Chapter 9: Following Instructions:

Principles of Computer Operation
|

Fluency with Information Technology
Third Edition

by
Lawrence Snyder

PEARSON
e

Addison
Wesley

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Instruction Execution Engines

« What computers can do

— Deterministically perform or execute instructions to process
information

— The computer must have instructions to follow

* What computers can't do
— Have no imagination or creativity
— Have no intuition
Have no sense of irony, subtlety, proportion, decorum, or humor
Are not vindictive or cruel
— Are not purposeful
Have no free will
Recent movies: Terminator, Matrix, Al

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-2

The Fetch/Execute Cycle

« A five-step cycle:

Instruction Fetch (IF)

Instruction Decode (ID)

Data Fetch (DF) / Operand Fetch (OF)
Instruction Execution (EX)

Result Return (RR) / Store (ST)

a k~ w0 Dh =

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-3

Anatomy of a Computer

- Computers have five basic parts or subsystems

— Memory, control unit, arithmetic/logic unit (ALU), input
unit, output unit

ALU Control Input | —Mouse
— Keyboard
— Scanner

- Hard Disk
USB Memory

Memory Output —Monitor
— Printer
— Speakers

1
I I

Figure 9.2. The principal subsystems of a computer.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-4

Memory

* Memory stores the program running and the data on
which the program operates

* Properties of memory:

Discrete locations. Each location consists of 1 byte.

Addresses. Every memory location (byte) has an address (whole
numbers starting with zero).

— Values. Memory locations record or store values.

Finite capacity. Limited size—programmers must remember that
the data may not "fit" in the memory location.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9.5

Byte-Size Memory Location

« A commonly used diagram of computer
memory represents the discrete locations
as boxes (1 byte each).

- Address of location is displayed above the
box.

- Value or contents of location is shown in
the box.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-6

o 1 2 3 4 5 6 7 8 9 10 11
(100 T h|[a[N|[K][S$[*[4]|B]|d]| al]l.]

Figure 9.3. Diagram of computer memory illustrating its key properties.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-7

Memory (cont'd)

- 1-byte memory locations can store one
ASCI| character, or a number less than
256 (0 - 255)

* Programmers use a sequence of memory
locations together, ignoring the fact that
they all have different addresses

— Blocks of four bytes are used as a unit so
frequently that they are called memory "words"

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-8

Random Access Memory (RAM)

« "Random access" means the computer can
refer to (access) the memory locations in
any order

« Often measured in
megabytes (MB) — millions of bytes or
gigabytes (GB) — billions of bytes

- Large memory is preferable because there
is more space for programs and data
(which usually equates to less 1/O)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-9

Control Unit

« Hardware implementation of the Fetch/Execute Cycle
+ Its circuitry fetches an instruction from memory, decodes
the instruction, and fetches the operands used in it
— A typical instruction might have the form
ADD 4000, 2000, 2080

— This instruction asks that the numbers stored in locations 2000
and 2080 be added together, and the result stored in location
4000 [4000] = [2000] + [2080]

— Data/Operand Fetch step must get these two values and after
they are added, Result Return/Store step will store the answer in
location 4000

op dest, src1, src2

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-10

2000 2080 4000
48 2 50

2000 2080 4000
9 0 3

2000 2080 4000
14 14 28

Figure 9.4. lllustration of a single ADD instruction
producing different results depending on the contents
of the memory locations referenced in the instruction.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-11

Arithmetic/Logic Unit (ALU)

» Performs the math

« Generally does the work during the Instruction Execute step of the
Cycle

+ Acircuit in the ALU can add two number
» There are also circuits for multiplying, comparing, etc.
+ Instructions that just transfer data usually don't use the ALU

- Data/Operand Fetch step of the Cycle gets the values that the ALU
needs to work on (operands)

* When the ALU completes the operation, Return Result/Store step
moves the answer from the ALU to the destination memory address
specified in the instruction

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-12

Input Unit and Output Unit (I1/O)

