Chapter 1: Becoming Skilled at Information Technology

Fluency with Information Technology
Third Edition

by Lawrence Snyder

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Terms of Endearment

- Defining Information Technology
 - Learning the language of IT
 - Acronyms
 - WYSIWIG
 - Jargon
 - "Clicking around"
 - Metaphors
 - Everyday terms like "window" have special meanings in IT

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Why Know Just the Right Word?

- There are many new terms in IT
 - Terms are invented for ideas, concepts and devices that never existed before
- Educated people use the right word at the right term
 - "le mot juste" (the right word)

Why Know Just the Right Word? (cont'd)

- Terminology is basic to learning a new subject
 - Words represent ideas and concepts
 - Precision in word use represents precision in understanding idea
- Communicating with others
 - To be able to ask questions and receive help
 - By email, by telephone, through online help facility

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-3

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Where's the Start Button?

- Most computers are left on all the time
 - Screen savers prevent burn-in on screen
 - Computer is reactivated by moving or clicking mouse, or pressing a key
- Why bother to learn where the Start Button is?
 - Sometimes computers are off
 - Need to power-cycle

Two Basic Organizations

- Component
 - Desktop PC's with separate components
 - Monitor
 - Hard Drive
 - Speakers
 - · Etc.
 - Allows user to mix and match
 - Power switch on box with disk drives

(b)

Figure 1.1. Example of (b) component systems.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Two Basic Organizations (cont'd)

- Monolithic
 - iMac or laptop has all devices bundled together
 - Simple and convenient
 - Power switch on chassis or keyboard

Figure 1.1. Example of (a) monolithic systems.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-7

The Monitor

- Interactive video screen
 - Bit-mapped
 - Display information stored in computer memory

Figure 1.2. An enlargement of a monitor's display of the word bitmap and the corresponding bits for each pixel.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

. .

The Monitor (cont'd)

- CRT's and LCD's
- Screen displays images from its memory
 - Virtual Reality

Figure 1.2. An enlargement of a monitor's display of the word bitmap and the corresponding bits for each pixel.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Cables

- Connect components to computer and to power source
- · Cables need to be plugged in correctly
 - Sockets and plugs labeled with icons and color coded

Figure 1.3. Examples of icons commonly displayed on computer cables and sockets.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Colors

- RGB
 - Primary colors of light
 - · red, green, blue
 - Colors on screen created by combining different amounts of primary colors

1-11

- CMYK
 - Primary printer colors
 - cyan, magenta, yellow, key/black

Pixels

- Grid of small units called pixels (for picture elements)
 - Size of the dot on letter i
- Computer draws each pixel in the designated color for the image or figure
- The more pixels in each row and column, the smoother and crisper the image (high resolution)

A Virtual Button

- Color the screen's pixels to make a believable 3-D looking button
 - Medium-gray background
 - Rectangle with top and left sides white, bottom and right sides black

Figure 1.5. Two virtual buttons with different "feels."

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Virtual Button

- Button Motion
 - Reverse black and white colors
 - Move position down and to right

Figure 1.6. Pushing a button.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-1/

Pressing a Virtual Button

- Moving the mouse pointer
 - Mouse pointer is drawn on screen like any image
 - When mouse moves, computer re-draws in correct direction
 - Fast refresh rate (30 times per second) creates illusion of motion
 - Computer keeps track of which pixel is at the point of the arrow

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-1

1-17

1-13

to (c), and then clicking (d), a button; the coordinates of the point of the pointer are given by their row, column positions.

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-1

Coordinating the Button and the Mouse

- When mouse is clicked, computer redraws button that mouse is hovering over
 - Computer keeps a list of every button drawn on screen
 - Positions of upper-left and lower-right corners
 - When button is re-drawn in clicked position, software reacts by performing appropriate action (event-driven)

Figure 1.8. A button's location is completely determined by the positions of its upper-left and lower-right corners.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Motherboard

- Printed circuit board inside processor box
 - Contains most of the circuitry of PC system

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Motherboard (cont'd)

- Smaller circuit boards, called daughter boards or cards, plug into motherboard for added functionality
- Motherboard contains the microprocessor chip or central processing unit (CPU) and the *memory*

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Microprocessor

- "Smart" part of system
- Performs actual computing
- "Micro" was adopted around 1980 to distinguish single chip circuitry from larger mainframes of the day.
- Term is archaic. It is more correct to say "processor" or CPU.
- Multi-Cores

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-23

Memory (Primary/Main Memory)

- Where program and data are located while program runs
- RAM: Random Access Memory
 - volatile
- PC Contains millions/billions of bytes of RAM
 - Megabytes (MB) / Gigabytes (GB)
- What Random Access means
 - Any item can be retrieved directly
 - Unlike sequential access (ex. tapes)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Hard Disk (Secondary Memory)

- · High-Capacity, persistent peripheral storage device
 - Stores programs and data not in immediate use by computer
 - Made from magnetized iron compound
 - · Information remains whether PC is on or off
 - · Called permanent or persistent storage
 - non-volatile

Figure 1.10 Sequential versus random access.

