �
�s � 10�

�s � 10�
�4.78�

For a step input, we evaluate the response as suggested by Eq. (4.70):

C�s� � �
�s � 10�

s�s � 10�
� �

1

s � 10
� 10

1

s�s � 10�
� sCo�s� � 10Co�s� �4.79�

where

Co�s� � �
1

s�s � 10�
�4.80�

is the Laplace transform of the response without a zero. Expanding Eq. (4.79) into

partial fractions,

C�s� � �
1

s � 10
� 10

1

s�s � 10�
� �

1

s � 10
�
1

s
�

1

s � 10
�
1

s
�

2

s � 10
�4.81�
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We conclude this section by talking about pole-zero cancellation and its effect on our

ability to make second-order approximations to a system. Assume a three-pole system with

a zero as shown in Eq. (4.85). If the pole term, �s � p3�, and the zero term, �s � z�, cancel out,

we are left with

T�s� �
K�s � z�

�s � p3��s
2 � as � b�

�4.85�

as a second-order transfer function. From another perspective, if the zero at �z is very close

to the pole at �p3, then a partial-fraction expansion of Eq. (4.85) will show that the residue

of the exponential decay is much smaller than the amplitude of the second-order response.

Let us look at an example.

or the response with a zero is

c�t� � �e�10t � 1 � e�10t � 1 � 2e�10t �4.82�

Also, from Eq. (4.80),

Co�s� � �
1=10

s
�

1=10

s � 10
�4.83�

or the response without a zero is

co�t� � �
1

10
�

1

10
e�10t �4.84�

The normalized responses are plotted in Figure 4.28. Notice the immediate reversal

of the nonminimum-phase response, c(t).
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FIGURE 4.28 Step response of the nonminimum-phase network of Figure 4.27 (c(t)) and

normalized step response of an equivalent network without the zero (�10 co�t�)

Example 4.10

Evaluating Pole-Zero Cancellation Using ResiduesEvaluating Pole-Zero Cancellation Using Residues

PROBLEM: For each of the response functions in Eqs. (4.86) and (4.87), determine

whether there is cancellation between the zero and the pole closest to the zero. For any

function for which pole-zero cancellation is valid, find the approximate response.

C1�s� �
26:25�s � 4�

s�s � 3:5��s � 5��s � 6�
�4.86�
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In this section, we have examined the effects of additional transfer function poles and

zeros upon the response. In the next section we add nonlinearities of the type discussed in

Section 2.10 and see what effects they have on system response.

C2�s� �
26:25�s � 4�

s�s � 4:01��s � 5��s � 6�
�4.87�

SOLUTION: The partial-fraction expansion of Eq. (4.86) is

C1�s� �
1

s
�

3:5

s � 5
�

3:5

s � 6
�

1

s � 3:5
�4.88�

The residue of the pole at �3.5, which is closest to the zero at �4, is equal to 1 and is not

negligible compared to the other residues. Thus, a second-order step response approxi-

mation cannot be made for C1�s�. The partial-fraction expansion for C2�s� is

C2�s� �
0:87

s
�

5:3

s � 5
�

4:4

s � 6
�

0:033

s � 4:01
�4.89�

The residue of the pole at �4.01, which is closest to the zero at �4, is equal to 0.033, about

two orders of magnitude below any of the other residues. Hence, we make a second-order

approximation by neglecting the response generated by the pole at �4.01:

C2�s�≈
0:87

s
�

5:3

s � 5
�

4:4

s � 6
�4.90�

and the response c2�t� is approximately

c2�t�≈ 0:87 � 5:3e�5t � 4:4e�6t �4.91�

TryIt 4.4

Use the following MATLAB

and Symbolic Math Toolbox

statements to evaluate the effect

of higher-order poles by finding

the component parts of the time

response of c1�t� and c2�t� in

Example 4.10.

syms s
C1=26.25*(s+4)/...
(s*(s+3.5)*...
(s+5)*(s+6));

C2=26.25*(s+4)/...
(s*(s+4.01)*...
(s+5)*(s+6));

c1=ilaplace(C1);
'c1'
c1=vpa(c1,3)
c2=ilaplace(C2);
'c2'
c2=vpa(c2,3)

Skill-Assessment Exercise 4.7

PROBLEM: Determine the validity of a second-order step-response approximation for

each transfer function shown below.

a. G�s� �
185:71�s � 7�

�s � 6:5��s � 10��s � 20�

b. G�s� �
197:14�s � 7�

�s � 6:9��s � 10��s � 20�

ANSWERS:

a. A second-order approximation is not valid.

b. A second-order approximation is valid.

