Chapter 16: A Table with a View: **Introduction to Database Concepts** #### Fluency with Information Technology Third Edition **Lawrence Snyder** Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley #### **Differences Between Tables and Databases** - When we think of databases, we often think of tables of information - Comparing Tables - Database tables - · Metadata tag identifying each of the data fields - Spreadsheet tables - · Rely on position to keep the integrity of their data - HTML tables - Data as table entries with no unique identity at all - Concerned only with how to display the data, not with its meaning Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley #### The Database's Advantage - Metadata is key advantage of databases over other systems recording data as tables - Two of the most important roles in defining metadata - Identify the type of data with a unique tag - Define the affinity of the data # **XML: A Language for Metadata Tags** - Extensible Markup Language - Tagging scheme similar to HTML - No standard tags to learn - Self-describing, think up the tags you need - Works well with browsers and Web-based applications - Use a simple text editor - XML tag names cannot contain spaces # **An Example from Tahiti** Area in km² for Tahiti & neighboring islands ``` <?xml version = "1.0" encoding="ISO-8859-1" ?> <archipelago> <island><iName>Tahiti</iName> <island><iName>Moorea</iName> <island><iName>Maiao</iName> <island><iName>Mehetia</iName> <island><iName>Mehetia</iName> <island><iName>Tetiaroa</iName> </area>12.8</area></island> </archipelago> ``` Figure 16.1 XML file encoding data for the Windward Islands database. The first line states that the file contains XML tags. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16 #### **An Example from Tahiti (cont'd)** - First line <?xml version="1.0" encoding="ISO-8859-1" ?> - File should be ASCII text - File extension should be .xml Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley . . . #### Table 16.1 Rules for writing XML. | Required first line | <pre><?xml version="1.0" encoding="ISO-8859-1"?> must appear on the first line, starting in the first position.</pre> | |---------------------|---| | First tag | The first tag encountered is the <i>root</i> element, and it must enclose all of the file's content; it appears on the second or possibly third line. | | Closing tags | All tags must be closed. | | Element naming | Observe these rules: Names can contain letters, numbers, and underscore characters. Names must not start with a number or punctuation character. Names must not start with the letters xml (or XML, or Xml, etc.). Names cannot contain spaces. | | Case sensitivity | Tags and attributes are case sensitive. | | Proper nesting | All tags must be well-nested. | | Attribute quoting | All attribute values must be quoted; paired single quotes (apostrophes) or paired double quotes are okay; use "dumb" quotes only; choose 'opposite' quotes to enclose quoted values. | | White space | White space is preserved and converted to a single space. | | Comments | XML comments have the form This is a comment . | # **Expanding the Use of XML** - Combine encodings of two archipelagos the Windward and the Galapagos Islands - Root element is the tag that encloses all of the content of the XML file - <archipelago> in Fig. 16.1 - <geo_feature> in Fig. 16.2 - Indenting for readability and structure ``` <?xml version = "1.0" encoding="ISO-8859-1" ?> <a name>Galapagos Islands </a name> <geo feature> <archipelago> <iName>Isabella</iName> <a_name>Windward Islands </a_name> <area>4588</area> <island> <elevation>1707</elevation> <iName>Tahiti</iName> </island> <area>1048</area> <island> </island> <iName>Fernandina</iName> <island> <area>642</area> <iName>Moorea</iName> <elevation>1494</elevation> <area>130</area> </island> </island> <island> <island> <iName>Tower</iName> <iName>Maiao</iName> <area>14</area> <area>9.5</area> <elevation>76</elevation> <island> <island> <iName>Mehetia</iName> <iName>Santa Cruz</iName> <area>2.3</area> <area>986</area> </island> <elevation>846</elevation> <island> </island> <iName>Tetiaroa</iName> </archipelago> <area>12.8</area> </geo feature> </island> </archipelago> ``` Figure 16.2 XML file for the Geographic Features database. XML ignores white space, so the text in the file has been indented for easier reading. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Attributes in XML - Use attributes for additional metadata, not for additional content - Not good, name is content: <archipelago name="Galapagos"> - Better to give alternate form of the data <a_name accents="Galápagos">Galapagos</a_name> Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-9 16-11 16-10 #### **Effective Design with XML Tags** - Identification Rule: Label Data with Tags Consistently - You can choose whatever tag names you with to name data, but once you've decided on a tag for a particular kind of data, you must always surround it with that tag. #### **Effective Design with XML Tags (cont'd)** - Affinity Rule: Group Related Data - Enclose in a pair of tags all tagged data referring to the same entity. Grouping it keeps it all together, but the idea is much more fundamental: Grouping makes an association of the tagged data items as being related to each other, properties of the same thing. - Groups together data for a single thing an island - Association is among properties of an object #### **Effective Design with XML Tags (cont'd)** - Collection Rule: Group Related Instances - When you have several instances of the same kind of data, enclose them in tags; again, it keeps them together and implies that they are related by being instances of the same type. - Groups together data