« The wires and circuits through which information
moves into and out of a computer

» The peripherals: Connect to the computer
input/output ports. They are not considered part
of the computer, but specialized gadgets that
encode or decode information between the
computer and the physical world.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-13

The Peripherals

+ Keyboard encodes keystrokes we type into
binary form for the computer

« Monitor decodes information from the computer's
memory and displays it on a lighted, colored
screen

 Disks drives are used for both input and output—
storage devices where the computer puts away
information when it is not needed, and can
retrieve from when it is needed again

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-14

A Device Driver for Every Peripheral

+ "Dumb" devices provide basic physical
translation to or from binary signals.

 Additional information from the computer is
needed to make it operate intelligently.

* e.g., computer receives information that user
typed shift and w at the same time. It converts to
a capital W. The software that converts is called
the device driver.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-15

The Program Counter: The Pc's PC

* How does the computer determine which step to execute
next?

« Address of the next instruction is stored in the control part
of the computer. It is called the program counter (PC).

« Because instructions use 4 bytes of memory, the next
instruction must be at PC + 4, 4 bytes further along in the
sequence (in general).

« Computer adds four to the PC, so when the F/E Cycle
gets back to Instruction Fetch step, the PC is "pointing at"
the next instruction.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-16

Branch and Jump Instructions

 The instruction may include an address to
go to next. This changes the PC, so
instead of going to PC +4 automatically,
the computer "jumps" or "branches" to the
specified location.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-17

Instruction Interpretation

« Process of executing a program

— Computer is interpreting our commands, but in
its own language

- Before the F/E Cycle begins, some of the
memory locations and the PC are visible in
the control unit

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-18

Control Input | [—Mouse
[PC: 2200 [Keyboard
[—— Scanner
[Hard Disk
i USB Memory
Memory Output —_—I\/Ionitor
——Printer
2200 ADD 800,428,884 —— Speakers

Figure 9.5. Computer before executing an ADD instruction.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-19

Instruction Interpretation (cont'd)

- Execution begins by moving instruction at
the address given by the PC from memory
to control unit

ALU Control Input
|| PC: 2200
[1O ADD 800,426,884
B /

1 1
Memory

Output

2200 ADD 800,428,884

1
'

Figure 9.6. Instruction Fetch: Move instruction
from memory to the control unit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-20

Instruction Interpretation (cont'd)

- Bits of instruction are placed into the
decoder circuit of the CU

* Once instruction is fetched, the PC can be
readied for fetching the next instruction

Control Input
[PC: 2200
[ADD 800,428,884
f /
| |
|
Memory Output
=
2200 ADD 800,428,884
|
1

Figure 9.6. Instruction Fetch: Move instruction
from memory to the control unit.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-21 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 922
Instruction Interpretation (cont'd)
* In Instruction Decode step, ALU is set up for the operation
+ Decoder will find the memory address of the instruction's data |
(source operands) ALU Control Input ALU Control Input
. . . . [428] " [428] 42 __I PC: 2204
— Most instructions operate on two data values stored in memory (like o) BEE o con e R
ADD), so most instructions have addresses for two source operands ﬁ“l [s00]
— These addresses are passed to the circuit that fetches them from 1 i 1
memory during the next step, Data Fetch Memory Output Memory Output
« Decoder finds destination address for the Result Return step, and 18 =
places it in RR circuit 2 2y
. . . . Figure 9.7. Instruction Decode: Pull apart the Yigure 9.8. ‘etch: Move the operands i
. Decoder determines what Operatlon the ALU will per‘form, and sets it . Ié,ul(: ”JJ\HIH.HTH‘J ‘L.c.d.{.t . U [.!}.'J{H[I[16 Flguu_gb’ Da.luf tch: Move the operands from
> instruction, set up the operation in the ALU, and memory to the ALU,
up approprlately compute the source and destination operand addresses.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 923 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-24

Instruction Interpretation (cont'd)

* Instruction Execution: The actual ST - e
computation is performed. For ADD N - ™
instruction, the addition circuit adds the two Em}
source operands together to produce their]]
sum Memory Output

Figure 9.9 Instruction Execute: Compute the
result of the operation in the ALU,

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 925 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-26

Instruction Interpretation (cont'd)

« Result Return: result of execution is
returned to the memory location specified ALY Control Input
by the destination address. g | >

« Once the result is returned, the cycle
begins again.

Output

Figure 9.10. Result Return: Store the result from
the ALU into the memory at the destination address.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 927 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 928

Many, Many Simple Operations

« Computers can only perform about 100 different
instructions

— About 20 different kinds of operations (different
instructions are needed for adding bytes, words,
decimal numbers, etc.)

+ Everything computers do must be reduced to
some combination of these primitive, hardwired
instructions

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-29

Examples of Other Instructions

» Besides ADD, MULT (multiply) and DIV (divide), other
instructions include:

Shift the bits of a word to the left or right, filling the emptied
places with zeros and throwing away bits that fall off the end

Compute logical AND (test if pairs of bits are both true), and

logical OR (test if at least one of two bits is true)

Test if a bit is zero or non-zero, and jump to new set of

instructions based on outcome
Move information around in memory

Sense signals from input/output devices

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-30

Cycling the F/E Cycle

« Computers get their impressive capabilities
by executing many of these simple
instructions per second

- The Computer Clock: Determines rate of
F/E Cycle

— Measured in gigahertz (GHz), or billions of
cycles per second

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-31

1000’
10007
10003
1000*
1000°
1000°
10007
10008

kilo- 1024 =219= 1,024

mega- 10242 = 220= 1,048,576

giga- 10243 = 239= 1,073,741,824

tera- 1024%= 2%0=1,099,511,627,776

peta- 10245 = 250= 1 125,899,906,842,624

exa- 1024%= 280 = 1,152,921,504,606,876,976

zetta- 10247 = 279=1,180,591,620,717,411,303,424
yotta- 1024% = 280 = 1,208,925,819,614,629,174,706,176

milli- 10007
micro- 10007
nano- 100073
pico- 1000
femto-1000°
atto- 1000°
zepto- 10007
yocto- 100078

Figure 9.11 Standard prefixes from the Systéme International (Sl) convention on scientific
measurements. Generally a prefix refers to a power of 1000, except when the quantity (for

example, memory) is counted in binary; for binary quantities the prefix refers to a power of
1024, which is 210,

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-32

How Important is Clock Speed?

» Modern computers try to start an instruction on each
clock tick

+ Pass off finishing instruction to other circuitry (pipelining)
— Five instructions can be in process at the same time

* Does a 1 GHz clock really execute a billion instructions
per second?

— Not a precise measurement. Computer may not be able to start
an instruction on each tick, but may sometimes be able to start
more than one instruction at a time

H—ncm |‘—T|ci 2 |4—ﬂck 3 }d—ﬂck 4 I‘—ka 5 |‘—T|ck 6 Id—mk 7 }d—nck 8 |‘—T|ck 9 |<—T|ci< 10{

< IF —bld— D —Dl*—DF—P‘d—Ex —PI{—HH—Dl

Instruction 1

Instruction 2

<« —blq— D 4‘4—9;—»'1—“ —b|4—nn—b|

Instruction 3

4+ F —b‘d— !D—bld—:)r— —bld—Fx—b|4—HH—b‘

i —r|4— |D—»|4—DF—>]4—Ex—r‘4—an—r|

Instruction 4

Instruction 5

4+ IF —PIQ— ID—P‘Q—DF—D“—EX—’IQ—RH—P'

Instruction &

4 IF —Pld—m—b‘d—m—b'd—Ex—blq—HR—b‘

i —r‘q— .o—plq—a.c —bl+Fx—b‘4—Rﬁ—b

Instruction 7|

Figure 9.12. Schematic diagram of a pipelined Fetch/Execute Cycle. On each tick, the IF circuit starts a new
instruction, and then passes it along to the ID (Instruction Decode) unit; the ID unit works on the instruction it
receives, and when it finishes, it passes it along to the DF (Data Fetch) circuit, and so on. When the pipeline is
filled, five instructions are in progress at once, and one instruction is finished on each clock tick, making the
computer appear to be running at one instruction per tick.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 933 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 934
Software Software (cont'd)

» A computer's view of software

— Sees binary object file, a long sequence of 4-byte
words (0's and 1's)

« Assembly language

— Alternative form of machine language using letters and
normal numbers so people can understand it

— Computer scans assemble code, as it encounters
words it looks them up in a table to convert to binary,
converts numbers to binary, then assembles the
binary pieces into an instruction

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-35

* High-level programming languages

— Most modern software is written in high-level notation,
which is then compiled (translated) into assembly
language, which is then assembled into binary

— Have special statement forms to help programmers
give complicated instructions
* Example: Three-part if statement
— Yes/no question to test
— Instructions to operate if test is true
— Instructions to operate if test is false

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-36

Programming Language Assembly Language Binary
Programs represented in Programs represented in ' Programs represented as
a standard programming Compile | assembly language, a Assemble | binary
language (C, C++, Java) human-readable machine

language | 00000010 10011000

total=princ+intrst; 10100000 00100000
ADD 20, 20, 24 |

Figure 9.13. The three primary forms of encoding software: programming language, assembly language,
and binary machine language.

13
14
15
16

factorial:

bgtz

move
sub
jal
mul

1w
1w
add
jr

$al, doit
$v0, 1
Sra

$sp,8
$SU;($SP)
$ra,4($sp)

$s0, $a0
$a0, 1
factorial
$v0,$s0,$v0

$s0, ($sp)
$ra,4($sp)
$sp, 8

Sra

#

B o

B Sl S

Argument > 0
Base case, 0! =1
Return

Allocate stack frame
Position for argument n
Remember return address

Push argument

Pass n-1

Figure v0 = (n-1)!

Now multiply by n, v0 = n*(n-1)!

Restore registers from stack
Get return address

Pop

Return

Figure 9.14 An assembly language program to compute n! for the MIPS
computer.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 937 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-38
Operating Systems
+ Basic operations that are necessary for the
effective use of computer, but are not built into

1 var j, frame = -1, duration = 150, timeout_id = null;

2 var images = new Array(20); the hardwa re

3 function advance() {

: fmcrlo{cflm;ng.;irza;esl[gj;] .];r+c) :{ document.images[j+1].src; ® Th ree mOSt Widely used Operati ng SyStemS

6 } . '

7 if (frame == -1) test — Microsoft Windows

8 document.images[19]).src = pics[randNum(8)].src; true instructions

3 else _ _ » — Apple's Mac OS X

10 document.images[19].src = pics[frame].src; false instructions

11 timeout_id = setTimeout("animate()", duration); _ U n |X / LII"IUX

12 }

Figure 9.15 A fragment of program text written in a high-level language. ° OS performs boot'ng, memory management,
device management, Internet connection, file
management

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-39 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-40

Programming

« Programmers build on previously
developed software to make their jobs

easier

- Example: GUI Software

— Frame around window, slider bars, buttons,
pointers, etc. are packaged for programmers
and given with OS

Integrated Circuits

* Miniaturization:
— Clock speeds are so high because processor
chips are so tiny (electrical signals can travel
about 1 foot in a nanosecond)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-41 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-42
Integrated Circuits
=
- Photolithography .
— Printing process. Instead of hand-wiring T / / i

circuits together, photograph what is wanted
and etch away the spaces

— Regardless of how complicated the wiring,
cost and amount of work are the same

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-43

(a) (b)

Figure 9.16 Early steps in the fabrication process. (a) A layer of photoresist (blue) is exposed
to UV light through a pattern mask (light blue}, hardening the exposed areas; (b) after washing
away the unexposed photoresist, hot gases etch away (nearly all of) the exposed layer; (c) the
remaining resist is washed away and other layers are created by repeating the patterning and
etching processes. In later stages of the fabrication process, (d) “impurities” (green) such as

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-44

- -

A _—
(e) l (U] '
Figure 9.16 Continued

boron are diffused into the silicon surface in a process called doping, which improves the
availability of electrons in this region of the silicon. (e) After additional layering, etching
exposes contact points for metal wires, and (f) a metal (dark blue) such as aluminum is
deposited creating “wires” to connect to other transistors. Millions of such transistors form a
computer chip occupying a small square on the final fabricated wafer.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 945

How Semi-conductor Technology Works

* Integration:

— Active components and the wires that connect them
are all made together of similar materials in a single
process

— Saves space and produces monolithic part for the
whole system, which is more reliable

« Silicon is a semi-conductor—sometimes it
conducts electricity, sometimes not

— Ability to control when semi-conductor conducts is the
main tool in computer construction

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-46

The On-Again, Off-Again Behavior of
Silicon

A circuit is set to compute x and y for any logical
values x and y

« If x is true, the x circuit conducts electricity and a
signal passes to the other end of the wire; if x is
false, no signal passes

+ Same process fory

« If both circuits conduct, x and y are true—logical
AND has been computed

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-47

The Field Effect

« Controls the conductivity of the semiconductor
» Objects can become charged positively or
negatively

— Like charges repel each other, but opposites attract.
This effect is called the field effect.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-48

The Field Effect (cont'd) How Does the Channel Conduct?

« The gap between two wires is treated to improve its - The silicon in the channel conducts

conducting and non-conducting properties lectricit h it is | h d field
+ This is called a channel (path for electricity to travel electricity when 1t 1s in a charged fie

between the two wires) — Electrons are attracted or repelled in the
- An insulator covers the channel silicon material

- A wire called the gate passes over the insulator) . !
gAEP — Charging the gate positively creates a field

over the channel that conducts electricity
between the two wires

« The gate is separated from the channel by the insulator—
does not make contact with the wires or the channel

+ Electricity is not conducted between the two wires unless
the channel is conducting

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-49 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Transistors

« A connector between two wires that can be

Detect presence

controlled to allow charge to flow between Send s "yes' or absence of
. along the wire e signa
the two wires, or not |
* We have deSC”bed a MOS tranSiStor Make semichwductor Make sTemiconductor
(Metal OXIde SemICOHdUCtOF) conduct if "Thai” is found conduct if “restaurants” is found
Figure 9.17 Computing Thai AND restaurants using a semiconducting
material.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-51 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(b)

channel

(a) (e)

Figure 9.18 Operation of a field effect transistor. (a) Cross-section of the
transistor of Figure 9.16(f). (b) The gate (red) is neutral and the channel, the
region in the silicon below the gate, does not conduct, isolating the wires (blue);
(c) charging the gate causes the channel to conduct, connecting the wires.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-53

Combining the Ideas

« Put all above ideas together:
— Start with information processing task

— Task is performed by application, implemented as part of a large
program in a high-level language like C or Java

— Program performs specific operations; standard operations like
print or save are done by OS

— Program's commands are compiled into assembly language
instructions

— Assembly instructions are translated into binary code
— Binary instructions are stored on hard disk (secondary memory)

— Application instructions move into RAM (primary memory)

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-54

Combining the Ideas (cont'd)

— Fetch/Execute Cycle executes the instructions

— All the computer's instructions are performed
by the ALU circuits, using the transistor model
previously described, under the control of the
Control Unit

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-55

Instruction Fetch (IF) i
Instruction Decode (ID)

Data Fetch (DF)

Instruction Execution (EX)
Result Return (RR)

Figure 9.1. The Fetch/Execute Cycle.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

9-56