The complete solution is located at www.wiley.com/college/nise.
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4.9 Effects of Nonlinearities upon Time Response

In this section, we qualitatively examine the effects of nonlinearities upon the time response

of physical systems. In the following examples, we insert nonlinearities, such as saturation,

dead zone, and backlash, as shown in Figure 2.46, into a system to show the effects of these

nonlinearities upon the linear responses.

The responses were obtained using Simulink, a simulation software package that is

integrated with MATLAB to provide a graphical user interface (GUI). Readers who would

like to learn how to use Simulink to generate nonlinear responses should consult the

Simulink tutorial in Appendix C. Simulink block diagrams are included with all responses

that follow.

Let us assume the motor and load from the Antenna Control Case Study of Chapter 2

and look at the load angular velocity, ωo�s�, where ωo�s� � 0:1 sθm�s� � 0:2083 Ea�s�=
�s � 1:71� from Eq. (2.208). If we drive the motor with a step input through an amplifier of

unity gain that saturates at � 5 volts, Figure 4.29 shows that the effect of amplifier saturation

is to limit the obtained velocity.
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FIGURE 4.29 a. Effect of amplifier saturation on load angular velocity response; b. Simulink block

diagram
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The effect of dead zone on the output shaft driven by a motor and gears is shown in Figure

4.30. Here we once again assume the motor, load, and gears from Antenna Control Case

Study of Chapter 2. Dead zone is present when the motor cannot respond to small voltages.

The motor input is a sinusoidal waveform chosen to allow us to see the effects of dead zone

vividly. The response begins when the input voltage to the motor exceeds a threshold. We

notice a lower amplitude when dead zone is present.

The effect of backlash on the output shaft driven by a motor and gears is shown in

Figure 4.31. Again we assume the motor, load, and gears from the Antenna Control Case

Study of Chapter 2. The motor input is again a sinusoidal waveform, which is chosen to allow

us to see vividly the effects of backlash in the gears driven by themotor. As themotor reverses

direction, the output shaft remains stationary while the motor begins to reverse. When the

gearsfinally connect, the output shaft itself begins to turn in the reverse direction. The resulting

response is quite different from the linear response without backlash.
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FIGURE 4.30 a. Effect of dead zone on load angular displacement response; b. Simulink block

diagram
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Now that we have seen the effects of nonlinearities on the time response, let us return

to linear systems. Our coverage so far for linear systems has dealt with finding the time

response by using the Laplace transform in the frequency domain. Another way to solve for

the response is to use state-space techniques in the time domain. This topic is the subject of

the next two sections.

4.10 Laplace Transform Solution of State Equations

In Chapter 3, systems were modeled in state space, where the state-space representation

consisted of a state equation and an output equation. In this section, we use the Laplace

transform to solve the state equations for the state and output vectors.
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FIGURE 4.31 a.Effect of backlash on load angular displacement response;b. Simulink blockdiagram

Skill-Assessment Exercise 4.8

PROBLEM: Use MATLAB's Simulink to reproduce Figure 4.31.
ANSWER: See Figure 4.31.
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Consider the state equation

_x � Ax � Bu �4.92�

and the output equation

y � Cx � Du �4.93�

Taking the Laplace transform of both sides of the state equation yields

sX�s� � x�0� � AX�s� � BU�s� �4.94�

In order to separateX(s), replace sX(s) with sIX(s), where I is an n � n identity matrix, and n

is the order of the system. Combining all of the X(s) terms, we get

�sI � A�X�s� � x�0� � BU�s� �4.95�

Solving for X(s) by premultiplying both sides of Eq. (4.95) by �sI � A��1, the final solution

for X(s) is

X�s� � �sI � A��1x�0� � �sI � A��1BU�s�

�
adj�sI � A�

det�sI � A�
�x�0� � BU�s��

�4.96�

Taking the Laplace transform of the output equation yields

Y�s� � CX�s� � DU�s� �4.97�

Eigenvalues and Transfer Function Poles
We saw that the poles of the transfer function determine the nature of the transient

response of the system. Is there an equivalent quantity in the state-space representation

that yields the same information? Section 5.8 formally defines the roots of det�sI � A� � 0

(see the denominator of Eq. (4.96) to be eigenvalues of the system matrix, A.7 Let us

show that the eigenvalues are equal to the poles of the system’s transfer function. Let the

output, Y(s), and the input, U(s), be scalar quantities Y(s) and U(s), respectively. Further,

to conform to the definition of a transfer function, let x(0), the initial state vector, equal 0,

the null vector. Substituting Eq. (4.96) into Eq. (4.97) and solving for the transfer

function, Y�s�=U�s�, yields

Y�s�

U�s�
� C

adj�sI � A�

det�sI � A�

 !

B � D

�
C adj�sI � A�B � D det�sI � A�

det�sI � A�

�4.98�

The roots of the denominator of Eq. (4.98) are the poles of the system. Since the denominators

of Eqs. (4.96) and (4.98) are identical, the system poles equal the eigenvalues. Hence, if a

system is represented in state-space, we can find the poles from det�sI � A� � 0. We will be

more formal about these facts when we discuss stability in Chapter 6.