of several instance of the same thing – islands - Association is among the objects themselves (entities) Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-13 16-15 #### The XML Tree - XML encodings of information produce hierarchical descriptions that can be thought of as trees - Hierarchy a consequence of how tags enclose one another and the data Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Figure 16.3 The XML displayed as a tree. The encoding from Figure 16.2 is shown with the root element (geo_feature) to the left and the leaves (content) shown to #### **Tables and Entities** - A relational database describes the relationships among different kinds of data - Allows the software to answer queries about them Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley #### **Entities** - Anything that can de identified by a fixed number of its characteristics (attributes) - Attributes have names and values - The values are the data that's stored in the table - An entity defines a table - Name of the entity is the name of the table - Each attribute is assigned a column with column heading being the attribute name Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-17 | Island | | | | | | | | | |------------|------|-----------|--|--|--|--|--|--| | Name | Area | Elevation | | | | | | | | Isabela | 4588 | 1707 | | | | | | | | Fernandina | 642 | 1494 | | | | | | | | Tower | 14 | 76 | | | | | | | | Santa Cruz | 986 | 846 | | | | | | | Figure 16.4 A table instance for the island entity. Copyright $\ensuremath{\mathbb{C}}$ 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16 10 #### **Entities (cont'd)** - Entity instances - Rows of data - Table instance - Any table containing specific rows - Data type - Defines the form of the information that can be stored in a field - Number, text, image, ...<name type="text"> <area type="number"> #### **Properties of Entities** - A relational database table can be empty - Instances Are Unordered - Order of the rows and columns does not matter in databases - Freedom to move the data is limited to exchanging entire rows or exchanging entire columns # **Properties of Entities (cont'd)** - Uniqueness - No two rows can be the same - Two rows can have the same value for some attributes, just not all attributes Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-21 #### **Properties Of Entities (cont'd)** - Keys - Any set of attributes for which all attributes are different is called a candidate key - Pick one and call it the *primary key* to decide uniqueness - Key must distinguish all potential and actual entities, not just those that happen to be in the table at a given time - If no combination of attributes qualify as a candidate key, assign a unique ID to each entity - · Like a student ID number issued by school Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-22 # **Properties Of Entities (cont'd)** - Atomic Data - Not decomposable into any smaller parts - Separate fields for street, city, state, postal code - "Only atomic data" rule relaxed for certain types of data - Dates, times, currency #### **Database schemes** - Database schema way to define a table - Collection of table definitions that gives the name of the table, lists the attributes and their data types, and identifies the primary key ``` Island iName Text Island Name area Number Area in square kilometers elevation Number Highest point on the island Primary Key: iName ``` Figure 16.5 Database table definition for an Island table. #### **XML Trees and Entities** - Relational database tables and XML trees are not the same - Relational databases are more restrictive than XML trees - The limits make them more powerful Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-25 #### **Database Tables Recap** - Tables in databases have a structure that is specified by metadata - The structure is separate from its content - A table structures a set of entities - Things that we can tell apart by their attributes - The entities of the table are represented as rows - Rows and columns are unordered - Tables and fields should have names that describe their contents - Fields must be atomic (indivisible) - One of more attributes define the primary key Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16 26 #### **Operations on Tables** - A database is a collection of database tables - Main use of database is to look up information - Users specify what they want to know and the database software finds it - We can perform operations on tables to produce tables - The questions we ask of a database are answered with a whole table - Five fundamental operations that can be performed on tables: Select, Project, Union, Difference, Product | Nations | | | |--------------|---------|------------------------------------| | Name | text | Common rather than official name | | Domain | text | Internet top-level domain name | | Capital | text | Nation's capital | | Latitude | number | Approx. latitude of capital | | N_S | Boolean | Latitude is N(orth) or S(outh) | | Longitude | number | Approx. longitude of capital | | E_W | Boolean | Longitude is E(ast) or W(est) | | Interest | text | A short description of the country | | Primary Key: | Name | | | Name | Dom | Capital | Lat | NS | Lon | EW | Interest | |---------|-----|-----------|-----|----|-----|----|----------| | Ireland | IE | Dublin | 52 | N | 7 | W | History | | Israel | IR | Jerusalem | 32 | N | 35 | E | History | | Italy | IT | Rome | 42 | N | 12 | E | Art | | Jamaica | JM | Kingston | 18 | N | 77 | W | Beach | | Japan | JP | Tokyo | 35 | N | 143 | E | Kabuki | | | | | | | | | | Figure 16.6 The Nations table definition and sample entries. #### **Select Operation** - Takes rows from one table to create a new table - Specify the table from which rows are to be taken, and the *test* for selection - Syntax: Select Test From Table - Test is applied to each rows of the table to determine if it should be included in result table - Test uses attribute names, constants, and relational operators - If the test is true for a given row, the row is included in the result table; otherwise it is ignored Select Interest='Beach' From Nations Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-29 16-31 | ì | | | | | | | | | |---|-----------|-----|------------|-----|----|-----|----|----------| | | Name | Dom | Capital | Lat | NS | Lon | EW | Interest | | | Australia | AU | Canberra | 37 | S | 148 | Е | Beach | | | Bahamas | BS | Nassau | 25 | N | 78 | W | Beach | | | Barbados | BB | Bridgetown | 13 | N | 59 | W | Beach | | | Belize | BZ | Belmopan | 17 | N | 89 | W | Beach | | | Bermuda | BM | Hamilton | 32 | N | 64 | W | Beach | | | | | | | | | | | Figure 16.7 Part of the table created by selecting countries with a Test for Interest equal to Beach. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16 20 # **Project Operation** - Builds a new table from the columns of an existing table - Specify name of exiting table and the columns (field names) to be included in the new table - Syntax: Project Field_List From Table - The new table will have the number of columns specified and the same number of rows as the original table, unless - The new table eliminates a key field. If rows duplicate in the new table, duplicates will be eliminated Project Name, Domain, Interest From Nations | Dom | Word | |-----|----------------------| | NR | Beach | | NP | Mountains | | NL | Canals | | NC | Beach | | NZ | Adventure | | | NR
NP
NL
NC | Figure 16.8 Sample entries for a Project operation on Nations. #### **Project Operation (cont'd)** Can use Select and Project operations together to "trim" base tables to keep only some of the rows and some of the columns ``` Project Name, Domain, Lattitute From (Select Lattitude >= 60 AND NS='N' From Nations) ``` ``` Name Dom Lat Finland FI 61 Greenland GL 72 Iceland IS 65 Norway NO 60 ``` Figure 16.9 Northern, the table of countries with northern capitals. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-33 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley # **Union Operation** - Combines two tables (that have the same set of attributes) - Syntax: Table1 + Table2 ``` ExtremeGovt = At600rAbove + At450rBelow ``` | Name | Dom | Capital | Lat | NS | Lon | EW | Interest | |-------------|---------------------|-----------|-----|----|-----|----|----------| | Falkland Is | FK | Stanley | 51 | s | 58 | W | Nature | | Finland | FI | Helsinki | 61 | N | 26 | E | Nature | | Greenland | GL | Nuuk | 72 | N | 40 | W | Nature | | Iceland | IS | Reykjavik | 65 | N | 18 | W | Geysers | | Norway | NO | Oslo | 60 | N | 10 | E | Vikings | | | | | | | | | | Figure 16.10 The ExtremeGovt table created with Union. #### **Difference Operation** - Remove from one table the rows also listed in a second table (remove from Table1 any rows also in Table2) - Syntax: Table1 Table2 Nations - At600rAbove #### **Product Operation** - Creates a super table with all fields from both tables - Puts the rows together - Each row of Table 2 is appended to each row of Table 1 - Syntax: Table1 x Table2 ``` Super = Nations x Travelers ``` Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley | 1 | 6 | -3 | 1 | |---|---|----|---| | | | | | 16-39 | Travelers | Friend | Homeland | |---|------------------|---------------------------| | Friend Text A Traveling Companion Homeland Text Friend's Home Country | Isabela
Brian | Argentina
South Africa | | Primary Key: Friend | Wen | China | | (a) | Clare | Canada | | | (b) | | | | | | Figure 16.11 (a) The definition of the Travelers table, and (b) its values. | Name | Dom | Capital | Lat | NS | Log | EW | Interest | Friend | Homeland | |------------|-----|------------|-----|----|-----|----|----------|----------|--------------| | Cyprus | CY | Nicosia | 35 | N | 32 | E | History | Clare | Canada | | Czech Rep. | CZ | Prague | 51 | N | 15 | E | Pilsner | Isabella | Argentina | | Czech Rep. | CZ | Prague | 51 | N | 15 | E | Pilsner | Brian | South Africa | | Czech Rep. | CZ | Prague | 51 | N | 15 | E | Pilsner | Wen | China | | Czech Rep. | CZ | Prague | 51 | N | 15 | E | Pilsner | Clare | Canada | | Denmark | DK | Copenhagen | 55 | N | 12 | E | History | Isabella | Argentina | Figure 16.12 Some rows from the supertable that is the product of Nations and Travelers. For each row in Nations and each row in Travelers, there is a row in the product table that combines them. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-38 #### Friend Name Chad Wen Chile Isabella China Wen Christmas Is. Clare Brian Cocos Is. Figure 16.13 A portion of the Master table of your friends' assignments. # **Join Operation** - Combines two tables, like the Product Operation, but doesn't necessarily produce all pairings - If the two tables each have fields with a common data type, the new table combines only the rows from the given tables that match on the fields #### Join Operation (cont'd) - Match is a comparison test involving a fields from each table (Table.Field) - When match is true for a row from each table produces a result row that is their concatenation Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-41 16-43 #### Join Applied Figure 16.14 The Join operation: Master M Northern Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-42 # Join Applied (cont'd) - Lookup operation on tables - For each row in one table, locate a row (or rows) in the other table with the same value in the common field; if found, combine the two; if not, look up the next row. - This match on equality is called a *natural join* - Possible to join using any relational operator, not just = (equality) to compare fields #### Structure of a Database - We want to arrange the information in a database in a way that users see a relevant-to-their-needs view of the data that they will use continually - Physical database and logical view of the database Figure 16.15 Structure of a database system. The physical database is the permanent repository of the data; the logical database, or view of the database, is the form of the database the users see. The transformation is implemented by the query processor, and is based on queries that define the logical database tables from the physical database tables. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-45 #### **Physical and Logical Databases** The point of the two-level system is to separate the management of the data (physical database) from the presentation of the data (logical view of the database) Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-46 # **Physical Database** - Designed by database administrators - Fast to access - No redundancy/duplicating information - · Multiple data can lead to inconsistent data - Backup copies in case of accidental data deletion or disk crash # **Logical Database** - Creating specialized versions/views of the data for different users' needs - Creating a new copy from the single data each time #### Queries - A query is a specification using the five operations and Join that define a table from other tables - SQL (Structured Query Language) - Standard database language to write queries #### **Defining Physical Tables** - Database schemes (schema) - Metadata specification that describes the database design Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-49 16-51 Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley #### 40.50 #### Figure 16.16 Table declarations from Microsoft Access 2007: (a) Home_Base table declaration shown in the design view; and (b) students table declaration. Notice that the key is specified by the tiny key next to Student_ID in the first column. # **Connecting Database Tables by Relationships** - Student and Home_Base tables - The tables can have different security access restrictions based on their data - Other units can access Home_Base data without having access to more sensitive data in Student - Separate tables but not independent - Student_ID connects (establishes a relationship) between the two tables - Primary key Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-52 #### The Idea of Relationship - A relationship is a correspondence between rows of one table and the rows of another table - Because the key Student_ID is used in each table, can not only find the address for each student (*Lives_At*), but can also find the student for each address (*Home Of*) - Relationship examples Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-53 16-55 #### **Relationships in Practice** Figure 16.17 The *Relationships* window from the Microsoft Access database system; the 1-to-1 *Lives_At* and *Home_Of* relationships are shown between Home Base and Students. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-54 #### **Defining Logical Tables** - Construction Using Join - Match on the common field of Student ID ``` Master_List = Student JOIN Home_Base On Student.Student ID = Home Base.Student ID ``` Student_ID First_Name Middle_Name Last_Name Birthdate On_Probation Street_Address City State Country Postal_Code Figure 16.18 Attributes of the Master_List table. Being created from Student and Home_Base allows Master_List to inherit its data types and key (Student_ID) from the component tables. # **Practical Construction Using QBE** - Query By Example - Given a template of a table we fill in what we want in the fields Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Figure 16.19 The Query By Example definition of the Master List table from MS Access. Figure 16.20 SQL query created from the Query By Example data in Figure 16.19. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-57 16-59 #### The Dean's View - Storing the Dean's Data - Top Scholar is information of interest only to the dean Figure 16.21 The Top_Scholar definition: (a) informal form, (b) in MS Access. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley # **Creating a Dean's View** | Deans_View | | | |--------------|--------------|--| | Name | Source Table | | | Nickname | Top_Scholar | Used by the dean to seem "chummy" | | First_Name | Student | Name information required because | | Last_Name | Student | the dean forgets the person's actual name, being so chummy | | Birthdate | Student | Is student of "drinking age"? | | City | Home_Base | Hometown (given by city, state) is | | State | Home_Base | <pre>important for small talk, but full address not needed by dean</pre> | | Major | Student | Indicates what the student's doing in college besides hanging out | | GPA | Student | How's student doing grade-wise | | Factoid | Top_Scholar | Data to remember student by | | Summer_Plans | Top_Scholar | Or other conversation topic | Figure 16.22 The Dean's View fields showing their source in physical database tables. #### Join Three Tables into One - Join using Top Scholar, Student, and Home_Base tables matching on the Student ID attribute across all three tables - Trim the Table - Project retrieve certain columns - Join-then-trim strategy #### **Software Creates Dean's View** Figure 16.23 The Query By Example definition of the Dean's View table as expressed in Microsoft Access 2007. Figure 16.24 SQL query created for the Dean's View by the Query By Example data in Figure 16.22. Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 16-61