CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 1 Solutions

1. Answer the questions below for the sets of strings:

$$C = \{\varepsilon, aab, baa\},\$$

$$D = \{bb, aab\},\$$

$$E = \{\varepsilon\},\$$

$$F = \emptyset.$$

Except for parts (c) and (h), write out any sets with the elements in *string order*, i.e., shorter strings appear before longer strings, and strings of the same length are in alphabetical order. For any infinite sets, list only the first 8 elements in string order, but be sure to also indicate that the set is infinite by including 3 dots after listing the first 8 elements. For any set S of strings, we define

$$S^* = \{ x_1 x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in S \}, S^+ = \{ x_1 x_2 \cdots x_k \mid k \ge 1 \text{ and each } x_i \in S \},$$

where the concatenation of k = 0 strings is the empty string ε .

(a) What is $D \cup C$?

Answer: $D \cup C = \{\varepsilon, bb, aab, baa\}$

(b) What is $C \cup F$?

Answer: $C \cup F = \{\varepsilon, aab, baa\} = C$

(c) What is $C \times D$?

Answer: $C \times D = \{ (\varepsilon, bb), (\varepsilon, aab), (aab, bb), (aab, aab), (baa, bb), (baa, aab) \}$

(d) What is $C \cap D$?

Answer: $C \cap D = \{aab\}$

(e) What is $D \circ C$?

Answer: $D \circ C = \{bb, aab, bbaab, bbbaa, aabaab, aabbaa\}$

(f) What is $C \circ E$?

Answer: $C \circ E = \{\varepsilon, aab, baa\}$

(g) What is $D \circ D \circ D$?

Answer: $D \circ D \circ D = \{bbbbbb, aabbbbb, bbaabbb, bbbbaab, aabaabbb, aabbbaab, aabaabaab, aabaabaab\}$

(h) What is $\mathcal{P}(C)$?

Answer: $\mathcal{P}(C) = \{ \emptyset, \{\varepsilon\}, \{aab\}, \{baa\}, \{\varepsilon, aab\}, \{\varepsilon, baa\}, \{aab, baa\}, \{\varepsilon, aab, baa\} \}$

(i) What is D - C?

Answer: $D - C = \{bb\}$

(j) What is C^+ ?

Answer: $C^+ = \{\varepsilon, aab, baa, aabaab, aabbaa, baaaab, baabaa, aabaabaab, \ldots\}$

(k) What is F^* ?

Answer: $F^* = \{\varepsilon\}$

(l) Is $E \subseteq C$?

Answer: $E \subseteq C$ since every element of E is also in C.

(m) Is $D \subseteq C$?

Answer: $D \not\subseteq C$ since $bb \in D$ but $bb \notin C$.

- (n) For this part, we first need some definitions.
 - The *reverse* of a string w, written $w^{\mathcal{R}}$, is the same string with the symbols written in reverse order. For example, $(cat)^{\mathcal{R}} = tac$.
 - A collection of objects is *closed* under some operation if applying that operation to members of the collection returns an object still in the collection. For example, the set N = {0, 1, 2, 3, ...} is closed under the function f(x) = x² since the square of any nonnegative integer always results in a nonnegative integer. However, N is not closed under square root since, for example, 3 ∈ N but √3 ∉ N.

Which of C, D, and E are closed under reversal? Explain your answers.

Answer:

- C is closed under reversal since $\varepsilon^{\mathcal{R}} = \varepsilon \in C$, $(aab)^{\mathcal{R}} = baa \in C$, and $(baa)^{\mathcal{R}} = aab \in C$.
- D is not closed under reversal since $(aab)^{\mathcal{R}} = baa \notin D$.
- *E* is closed under reversal since $\varepsilon^{\mathcal{R}} = \varepsilon \in E$.

- 2. Let w be a string of symbols, and let the language T be defined as adding w to the language S; i.e., $T = S \cup \{w\}$. Suppose further that $T^* = S^*$.
 - (a) Is it necessarily true that $w \in S$? If this is necessarily true, give a proof. If this is not necessarily true, give a counterexample.

Answer: It is not true in general that $w \in S$. For example, suppose that $w = aa, S = \{a\}$, and $T = \{a, aa\}$. Then note that $T = S \cup \{aa\}$, and $S^* = T^* = \{\varepsilon, a, aa, aaa, \ldots\}$, but $aa \notin S$.

(b) Is it necessarily true that $w \in S^*$? If this is necessarily true, give a proof. If this is not necessarily true, give a counterexample.

Answer: It must be the case that $w \in S^*$. Note that $w \in T$, so $w \in T^*$ since any string in T is also in T^* because $T \subset T^*$. But since $T^* = S^*$, we must have that $w \in S^*$.

- 3. For each of the following parts, give an example satisfying the given conditions. Give a brief explanation for each of your examples.
 - (a) Give an example of a set S of strings such that $S^* = S^+$.

