Chapter 8: Bits and the "Why" of Bytes: Representing Information Digitally

Fluency with Information Technology Third Edition

by Lawrence Snyder

opyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8 * 144 0

Figure 8.1. Three symbol assignments for a telephone keypad.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Digitizing Discrete Information

- Digitize: Represent information with digits (normally base 10 numerals 0 through 9)
- Limitation of Digits
 - Alternative Representation: Any set of symbols could represent phone number digits, as long as the keypad is labeled accordingly
- · Symbols, Briefly
 - Digits have the advantage of having short names (easy to say)
 - But computer professionals are shortening symbol names (exclamation point is pronounced "bang")

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Ordering Symbols

- · Advantage of digits for encoding info is that items can be listed in numerical order
- To use other symbols, we need an ordering system (collating sequence)
 - Agreed order from smallest to largest value
- In choosing symbols for encoding, consider how symbols interact with things being encoded

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Fundamental Representation of Information

- The fundamental patters used in IT come when the physical world meets the logical world
- The most fundamental form of information is the presence or absence of a physical phenomenon
- In the logical world, the concepts of true and false are important
 - By associating true with the presence of a phenomenon and false with its absence, we use the physical world to implement the logical world, and produce information technology

Analog vs. Digital

- Analog is continuous data/information
 - Sound waves

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Analog vs. Digital

- · Digital is discrete data/information
 - Many distinct samples of data
 - Stored in binary (0's and 1's)
 - · All data in a computer is represented in binary

Time
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The PandA Representation

- PandA is the mnemonic for "presence and absence"
- It is discrete (distinct or separable)—the phenomenon is present or it is not (true or false; 1 or 0). There in no continuous gradation in between.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Binary System

- Two patterns make a binary system
 - Base 2 (0 or 1)
- The basic binary unit is known as a "bit" (short for binary digit)
- 8 bits are grouped together to form a byte
 - Memory accessed by byte addresses
- We can give any names to these two patterns as long as we are consistent
 - PandA (Presence and Absence can represent 1 and 0, respectively)

Copyright ${\mathbin{\mathbb C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Table 8.1 Possible interpretations of the two PandA patterns

Present	Absent
True	False
1	0
On	Off
Yes	No
+	-
Black	White
For	Against
Yang	Yin
Lisa	Bart

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

. . .

Encoding Bits on a CD-ROM

Encoding Bits on a CD-ROM

Bits in Computer Memory

- Memory is arranged inside a computer in a very long sequence of bits (places where a phenomenon can be set and detected)
- Analogy: Sidewalk Memory
 - Each sidewalk square represents a memory slot (bit), and stones represent the presence or absence
 - If a stone is on the square, the value is 1, if not the value is 0

8-13

Figure 8.2 Sidewalk sections as a sequence of bits (1010 0010).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

_ .

Alternative PandA Encodings

- There are other ways to encode two states using physical phenomena
 - Use stones on all squares, but black stones for one state and white for the other
 - Use multiple stones of two colors per square, saying more black than white means 0 and more white than black means 1
 - Stone in center for one state, off-center for the other
 - etc.

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-1

8-17

Combining Bit Patterns

- Since we only have two patterns, we must combine them into sequences to create enough symbols to encode necessary information
- Binary (PandA) has 2 patterns, arranging them into n-length sequences, we can create 2ⁿ symbols

Copyright ${\hbox{\o c}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-16

Table 8.2 Number of symbols when the number of possible patterns is two

	2"	Symbols
1	21	2
2	22	4
3	2 ³	8
4	2^{4}	16
5	2 ⁵	32
6	26	64
7	27	128
8	28	256
9	29	512
10	210	1,024

Hex Explained

- Recall in Chapter 4, we specified custom colors in HTML using hex digits
 - e.g.,
 - Hex is short for hexadecimal, base 16
- Why use hex? Writing the sequence of bits is long, tedious, and error-prone

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The 16 Hex Digits

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

$$-A = 10, B = 11, ..., F = 15$$

- Sixteen values can be represented perfectly by 4-bit sequences (2⁴ = 16)
- Changing hex digits to bits and back again:
 - Given a sequence of bits, group them in 4's and write the corresponding hex digit
 - 0101 1100
 - 5 C
 - Given hex, write the associated group of 4 bits

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-19

Hex (0-9,A-F)

<u>Decimal</u>	<u>Hex</u>	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0100
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Ε	1110
15	F	1111

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

. . . .