The following example demonstrates solving the state equations using the Laplace

transform as well as finding the eigenvalues and system poles.

7 Sometimes the symbol λ is used in place of the complex variable s when solving the state equations without using

the Laplace transform. Thus, it is common to see the characteristic equation also written as det�λI � A� � 0.
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Example 4.11

Laplace Transform Solution; Eigenvalues and PolesLaplace Transform Solution; Eigenvalues and Poles

PROBLEM: Given the system represented in state space by Eqs. (4.99),

_x �

0 1 0

0 0 1

�24 �26 �9

2

4

3

5x �

0

0

1

2

4

3

5e�t (4.99a)

y � � 1 1 0 � x (4.99b)

x�0� �

1

0

2

2

4

3

5 (4.99c)

do the following:

a. Solve the preceding state equation and obtain the output for the given exponential

input.

b. Find the eigenvalues and the system poles.

SOLUTION:
a. We will solve the problem by finding the component parts of Eq. (4.96), followed by

substitution into Eq. (4.97). First obtainA andB by comparing Eq. (4.99a) to Eq. (4.92).

Since

sI �

s 0 0

0 s 0

0 0 s

2

4

3

5 �4.100�

then

�sI � A� �

s �1 0

0 s �1

24 26 s � 9

2

4

3

5 �4.101�

and

�sI � A��1 �

�s2 � 9s � 26� �s � 9� 1

�24 s2 � 9s s

�24s ��26s � 24� s2

2

6

4

3

7

5

s3 � 9s2 � 26s � 24
�4.102�

Since U(s) is 1=�s � 1� (the Laplace transform for e�t), X�s� can be calculated.

Rewriting Eq. (4.96) as

X�s� � �sI � A��1�x�0� � BU�s�� �4.103�

and using B and x(0) from Eqs. (4.99a) and (4.99c), respectively, we get

X1�s� �
�s3 � 10s2 � 37s � 29�

�s � 1��s � 2��s � 3��s � 4�
(4.104a)
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X2�s� �
�2s2 � 21s � 24�

�s � 1��s � 2��s � 3��s � 4�
(4.104b)

X3�s� �
s�2s2 � 21s � 24�

�s � 1��s � 2��s � 3��s � 4�
(4.104c)

The output equation is found from Eq. (4.99b). Performing the indicated addition

yields

Y�s� � 1 1 0
* +

X1�s�

X2�s�

X3�s�

2

4

3

5 � X1�s� � X2�s� �4.105�

or

Y�s� �
�s3 � 12s2 � 16s � 5�

�s � 1��s � 2��s � 3��s � 4�

�
�6:5

s � 2
�

19

s � 3
�

11:5

s � 4

�4.106�

where the pole at �1 canceled a zero at �1. Taking the inverse Laplace transform,

y�t� � �6:5e�2t � 19e�3t � 11:5e�4t �4.107�

b. The denominator of Eq. (4.102), which is det�sI � A�, is also the denominator of the

system’s transfer function. Thus, det�sI � A� � 0 furnishes both the poles of the system

and the eigenvalues �2; � 3, and �4.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox
should now run ch4sp1 in Appendix F at www.wiley.com/college/
nise. You will learn how to solve state equations for the output
response using the Laplace transform. Example 4.11 will be solved
using MATLAB and the Symbolic Math Toolbox.

Skill-Assessment Exercise 4.9

PROBLEM: Given the system represented in state space by Eqs. (4.108),

_x �
0 2

�3 �5

 !

x �
0

1

 !

e�t (4.108a)

y � � 1 3 �x (4.108b)

x�0� �
2

1

 !

(4.108c)

do the following:

a. Solve for y(t) using state-space and Laplace transform techniques.

b. Find the eigenvalues and the system poles.

TryIt 4.5

Use the following MATLAB

and Symbolic Math Toolbox

statements to solve Skill-

Assessment Exercise 4.9 .

syms s
A=[0 2;�3 �5]; B=[0;1];
C=[1 3];X0=[2;1];
U=1/(s+1);
I=[1 0;0 1];
X=((s*I-A)^�1)*...
(X0+B*U);
Y=C*X; Y=simplify(Y);
y=ilaplace(Y);
pretty(y)
eig(A)
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4.11 Time Domain Solution of State Equations

We now look at another technique for solving the state equations. Rather than using the

Laplace transform, we solve the equations directly in the time domain using a method

closely allied to the classical solution of differential equations. We will find that the final

solution consists of two parts that are different from the forced and natural responses.

The solution in the time domain is given directly by

x�t� � eAtx�0� �

Z t

0

eA�t�τ�Bu�τ�dτ

� Φ�t�x�0� �

Z t

0

Φ�t � τ�Bu�τ�dτ

�4.109�

where Φ�t� � eAt by definition, and which is called the state-transition matrix. Eq. (4.109)

is derived in Appendix I located at www.wiley.com/college/nise. Readers who are not

familiar with this equation or who may want to refresh their memory should consult

Appendix I before proceeding.

Notice that the first term on the right-hand side of the equation is the response due to

the initial state vector, x(0). Notice also that it is the only term dependent on the initial state

vector and not the input. We call this part of the response the zero-input response, since it is

the total response if the input is zero. The second term, called the convolution integral, is

dependent only on the input, u, and the input matrix, B, not the initial state vector. We call

this part of the response the zero-state response, since it is the total response if the initial

state vector is zero. Thus, there is a partitioning of the response different from the forced/

natural response we have seen when solving differential equations. In differential equations,

the arbitrary constants of the natural response are evaluated based on the initial conditions

and the initial values of the forced response and its derivatives. Thus, the natural response’s

amplitudes are a function of the initial conditions of the output and the input. In Eq. (4.109),

the zero-input response is not dependent on the initial values of the input and its derivatives.

It is dependent only on the initial conditions of the state vector. The next example vividly

shows the difference in partitioning. Pay close attention to the fact that in the final result the

zero-state response contains not only the forced solution but also pieces of what we

previously called the natural response.We will see in the solution that the natural response is

distributed through the zero-input response and the zero-state response.

Before proceeding with the example, let us examine the form the elements of Φ�t�

take for linear, time-invariant systems. The first term of Eq. (4.96), the Laplace transform of

the response for unforced systems, is the transform ofΦ�t�x�0�, the zero-input response from

Eq. (4.109). Thus, for the unforced system

ℒ�x�t�� � ℒ�Φ�t�x�0�� � �sI � A��1x�0� �4.110�

from which we can see that �sI � A��1 is the Laplace transform of the state-transition

matrix, Φ�t�. We have already seen that the denominator of �sI � A��1 is a polynomial

ANSWERS:

a. y�t� � �0:5e�t � 12e�2t � 17:5e�3t

b. �2; � 3

The complete solution is located at www.wiley.com/college/nise.
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in s whose roots are the system poles. This polynomial is found from the equation

det�sI � A� � 0. Since

ℒ
�1��sI � A��1� � ℒ

�1 adj�sI � A�
det�sI � A�

 !

� Φ�t� �4.111�

each term of Φ�t� would be the sum of exponentials generated by the system’s poles.

Let us summarize the concepts with two numerical examples. The first example solves

the state equations directly in the time domain. The second example uses the Laplace

transform to solve for the state-transition matrix by finding the inverse Laplace transform of

�sI � A��1.

Example 4.12

Time Domain SolutionTime Domain Solution

PROBLEM: For the state equation and initial state vector shown in Eqs. (4.112), where

u(t) is a unit step, find the state-transition matrix and then solve for x(t).

_x�t� � 0 1

�8 �6

 !

x�t� � 0

1

 !

u�t� (4.112a)

x�0� � 1

0

 !

(4.112b)

SOLUTION: Since the state equation is in the form

_x�t� � Ax�t� � Bu�t� �4.113�

find the eigenvalues using det�sI � A� � 0. Hence, s2 � 6s � 8 � 0, from which

s1 � �2 and s2 � �4. Since each termof the state-transitionmatrix is the sumof responses

generated by the poles (eigenvalues), we assume a state-transition matrix of the form

Φ�t� �
�K1e

�2t � K2e
�4t� �K3e

�2t � K4e
�4t�

�K5e
�2t � K6e

�4t� �K7e
�2t � K8e

�4t�

" #

�4.114�

In order to find the values of the constants, we make use of the properties of the

state-transition matrix derived in Appendix J located at www.wiley.com/college/nise.

Since

Φ�0� � I �4.115�

then

K1 � K2 � 1 (4.116a)

K3 � K4 � 0 (4.116b)

K5 � K6 � 0 (4.116c)

K7 � K8 � 1 (4.116d)
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And, since

_Φ�0� � A �4.117�
then

�2K1 � 4K2 � 0 (4.118a)

�2K3 � 4K4 � 1 (4.118b)

�2K5 � 4K6 � �8 (4.118c)

�2K7 � 4K8 � �6 (4.118d)

The constants are solved by taking two simultaneous equations four times. For

example, Eq. (4.116a) can be solved simultaneously with Eq. (4.118a) to yield the

values of K1 and K2. Proceeding similarly, all of the constants can be found. Therefore,

Φ�t� � �2e�2t � e�4t� 1

2
e�2t � 1

2
e�4t

$ %

��4e�2t � 4e�4t� ��e�2t � 2e�4t�

2

4

3

5 �4.119�

Also,

Φ�t � τ�B �
1

2
e�2�t�τ� � 1

2
e�4�t�τ�

$ %

*

� e�2�t�τ� � 2e�4�t�τ�
+

2

6

4

3

7

5
�4.120�

Hence, the first term of Eq. (4.109) is

Φ�t�x�0� � �2e�2t � e�4t�
��4e�2t � 4e�4t�

 !