Answer: Let $S = \{\varepsilon, a\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$ and $S^+ = \{\varepsilon, a, aa, aaa, \ldots\}$, so $S^* = S^+$.

(b) Give an example of a set S of strings such that $S^* \neq S^+$.

Answer: Let $S = \{a\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$ and $S^+ = \{a, aa, aaa, \ldots\}$, so $S^* \neq S^+$.

(c) Give an example of a set S of strings such that $S = S^*$.

Answer: Let $S = \{\varepsilon, a, aa, aaa, \ldots\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$, so $S = S^*$.

(d) Give an example of a set S of strings such that $S \neq S^*$.

Answer: Let $S = \{a\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$, so $S \neq S^*$.

(e) Give an example of a set S of strings such that S^* is finite.

Answer: Let $S = \{\varepsilon\}$. Then $S^* = \{\varepsilon\}$, so S^* is finite.

- 4. Suppose we define a restricted version of the Java programming language in which variable names must satisfy all of the following conditions:
 - A variable name can only use Roman letters (i.e., a, b, ..., z, A, B, ..., Z) or Arabic numerals (i.e., 0, 1, 2, ..., 9); i.e., underscore is not allowed.
 - A variable name must start with a Roman letter: a, b, ..., z, A, B, ..., Z

- The length of a variable name must be no greater than 8.
- A variable name cannot be a keyword (e.g., if). The set of keywords is finite.

Let L be the set of all valid variable names in our restricted version of Java.

(a) Let L_0 be the set of strings satisfying the first 3 conditions above; i.e., we do not require the last condition. How many strings are in L_0 ? You can just give a general formula for your answer; you do not need to give a single number.

Answer: Recall that for any set A, we let |A| denote the number of elements in A. Let $\Sigma_1 = \{a, b, \ldots, z, A, B, \ldots, Z\}$ be the set of upper-case and lower-case Roman letters, and note that $|\Sigma_1| = 52$. Let $\Sigma_2 = \{0, 1, 2, \ldots, 9\}$, which is the set of Arabic numerals, and note that $|\Sigma_2| = 10$. Let $\Sigma_3 = \Sigma_1 \cup \Sigma_2$. Since $\Sigma_1 \cap \Sigma_2 = \emptyset$, $|\Sigma_3| = |\Sigma_1| + |\Sigma_2| = 62$.

Let L_i be all of the strings of length i in L_0 . Note that L_1 consists of all 1-letter strings in L_0 , so L_1 consists of all the single letters in Σ_1 , and $|L_1| = 52$. Also, L_2 consists of all 2-letter strings in L_0 , and if $w \in L_2$, then the first letter of w is from Σ_1 , and the second letter of w is from Σ_3 , so $|L_2| = 52 \times 62$. In general L_i consists of all strings that have first letter from Σ_1 and the remaining i - 1letters from Σ_3 , so $|L_i| = 52 \times 62^{i-1}$.

Note that

$$L_0 = L_1 \cup L_2 \cup \cdots \cup L_8.$$

Also, L_i and L_j are disjoint for $i \neq j$, so

$$|L_0| = |L_1| + |L_2| + \dots + |L_8| = \sum_{i=1}^8 52 \times 62^{i-1}.$$

(b) Prove that L is finite, where L is the set of strings satisfying all four conditions.

Answer: Note that $L \subset L_0$, so we must have that $|L| \leq |L_0|$. In the previous part, we showed that $|L_0| < \infty$, so we must have that $|L| < \infty$.

5. Let S be any set of strings. Prove that $S^* = S^+$ if and only if $\varepsilon \in S$.

Answer: Recall

$$S^* = \{ x_1 x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in S \},\$$

$$S^+ = \{ x_1 x_2 \cdots x_k \mid k \ge 1 \text{ and each } x_i \in S \},\$$

where the concatenation of k = 0 strings is ε , so we always have $\varepsilon \in S^*$. Now S^+ and S^* are the same except S^+ doesn't include the case k = 0, so we can write $S^* = S^+ \cup \{\varepsilon\}$. Hence, $S^* = S^+$ if and only if $\varepsilon \in S^+$. Thus, proving that $\varepsilon \in S^+$ if and only if $\varepsilon \in S$ will establish the result in the problem. Suppose that $\varepsilon \in S$. Then clearly taking k = 1 and $x_1 = \varepsilon \in S$ shows that $\varepsilon \in S^+$. Thus, if $\varepsilon \in S$, then $\varepsilon \in S^+$.

Now we need to show the converse: if $\varepsilon \in S^+$, then $\varepsilon \in S$. This is equivalent to its contrapositive: if $\varepsilon \notin S$, then $\varepsilon \notin S^+$. But if $\varepsilon \notin S$, then we cannot concatenate $k \geq 1$ strings $x_1, x_2, \ldots, x_k \in S$, all of which are nonempty since $\varepsilon \notin S$, to obtain the empty string ε . Thus, we have shown $\varepsilon \notin S$ implies $\varepsilon \notin S^+$, so the proof is complete.