Introduction

In this lab we will be modeling and simulating 2nd order systems. The reason we focus on 2nd order systems and their responses will become apparent within a few weeks. To kick off the semester, your first assignment will be a refresher of what you learned in ECE 431.

MATLAB and SIMULINK

Before we can proceed, please install MATLAB which is available at https://ist.njit.edu/matlab.

Assignment

- 1. Install MATLAB
 - a. Check out this video for an intro to MATLAB
 - https://www.youtube.com/watch?v=qGiKv3-02vw
 - b. Check out this video for an intro to SIMULINK https://www.youtube.com/watch?v=vxzR3W2BcRk
- 2. Get familiar with MATLAB
 - a. For Matrices **B** = [1 2 3; 4 5 6; 7 8 9]; **A** =[3 2 1; 1 3 4; 1 2 3]; **C** = [1 2; 1 4; 1 5];
 - 1.A+B
 - 2.A*B
 - 3.A.*B (What is the difference between this and A*B?)
 - 4.A' (What is this?)
 - 5.C*A (What's wrong?)
 - 6.A+B; (What did the ';' do?)
 - b. Create the following vector $\mathbf{V} = [12345678]$;
 - 1. Create a new complex vector **J=V+1i*V**. (What just happened?)
 - 2.**J**′
 - 3.J.' (What's the difference? Hint: type doc transpose and doc ctranspose for help in the command window.)
 - 4. Create a complex variable a = 2 + i2. (Use 1i = i)
 - c. SIMULINK
 - 1. Create a new blank model and call it "secondOrder.slx"
 - 2. Add a source "Step"
 - 3. Add a sink "Scope"
 - 4. Add a transfer function and give it the following equation "100/(s^2+4s)"
 - 5. Label the input wire "X"
 - 6. Label the output wire "Y"
 - 7. Run the simulation and add the scope image to your report
 - 8. Close the loop by adding negative feedback
 - 9. Run the simulation for the closed loop and add the image to your report