Digitizing Text

- Early binary representation—1 and 0—encoded numbers and keyboard characters
- Now representation for sound, video, and other types of information are also important
- For encoding text, what symbols should be included?
 - We want to keep the list small enough to use fewer bits, but we don't want to leave out critical characters

Assigning Symbols

- 26 uppercase and 26 lowercase Roman letters, 10 Arabic numerals, 10 arithmetic characters, 20 punctuation characters (including space), and 3 non-printable characters (new line, tab, backspace) = 95 characters, enough to represent English
- For 95 symbols, we need 7-bit sequences
 - $-2^6 = 64$ $2^7 = 128$
- A standard 7-bit code is ASCII(<u>A</u>merican Standard Code for Information Interchange)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-2

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-2

Decimal ASCII Character Set

Decimal - Character

0	NUL	1	SOH	2	STX	3	ETX	4	EOT	5	ENQ	6	ACK	7	BEL
8	BS	9	HT	10	NL	11	VT	12	NP	13	CR	14	SO	15	SI
16	DLE	17	DC1	18	DC2	19	DC3	20	DC4	21	NAK	22	SYN	23	ETB
24	CAN	25	EM	26	SUB	27	ESC	28	FS	29	GS	30	RS	31	US
32	SP	33	!	34	"	35	#	36	\$	37	8	38	&	39	•
40	(41)	42	*	43	+	44	,	45	-	46		47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	<	61	=	62	>	63	?
64	@	65	A	66	В	67	C	68	D	69	E	70	F	71	G
72	Н	73	I	74	J	75	K	76	L	77	M	78	N	79	0
80	P	81	Q	82	R	83	S	84	T	85	U	86	V	87	W
88	X	89	Y	90	Z	91	[92	\	93]	94	^	95	_
96	`	97	а	98	b	99	C	100	d	101	е	102	f	103	g
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	0
112	р	113	q	114	r	115	S	116	t	117	u	118	V	119	W
120	х	121	У	122	Z	123	{	124	1	125	}	126	~	127	DEL

Hexadecimal ASCII Character Set

Hexadecimal - Character

00	NUL	01	SOH	02	STX	03	ETX	04	EOT	05	ENQ	06	ACK	07	BEL
08	BS	09	HT	0 A	NL	0B	VT	0C	NP	0 D	CR	0E	SO	0F	SI
10	DLE	11	DC1	12	DC2	13	DC3	14	DC4	15	NAK	16	SYN	17	ETB
18	CAN	19	EM	1A	SUB	1B	ESC	1C	FS	1D	GS	1E	RS	1F	US
20	SP	21	!	22	"	23	#	24	\$	25	%	26	&	27	•
28	(29)	2A	*	2В	+	2C	,	2D	-	2E		2F	/
30	0	31	1	32	2	33	3	34	4	35	5	36	6	37	7
38	8	39	9	ЗА	:	3В	;	3С	<	3D	-	3E	>	3F	?
40	@	41	A	42	В	43	C	44	D	45	E	46	F	47	G
48	H	49	I	4 A	J	4B	K	4C	L	4 D	M	4E	N	4 F	0
50	P	51	Q	52	R	53	S	54	T	55	U	56	V	57	W
58	X	59	Y	5A	Z	5В]	5C	\	5D]	5E	^	5F	_
60	`	61	a	62	b	63	C	64	d	65	е	66	f	67	g
68	h	69	i	6A	j	6B	k	6C	1	6D	m	6E	n	6F	0
70	p	71	q	72	r	73	S	74	t	75	u	76	v	77	W
70	v	70	* 7	77	77	7 D	f	70	1	7 D	1	70		70	DET

Extended ASCII: An 8-bit Code

- By the mid-1960's, it became clear that 7-bit ASCII was not enough to represent text from languages other than English
- IBM extended ASCII to 8 bits (256 symbols)
- Called "Extended ASCII," the first half is original ASCII with a 0 added at the beginning of each group of bits
- Handles most Western languages and additional useful symbols

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-25

	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ASCII	0	0	0	0	1 0	1 0	1	1	0	0	0	0	1 0	1 0	1	1
	0	0	1 0	1	0	1	0	1	0	0	1	1	0	1	0	1
0000	Nu	1,	s _x	5	4	*a	^k	۸.	1,	H _Y	4	٧,	*,	c,	5,	6,
0001	D _L	0,	D ₂	Dj	04	N _K	14	1	c _N	r _M	50	°c	's	G _s	*5	U _s
0010		1	"	#	\$	8	&		()	*	+		-	*	1
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
0101	P	Q	R	S	T	U	v	W	Х	Y	Z	1	1	1	^	-
0110		a	b	С	d	е	£	g	h	i	j	k	1	m	n	0
0111	p	q	r	s	t	u	v	w	×	У	z	{	1	}	~	D,
1000	٠.	4	5	5	W	۳.	5	S	"8	н,	Y _S	Po	•	5	5,	5
1001	D _C	*,	12	16	c _c	M _M	5,	4	%	00	0,	c,	5,	o _s	PM	4
1010	A _O	1	¢	£		¥	1	5		0	8	Æ	7	-	®	-
1011	0	±	2	3	-	μ	1	.*		1	ď	29	1/4	3/4	%	ć
1100	A	Á	Â	Ã	A	Α	Æ	Ç	È	É	Ê	Ê	İ	Í	Î	Î
1101	Đ	Ñ	ò	Ó	ô	ō	Ō	×	Ø	Ù	Ú	Û	Û	Ý	Þ	β
1110	à	á	â	ã	à	å	æ	ç	è	é	ê	è	1	í	ī	i
1111	ð	ñ	ò	6	â	õ	ô	+	0	ù	ú	û	û	ý	Þ	ý

Figure 8.3 ASCII. The American Standard Code for Information Interchange.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ASCII Coding of Phone Numbers

- How would a computer represent in its memory, the phone number 888 555 1212?
- Encode each digit with its ASCII byte

Unicode

- Several languages around the world have more than 256 individual characters
- Unicode uses 16 bits; 2¹⁶ = 65536 characters
 - 1st 7 bits (128 chars) are ASCII chars
 - Different locales different characters beyond 1st 7 bits

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-2

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

. . .

NATO Broadcast Alphabet

 The code for broadcast communication is purposefully inefficient, to be distinctive when spoken amid noise

Table 8.4 NATO broadcast alphabet designed not to be minimal

А	Alpha	Н	Hotel	0	Oscar	٧	Victor
В	Bravo	1	India	Р	Papa	W	Whiskey
С	Charlie	J	Juliet	Q	Quebec	Х	X-ray
D	Delta	K	Kilo	R	Romeo	Υ	Yankee
Е	Echo	L	Lima	S	Sierra	Z	Zulu
F	Foxtrot	М	Mike	Т	Tango		
G	Golf	N	November	U	Uniform		

The Oxford English Dictionary

- Extended ASCII encodes letters and characters well, but most documents contain more than just text.
 - Format information like font, font size, justification
- Formatting characters could be added to ASCII, but that mixes the content with the description of its form (metadata)
- Metadata is represented using tags, as in HTML

Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Tags to Encode

- Oxford English Dictionary (OED) printed version is 20 volumes
- We could type the entire contents as ASCII characters (in about 120 years), but searching would be difficult
 - Suppose you search for the word "set." It is included in many other words like closet, horsetail, settle, etc.
 - How will the software know what characters comprise the definition of set?
 - Incorporate metadata

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-31

Structure Tags

- Special set of tags was developed to specify OED's structure
 - <hw> means headword, the word being defined
 - Other tags label pronunciation <pr>, phonetic notation <ph>, parts of speech <ps>
- The tags do not print. They are there only to specify structure so the computer knows what part of the dictionary it is looking at

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8-32

byte (balt). Computers. [Arbitrary, prob. influenced by bit sb.4 and bite sb.] A group of eight consecu-

1964 Blaauw & Brooks in IBM Systems Irnl. 111. 122 An 8-bit unit of information is fundamental to 1904 Bladiuw et Brooks in IBM Systems Jenl. III. 122 An 8-bit unit of information is fundamental to most of the formats [of the System/360]. A consecutive group of n such units constitutes as field of length n. Fixed-length fields of length one, two, four, and eight are termed bytes, halfwords, words, and double words respectively. 1964 IBM Jenl. Res. & Developm. VIII. 97/1 When a byte of data appears from an I/O device, the CPU is setzed, dumped, used and restored. 1967 R. A Stark Digital Computer Programming xix. 351 The normal operations in fixed point are done on four bytes at a time. 1968 Dataweek 24 Jan. 1/1 Tape reading and writing is at from 34,160 to 192,000 bytes per

e><hg><hw>byte</hw> <pr><ph>baIt</ph></pr></hg>, <la> Computers</la>, <etym> &. <a>Brooks<bib>in</bib> <w>IBM Systems Jrnl.</w> <lc>III.122</lc> quipolitation of information is fundamental to most of the formats odoof the System/360</ed>.tes.A consecutive group of <i>n</i>such units constitutes a field of length <i>n</i>.tes.Fixed-length fields of length one, two, four, and eight are termed bytes, halfwords, words, and double words respectively. </qt></q><q><qd>1964</qd> <w>IBM Jrnl. Res. &. Developm. </w> <lc>VIII. 97/1</lc> <qt>When a byte of data appears from an I/O device, the CPU is seized, dumped, used and restored.</qt></q><q<>qd>1967</qd> <a>P. A. Starkcw>Digital Computer Programming<1c>xix. 351<1c>xix. 251<1c>xix. 351<1c>xix. 351 in fixed point are done on four bytes at a time.</qt></q> <q><q</qd> | 968</qd></w> Dataweek</w> <lc>24 Jan. 1/1</lc> <qt>Tape reading and writing is at from 34,160 to 192,000 bytes per second.</qt></q></qp></e>

Figure 8.4 The OED entry for the word byte, together with the representation of the entry in its digitized form with tags.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Why "BYTE"

- Why is BYTE spelled with a Y?
- The Engineers at IBM were looking for a word for a quantity of memory between a bit and a word (usually 32 bits). Bite seemed appropriate, but they changed the i to a y, to minimize typing errors.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley