
2.8 Electromechanical System Transfer Functions

In the last section we talked about rotational systems with gears, which completed our

discussion of purely mechanical systems. Now, we move to systems that are hybrids of

electrical and mechanical variables, the electromechanical systems. We have seen one

application of an electromechanical system in Chapter 1, the antenna azimuth position

in Figure 2.32(b), from which the equation of motion is

�Jes
2 � Des�θ1�s� � T1�s� �2.142�

where

Je � J1 � �J2 � J3�
N1

N2

 !2

� �J4 � J5�
N1N3

N2N4

 !2

and

De � D1 � D2

N1

N2

 !2

From Eq. (2.142), the transfer function is

G�s� �
θ1�s�

T1�s�
�

1

Jes2 � Des
�2.143�

as shown in Figure 2.32(c).

Skill-Assessment Exercise 2.10

PROBLEM: Find the transfer function, G�s� � θ2�s�=T�s�, for the rotational mechanical

system with gears shown in Figure 2.33.

ANSWER: G�s� �
1=2

s2 � s � 1

The complete solution is at www.wiley.com/college/nise.

1 N-m-s/rad

4 N-m/rad
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N1 = 25

FIGURE 2.33 Rotational mechanical system with gears for Skill-Assessment Exercise 2.10
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control system. Other applications for systems with electromechanical components are

robot controls, sun and star trackers, and computer tape and disk-drive position controls. An

example of a control system that uses electromechanical components is shown in

Figure 2.34.

A motor is an electromechanical component that yields a displacement output for a

voltage input, that is, a mechanical output generated by an electrical input. We will derive the

transfer function for one particular kind of electromechanical system, the armature-controlled

dc servomotor (Mablekos, 1980). The motor’s schematic is shown in Figure 2.35(a), and the

transfer function we will derive appears in Figure 2.35(b).

In Figure 2.35(a) a magnetic field is developed by stationary permanent magnets or a

stationary electromagnet called the fixed field. A rotating circuit called the armature,

through which current ia�t� flows, passes through this magnetic field at right angles and feels

a force, F � Blia�t�, where B is the magnetic field strength and l is the length of the

conductor. The resulting torque turns the rotor, the rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at right

angles to a magnetic field generates a voltage at the terminals of the conductor equal to

12See Appendix I at www.wiley.com/college/nise for a derivation of this schematic and its parameters.
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FIGURE 2.35 DC motor: a. schematic;12 b. block diagram

FIGURE 2.34 NASA flight

simulator robot arm with

electromechanical control

system components
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e � Blv, where e is the voltage and v is the velocity of the conductor normal to the magnetic

field. Since the current-carrying armature is rotating in a magnetic field, its voltage is

proportional to speed. Thus,

vb�t� � Kb

dθm�t�

dt
�2.144�

We call vb�t� the back electromotive force (back emf ); Kb is a constant of

proportionality called the back emf constant; and dθm�t�=dt � ωm�t� is the angular

velocity of the motor. Taking the Laplace transform, we get

Vb�s� � Kbsθm�s� �2.145�

The relationship between the armature current, ia�t�, the applied armature voltage,

ea�t�, and the back emf, vb�t�, is found by writing a loop equation around the Laplace

transformed armature circuit (see Figure 3.5(a)):

RaIa�s� � LasIa�s� � Vb�s� � Ea�s� �2.146�

The torque developed by the motor is proportional to the armature current; thus,

Tm�s� � K tIa�s� �2.147�

where Tm is the torque developed by the motor, and K t is a constant of proportionality,

called the motor torque constant, which depends on the motor and magnetic field

characteristics. In a consistent set of units, the value of K t is equal to the value of

Kb. Rearranging Eq. (2.147) yields

Ia�s� �
1

K t

Tm�s� �2.148�

To find the transfer function of the motor, we first substitute Eqs. (2.145) and (2.148)

into (2.146), yielding

�Ra � Las�Tm�s�

K t

� Kbsθm�s� � Ea�s� �2.149�

Now we must find Tm�s� in terms of θm�s� if we are to separate the input and output

variables and obtain the transfer function, θm�s�=Ea�s�.

Figure 2.36 shows a typical equivalent mechanical loading on a motor. Jm is

the equivalent inertia at the armature and includes both the armature inertia and, as

we will see later, the load inertia reflected to the armature. Dm is the equivalent

viscous damping at the armature and includes both the armature viscous damping

and, as we will see later, the load viscous damping reflected to the armature. From

Figure 2.36,

Tm�s� � �Jms
2 � Dms�θm�s� �2.150�

Substituting Eq. (2.150) into Eq. (2.149) yields

�Ra � Las��Jms
2 � Dms�θm�s�

K t

� Kbsθm�s� � Ea�s� �2.151�

Tm(t) θm(t)

Jm

Dm

FIGURE 2.36 Typical equivalent

mechanical loading on a motor
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If we assume that the armature inductance, La, is small compared to the armature resistance,

Ra, which is usual for a dc motor, Eq. (2.151) becomes

Ra

K t

�Jms � Dm� � Kb

" #

sθm�s� � Ea�s� �2.152�

After simplification, the desired transfer function, θm�s�=Ea�s�, is found to be

θm�s�

Ea�s�
�

K t=�RaJm�

s s �
1

Jm
Dm �

K tKb

Ra

 !" #

�2.153�

Even though the form of Eq. (2.153) is relatively simple, namely

θm�s�

Ea�s�
�

K

s�s � α�
�2.154�

the reader may be concerned about how to evaluate the constants.

Let us first discuss the mechanical constants, Jm and Dm. Consider

Figure 2.37, which shows a motor with inertia Ja and damping Da at the

armature driving a load consisting of inertia JL and damping DL. Assuming

that all inertia and damping values shown are known, JL and DL can be

reflected back to the armature as some equivalent inertia and damping to be

added to Ja and Da, respectively. Thus, the equivalent inertia, Jm, and

equivalent damping, Dm, at the armature are

Jm � Ja � JL
N1

N2

 !2

; Dm � Da � DL

N1

N2

 !2

�2.155�

Now that we have evaluated the mechanical constants, Jm and Dm, what about the

electrical constants in the transfer function of Eq. (2.153)?Wewill show that these constants

can be obtained through a dynamometer test of the motor, where a dynamometer measures

the torque and speed of a motor under the condition of a constant applied voltage. Let us first

develop the relationships that dictate the use of a dynamometer.

Substituting Eqs. (2.145) and (2.148) into Eq. (2.146), with La � 0, yields

Ra

K t

Tm�s� � Kbsθm�s� � Ea�s� �2.156�

Taking the inverse Laplace transform, we get

Ra

K t

Tm�t� � Kbωm�t� � ea�t� �2.157�

where the inverse Laplace transform of sθm�s� is dθm�t�=dt or, alternately, ωm�t�.

If a dc voltage, ea, is applied, the motor will turn at a constant angular velocity, ωm,

with a constant torque, Tm. Hence, dropping the functional relationship based on time from

Eq. (2.157), the following relationship exists when the motor is operating at steady state

with a dc voltage input:

Ra

K t

Tm � Kbωm � ea �2.158�

JL

DL

N2

N1Motor

Ja, Da

FIGURE 2.37 DC motor driving a rotational

mechanical load

13

14

13The units for the electrical constants are K t = N-m-A (newton-meters/ampere), and Kb = V-s/rad

(volt-seconds/radian).
14 If the values of the mechanical constants are not known, motor constants can be determined through laboratory

testing using transient response or frequency response data. The concept of transient response is covered in Chapter 4;

frequency response is covered in Chapter 10.
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Solving for Tm yields

Tm � �
KbK t

Ra

ωm �
K t

Ra

ea �2.159�

Equation (2.159) is a straight line, Tm vs. ωm, and is shown in

Figure 2.38. This plot is called the torque-speed curve. The torque axis

intercept occurs when the angular velocity reaches zero. That value of torque

is called the stall torque, Tstall. Thus,

T stall �
K t

Ra

ea �2.160�

The angular velocity occurring when the torque is zero is called the no-load

speed, ωno-load. Thus,

ωno-load �
ea

Kb

�2.161�

The electrical constants of the motor’s transfer function can now be found

from Eqs. (2.160) and (2.161) as

K t

Ra

�
T stall

ea
�2.162�

and

Kb �
ea

ωno-load
�2.163�

The electrical constants, K t=Ra and Kb, can be found from a dynamometer test of the motor,

which would yield T stall and ωno-load for a given ea.
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FIGURE 2.38 Torque-speed curves with an

armature voltage, ea, as a parameter

Example 2.23

Transfer Function—DCMotor and LoadTransfer Function—DCMotor and Load

PROBLEM: Given the system and torque-speed curve of Figure 2.39(a) and (b), find the

transfer function, θL�s�=Ea�s�.

SOLUTION: Begin by finding the mechanical constants, Jm andDm, in Eq. (2.153). From

Eq. (2.155), the total inertia at the armature of the motor is

Jm � Ja � JL
N1

N2

 !2

� 5 � 700
1

10

 !2

� 12 �2.164�

and the total damping at the armature of the motor is

Dm � Da � DL

N1

N2

 !2

� 2 � 800
1

10

 !2

� 10 �2.165�

Virtual Experiment 2.2

Open-Loop Servo Motor

Put theory into practice

exploring the dynamics of the

Quanser Rotary Servo System

modeled in LabVIEW. It is

particularly important to

know how a servo motor

behaves when using them in

high-precision applications

such as hard disk drives.

Virtual experiments are found

on Learning Space.
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Now we will find the electrical constants, K t=Ra and Kb. From the torque-speed

curve of Figure 2.39(b),

T stall � 500 �2.166�

ωno-load � 50 �2.167�

ea � 100 �2.168�

Hence the electrical constants are

K t

Ra

�
T stall

ea
�
500

100
� 5 �2.169�

and

Kb �
ea

ωno-load

�
100

50
� 2 �2.170�

Substituting Eqs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield

θm�s�

Ea�s�
�

5=12

s s �
1

12
�10 � �5��2��

$ % �
0:417

s�s � 1:667�
�2.171�

In order to find θL�s�=Ea�s�, we use the gear ratio, N1=N2 � 1=10, and find

θL�s�

Ea�s�
�

0:0417

s�s � 1:667�
�2.172�

as shown in Figure 2.39(c).
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FIGURE 2.39 a. DC motor and load; b. torque-speed curve; c. block diagram
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