�4.121�

The last term of Eq. (4.109) is

Z t

0

Φ�t � τ�Bu�τ�dτ �

1

2
e�2t

Z t

0

e2τdτ � 1

2
e�4t

Z t

0

e4τdτ

�e�2t
Z t

0

e2τdτ � 2e�4t
Z t

0

e4τdτ

2

6

6

6

4

3

7

7

7

5

�

1

8
� 1

4
e�2t � 1

8
e�4t

1

2
e�2t � 1

2
e�4t

2

6

6

4

3

7

7

5

�4.122�

Notice, as promised, that Eq. (4.122), the zero-state response, contains not only the forced

response, 1/8, but also terms of the form Ae�2t and Be�4t that are part of what we

previously called the natural response. However, the coefficients, A and B, are not

dependent on the initial conditions.

The final result is found by adding Eqs. (4.121) and (4.122). Hence,

x�t� � Φ�t�x�0� �
Z t

0

Φ�t � τ�Bu�τ�dτ �

1

8
� 7

4
e�2t � 7

8
e�4t

� 7

2
e�2t � 7

2
e�4t

2

6

6

4

3

7

7

5

�4.123�
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Systems represented in state space can be simulated on the digital computer. Programs

such as MATLAB can be used for this purpose. Alternately, the user can write specialized

programs, as discussed in Appendix H.1 at www.wiley.com/college/nise.

Students who are using MATLAB should now run ch4p3 in Appendix B.
This exercise uses MATLAB to simulate the step response of systems
represented in state space. In addition to generating the step
response, you will learn how to specify the range on the time axis
for the plot.

Example 4.13

State-Transition Matrix via Laplace TransformState-Transition Matrix via Laplace Transform

PROBLEM: Find the state-transition matrix of Example 4.12, using �sI � A��1.

SOLUTION: We use the fact that Φ�t� is the inverse Laplace transform of �sI � A��1.
Thus, first find �sI � A� as

�sI � A� �
s �1
8 �s � 6�

" #

�4.124�

from which

�sI � A��1 �

s � 6 1

�8 s

" #

s2 � 6s � 8
�

s � 6

s2 � 6s � 8

1

s2 � 6s � 8

�8
s2 � 6s � 8

s

s2 � 6s � 8

2

6

6

4

3

7

7

5

�4.125�

Expanding each term in the matrix on the right by partial fractions yields

�sI � A��1 �

2

s � 2
� 1

s � 4

$ %

1=2

s � 2
� 1=2

s � 4

$ %

�4
s � 2

� 4

s � 4

$ %

�1
s � 2

� 2

s � 4

$ %

2

6

6

6

4

3

7

7

7

5

�4.126�

Finally, taking the inverse Laplace transform of each term, we obtain

Φ�t� �
�2e�2t � e�4t� 1

2
e�2t � 1

2
e�4t

$ %

��4e�2t � 4e�4t� ��e�2t � 2e�4t�

2

6

4

3

7

5
�4.127�

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox
should now run ch4sp2 in Appendix F at www.wiley.com/college/
nise. You will learn how to solve state equations for the output
response using the convolution integral. Examples 4.12 and 4.13
will be solved using MATLAB and the Symbolic Math Toolbox.
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Skill-Assessment Exercise 4.10

PROBLEM: Given the system represented in state space by Eqs. (4.128a):

_x � 0 2

�2 �5

 !

x � 0

1

 !

e�2t (4.128a)

y � 2 1
/ 0

x (4.128b)

x�0� � 1

2

 !

(4.128c)

do the following:

a. Solve for the state-transition matrix.

b. Solve for the state vector using the convolution integral.

c. Find the output, y(t).

ANSWERS:

a. Φ�t� �

4

3
e�t � 1

3
e�4t

$ %

2

3
e�t � 2

3
e�4t

$ %

� 2

3
e�t � 2

3
e�4t

$ %

� 1

3
e�t � 4

3
e�4t

$ %

2

6

6

6

4

3

7

7

7

5

b. x�t� �

10

3
e�t � e�2t � 4

3
e�4t

$ %

� 5

3
e�t � e�2t � 8

3
e�4t

$ %

2

6

6

6

4

3

7

7

7

5

c. y�t� � 5e�t � e�2t

The complete solution is located at www.wiley.com/college/nise.

Case Studies

Antenna Control: Open-Loop ResponseAntenna Control: Open-Loop Response
In this chapter, we have made use of the transfer functions derived in Chapter 2 and the

state equations derived in Chapter 3 to obtain the output response of an open-loop system.

We also showed the importance of the poles of a system in determining the transient

response. The following case study uses these concepts to analyze an open-loop portion of

the antenna azimuth position control system. The open-loop function that we will deal

with consists of a power amplifier and motor with load.

PROBLEM: For the schematic of the azimuth position control system shown on the front

endpapers, Configuration 1, assume an open-loop system (feedback path disconnected).

202 Chapter 4 Time Response



a. Predict, by inspection, the form of the open-loop angular velocity response of the load

to a step-voltage input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

c. Derive the complete analytical expression for the open-loop angular velocity response

of the load to a step-voltage input to the power amplifier, using transfer functions.

d. Obtain the open-loop state and output equations.

e. Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

SOLUTION: The transfer functions of the power amplifier, motor, and load as shown on

the front endpapers, Configuration 1, were discussed in the Chapter 2 case study. The two

subsystemsare shown interconnected inFigure 4.32(a).Differentiating the angular position

of themotor and loadoutputbymultiplyingby s,weobtain theoutput angularvelocity,ωo, as

shown in Figure 4.32(a). The equivalent transfer function representing the three

blocks in Figure 4.32(a) is the product of the individual transfer functions and is shown

in Figure 4.32(b).8

a. Using the transfer function shown in Figure 4.32(b), we can predict the nature of the

step response. The step response consists of the steady-state response generated by the

step input and the transient response, which is the sum of two exponentials generated

by each pole of the transfer function. Hence, the form of the response is

ωo�t� � A � Be�100t � Ce�1:71t �4.129�
b. The damping ratio and natural frequency of the open-loop system can be found by

expanding the denominator of the transfer function. Since the open-loop transfer

function is

G�s� � 20:83

s2 � 101:71s � 171
�4.130�

ωn �
ffiffiffiffiffiffiffiffi

171
p

� 13:08; and ζ � 3:89 (overdamped).

c. In order to derive the angular velocity response to a step input, we multiply the transfer

function of Eq. (4.130) by a step input, 1/s, and obtain

ωo�s� � 20:83

s�s � 100��s � 1:71� �4.131�

Motor and load

s

Power amp
Convert to

angular velocity

Vp(s) 0.2083

 s(s +1.71)

(  )

(  )

θ

a

b

Ea(s) o(s) ωo(s)100

 (s +100)

20.83

(s +100)(s +1.71)

Vp(s) ωo(s)

FIGURE 4.32 Antenna azimuth position control system for angular velocity: a. forward path;

b. equivalent forward path

8This product relationship will be derived in Chapter 5.
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Expanding into partial fractions, we get

ωo�s� � 0:122

s
� 2:12 � 10�3

s � 100
� 0:124

s � 1:71
�4.132�

Transforming to the time domain yields

ωo�t� � 0:122 � �2:12 � 10�3�e�100t � 0:124e�1:71t �4.133�

d. First convert the transfer function into the state-space representation. Using

Eq. (4.130), we have

ωo�s�
Vp�s�

� 20:83

s2 � 101:71s � 171
�4.134�

Cross-multiplying and taking the inverse Laplace transform with zero initial

conditions, we have

_ωo � 101:71 _ωo � 171ωo � 20:83vp �4.135�

Defining the phase variables as

x1 � ωo (4.136a)

x2 � _ωo (4.136b)

and using Eq. (4.135), the state equations are written as

_x1 � x2 (4.137a)

_x2 � �171x1 � 101:71x2 � 20:83vp (4.137b)

where vp � 1, a unit step. Since x1 � ωo is the output, the output equation is

y � x1 �4.138�

Equations (4.137) and (4.138) can be programmed to obtain the step response

using MATLAB or alternative methods described in Appendix H.1 at www.wiley

.com/college/nise.

e. Students who are using MATLAB should now run ch4p4 in Appendix
B. This exercise uses MATLAB to plot the step response.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s

objectives. Refer to the antenna azimuth position control system shown on the front

endpapers, Configuration 2. Assume an open-loop system (feedback path disconnected)

and do the following:

a. Predict the open-loop angular velocity response of the power amplifier, motor, and

load to a step voltage at the input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.
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c. Derive the open-loop angular velocity response of the power amplifier, motor, and load

to a step-voltage input using transfer functions.

d. Obtain the open-loop state and output equations.

e. Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

Unmanned Free-Swimming Submersible
Vehicle: Open-Loop Pitch Response

Unmanned Free-Swimming Submersible
Vehicle: Open-Loop Pitch Response

An Unmanned Free-Swimming Submersible (UFSS) vehicle is shown in Figure 4.33. The

depth of the vehicle is controlled as follows. During forward motion, an elevator surface

on the vehicle is deflected by a selected amount. This deflection causes the vehicle to

rotate about the pitch axis. The pitch of the vehicle creates a vertical force that causes the

vehicle to submerge or rise. The pitch control system for the vehicle is used here and in

subsequent chapters as a case study to demonstrate the covered concepts. The block

diagram for the pitch control system is shown in Figure 4.34 and on the back endpapers for

future reference (Johnson, 1980). In this case study, we investigate the time response of

the vehicle dynamics that relate the pitch angle output to the elevator deflection input.
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FIGURE 4.33 Unmanned Free-Swimming Submersible (UFSS) vehicle
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FIGURE 4.34 Pitch control loop for the UFSS vehicle
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PROBLEM: The transfer function relating pitch angle, θ�s�, to elevator surface angle,

δe�s�, for the UFSS vehicle is

θ�s�
δe�s�

� �0:125�s � 0:435�
�s � 1:23��s2 � 0:226s � 0:0169� �4.139�

a. Using only the second-order poles shown in the transfer function, predict percent

overshoot, rise time, peak time, and settling time.

b. Using Laplace transforms, find the analytical expression for the response of the pitch

angle to a step input in elevator surface deflection.

c. Evaluate the effect of the additional pole and zero on the validity of the second-order

approximation.

d. Plot the step response of the vehicle dynamics and verify your conclusions found in (c).

An animation PowerPoint presentation (PPT) demonstrating this system is available for

instructors at www.wiley.com/college/nise. See UFSS Vehicle.

SOLUTION:

a. Using thepolynomial s2 � 0:226s � 0:0169,wefind thatω2
n � 0:0169 and2ζωn � 0:226.

Thus, ωn � 0:13 rad/s and ζ � 0:869. Hence, %OS � e�ζπ=
ffiffiffiffiffiffiffiffi

1�ζ2
p

100 � 0:399%.

From Figure 4.16, ωnT r � 2:75, or T r � 21:2 s. To find peak time, we use

Tp � π=ωn

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p

� 48:9 s. Finally, settling time is Ts � 4=ζωn � 35:4 s.

b. In order to display a positive final value in Part d. we find the response of the system to a

negative unit step, compensating for the negative sign in the transfer function. Using

partial-fraction expansion, the Laplace transform of the response, θ�s�, is

θ s� � � 0:125 s � 0:435� �
s s � 1:23� � s2 � 0:226s � 0:0169� �

� 2:616
1

s
� 0:0645

1

s � 1:23

� 2:68 s � 0:113� � � 3:478
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00413
p

s � 0:113� �2 � 0:00413
�4.140�

Taking the inverse Laplace transform,

θ�t� � 2:616 � 0:0645e�1:23t

� e�0:113t�2:68 cos 0:0643t � 3:478 sin 0:0643t�

� 2:616 � 0:0645e�1:23t � 4:39e�0:113tcos�0:0643t � 52:38°� �4.141�

c. Looking at the relative amplitudes between the coefficient of the e�1:23t term and the

cosine term in Eq. (4.165), we see that there is pole-zero cancellation between

the pole at �1.23 and the zero at �0.435. Further, the pole at �1.23 is more than

five times farther from the jω axis than the second-order dominant poles at

�0:113� j 0:0643. We conclude that the response will be close to that predicted.

d. Plotting Eq. (4.141) or using a computer simulation, we obtain the step response shown

in Figure 4.35. We indeed see a response close to that predicted.
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Students who are using MATLAB should now run ch4p5 in Appendix B.
This exercise uses MATLAB to find ζ, ω, Ts, Tp, and Tr and plot a step
response. Table lookup is used to find Tr. The exercise applies the
concepts to the problem above.

CHALLENGE: You are now given a problem to test your

knowledge of this chapter’s objectives. This problem uses

the same principles that were applied to the Unmanned

Free-Swimming Submersible vehicle: Ships at sea undergo

motion about their roll axis, as shown in Figure 4.36. Fins

called stabilizers are used to reduce this rolling motion. The

stabilizers can be positioned by a closed-loop roll control

system that consists of components, such as fin actuators

and sensors, as well as the ship’s roll dynamics.

Assume the roll dynamics, which relates the roll-angle

output, θ�s�, to a disturbance-torque input, TD(s), is

θ�s�
TD�s� � 2:25

�s2 � 0:5s � 2:25� �4.142�

Do the following:

a. Find the natural frequency, damping ratio, peak time, settling time, rise time, and percent

overshoot.

b. Find the analytical expression for the output response to a unit step input in voltage.

c. Use MATLAB to solve a and b and to plot the response found in b.
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FIGURE 4.35 Negative step response of pitch control for UFSS vehicle
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FIGURE 4.36 A ship at sea, showing roll axis
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Summary

In this chapter, we took the system models developed in Chapters 2 and 3 and found the

output response for a given input, usually a step. The step response yields a clear picture of

the system’s transient response. We performed this analysis for two types of systems, first

order and second order, which are representative of many physical systems. We then

formalized our findings and arrived at numerical specifications describing the responses.

For first-order systems having a single pole on the real axis, the specification of

transient response that we derived was the time constant, which is the reciprocal of the

real-axis pole location. This specification gives us an indication of the speed of the transient

response. In particular, the time constant is the time for the step response to reach 63% of its

final value.

Second-order systems are more complex. Depending on the values of system

components, a second-order system can exhibit four kinds of behavior:

1. Overdamped

2. Underdamped

3. Undamped

4. Critically damped

We found that the poles of the input generate the forced response, whereas the system

poles generate the transient response. If the system poles are real, the system exhibits

overdamped behavior. These exponential responses have time constants equal to the reciprocals

of the pole locations. Purely imaginary poles yield undamped sinusoidal oscillations whose

radian frequency is equal to the magnitude of the imaginary pole. Systems with complex poles

display underdamped responses. The real part of the complex pole dictates the exponential

decayenvelope, and the imaginarypart dictates the sinusoidal radian frequency.Theexponential

decay envelope has a time constant equal to the reciprocal of the real part of the pole, and the

sinusoid has a radian frequency equal to the imaginary part of the pole.

For all second-order cases, we developed specifications called the damping ratio, ζ,

and natural frequency, ωn. The damping ratio gives us an idea about the nature of the

transient response and how much overshoot and oscillation it undergoes, regardless of time

scaling. The natural frequency gives an indication of the speed of the response.

We found that the value of ζ determines the form of the second-order natural response:

� If ζ � 0, the response is undamped.

� If ζ < 1, the response is underdamped.

� If ζ � 1, the response is critically damped.

� If ζ > 1, the response is overdamped.

The natural frequency is the frequency of oscillation if all damping is removed. It acts

as a scaling factor for the response, as can be seen from Eq. (4.28), in which the independent

variable can be considered to be ωnt.

For the underdamped case we defined several transient response specifications,

including these:

� Percent overshoot, %OS

� Peak time, Tp

� Settling time, T s

� Rise time, T r
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The peak time is inversely proportional to the imaginary part of the complex pole. Thus,

horizontal lines on the s-plane are lines of constant peak time. Percent overshoot is a

function of only the damping ratio. Consequently, radial lines are lines of constant percent

overshoot. Finally, settling time is inversely proportional to the real part of the complex

pole. Hence, vertical lines on the s-plane are lines of constant settling time.

We found that peak time, percent overshoot, and settling time are related to pole location.

Thus,we can design transient responses by relating a desired response to a pole locationand then

relating that pole location to a transfer function and the system’s components.

The effects of nonlinearities, such as saturation, dead zone, and backlash, were

explored using MATLAB’s Simulink.

In this chapter, we also evaluated the time response using the state-space approach.

The response found in this way was separated into the zero-input response, and the

zero-state response, whereas the frequency response method yielded a total response

divided into natural response and forced response components.

In the next chapter we will use the transient response specifications developed here

to analyze and design systems that consist of the interconnection of multiple subsystems.

We will see how to reduce these systems to a single transfer function in order to apply the

concepts developed in Chapter 4.

Review Questions

1. Name the performance specification for first-order systems.

2. What does the performance specification for a first-order system tell us?

3. In a system with an input and an output, what poles generate the steady-state response?

4. In a system with an input and an output, what poles generate the transient response?

5. The imaginary part of a pole generates what part of a response?

6. The real part of a pole generates what part of a response?

7. What is the difference between the natural frequency and the damped frequency of

oscillation?

8. If a pole is moved with a constant imaginary part, what will the responses have in

common?

9. If a pole is moved with a constant real part, what will the responses have in common?

10. If a pole is moved along a radial line extending from the origin, what will the responses

have in common?

11. List five specifications for a second-order underdamped system.

12. For Question 11 how many specifications completely determine the response?

13. What pole locations characterize (1) the underdamped system, (2) the overdamped

system, and (3) the critically damped system?

14. Name two conditions under which the response generated by a pole can be neglected.

15. How can you justify pole-zero cancellation?

16. Does the solution of the state equation yield the output response of the system? Explain.

17. What is the relationship between �sI � A�, which appeared during the Laplace transfor-

mation solution of the state equations, and the state-transition matrix, which appeared

during the classical solution of the state equation?

18. Name a major advantage of using time-domain techniques for the solution of the

response.

19. Name a major advantage of using frequency-domain techniques for the solution of the

response.
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