Hard Disk (cont'd)

 Small stack of bright metal washers with arm that sweeps across

Figure 1.11 A hard disk.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-25

Saving from RAM to Hard Disk

- Saving moves information from RAM to hard disk
 - Prudent user saves frequently
- RAM memory is volatile
 - Information is lost when power turns off
 - If computer fails or power-cycles, only data on disk will survive

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1 20

How Soft is Software?

- Hardware is old term for metal items used in construction
 - Refers to physical parts of computer
 - Functions implemented directly with wires and transistors
- Software is a term created for computers
 - Means programs or instructions the computer follows to implement functions

Copyright ${\mathbin{\mathbb C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-27

1-29

Algorithms and Programs

- Algorithm
 - Precise and systematic method for solving a problem (steps to accomplish a task)
 - Examples:
 - · Arithmetic operations
 - · Sending a greeting card
 - · Searching for a phone number
 - · Determining when a mouse pointer hovers over a button
 - Algorithms need to be precise

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-28

Algorithms and Programs (cont'd)

- Writing out steps of algorithm is called programming
 - Program is an algorithm written in specific language for specific set of conditions
- Running a Program
 - Click on program icon (ex. Firefox browser)
 - We instruct computer to run or execute or interpret the program from Mozilla company that browses Internet.

Boot

- Booting: Start computer
- Rebooting: Re-start computer
- Boot instructions are stored in a microchip called the boot ROM
- Term comes from "bootstrapping"

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Words for Ideas

- Abstract: Remove the basic concept, idea, or process from a situation
- Abstraction is a more succinct and generalized form of the removed concept.
 - e.g., parables and fables (moral is abstracted from story)
 - Decide which details are relevant
 - Understand and convey the same point to apply to many situations

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-31

"Generalize"

- Recognize common idea in two or more situations
- Summarize expression of idea, concept, or process that applies to many situations
 - e.g., faucet handles usually turn left for on and right for off
 - Caps usually twist left to loosen, right to tighten
- Remember that generalizations will not apply in every single situation

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-32

"Operationally Attuned"

- Being aware of how a gadget works
- Apply what we know about how device or system works to simplify use
 - e.g., cap lids usually twist less to loosen, so we are confident about which way to twist if unsure
- Thinking about how IT works makes it simpler to use technology

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-33

1-35

Figure 1.12 Deadbolt lock. (a) The external view (b) Internal components, unlocked. (c) Internal components, locked. Thinking about how the deadbolt works allows us to see at a glance whether the door is locked or not.

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-3-

"Mnemonic"

- Memory aid
 - How to pronounce words and phrases
 - e.g., 5 Great Lakes are HOMES (Huron, Ontario, Michigan, Eire, Superior)
 - PILPOF Plug in last, pull out first
 - Spring ahead; Fall back
- Helps simplify use of technology
 - Easy memorization of infrequently used details

Analytical Thinking

- Use specific facts and comparisons to back up statements
- Non-analytical statement:
 - World record in the mile run has improved
- · Analytical statements:
 - In 45 years, the world record in the mile has improved from 3.59.4 to 3.43.13, a 7% improvement
 - The average 20 year old can run a mile in 7.5 minutes. The world record holder is twice as fast.

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Factor of Improvement

- As a percentage
 - Divide the new rate by the old rate
 - New rate is 7% faster
- · As a factor:
 - New rate is factor-of-1.07 times faster than old rate, and factor-of-2 times faster than average person

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-37

Super Computers

- Analytical comparison of computer speeds
 - UNIVAC I
 - First commercial computer released in 1951
 - Rate of 100,000 addition operations (adds) per second
 - Todav's Thinkpad
 - · Affordable laptop system
 - · Rate of 1 billion adds per second
 - · Factor of 10,000 improvement over UNIVAC
 - ASCI Red
 - · Intel Computer built for Sandia National Labs
 - · Rate of 2.1 trillion floating points (decimal) adds per second
 - Factor of 21 million improvement over UNIVAC

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1 20

Benefits of Analytical Thinking

- Learning specific facts, and comparing to other specific facts
- Putting things in perspective
 - Factor of 1.07 improvement in mile run record does not seem small when compared to factor of 2 difference between world record holder and average person

Copyright ${\hbox{\o c}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-39

Defining WYSIWYG

- First acronym in this chapter
 - "What you see is what you get"
 - Text is stored in memory as long line of letters, numbers, punctuation, etc.
 - Original text editing software could not display formatting; users had to guess what it would look like when printed
 - WYSIWYG applications, like word processors, display data as formatted page

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Figure 1.13 The runners Hicham El Guerrouj (left) and Roger Bannister (right).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley