Homework 2

1. For the state diagram of the DFA M below, give its formal definition as a 5 -tuple.

2. For each of the following languages over the alphabet $\Sigma=\{a, b\}$, give a DFA that recognizes the language. Give both a state diagram and 5 -tuple specification for each DFA.
(a) $A=\{\varepsilon, b, a b\}$.
(b) For any string $w \in \Sigma^{*}$, let $n_{a}(w)$ denote the number of a 's in w. For example, $n_{a}(a b a a b a)=4$. Define the language

$$
B=\left\{w \in \Sigma^{*} \mid n_{a}(w) \quad \bmod 3=1\right\}
$$

i.e., $w \in B$ if and only if the number of a 's in w is $3 k+1$ for some $k \geq 0$.
(c) $C=\left\{w \in \Sigma^{*} \mid w=s a b a\right.$ for some string $\left.s \in \Sigma^{*}\right\}$, i.e., C consists of strings that end in $a b a$.
(d) $D=\bar{C}$, where C is the language in the previous part; i.e., D consists of strings that do not end in $a b a$.
(e) $E=\left\{w \in \Sigma^{*} \mid w\right.$ begins with b and ends with $\left.a\right\}$.
(f) For any string $w \in \Sigma^{*}$, let $n_{b}(w)$ denote the number of b 's in w. Define the language $F=\left\{w \in \Sigma^{*} \mid n_{a}(w) \geq 2, n_{b}(w) \leq 1\right\}$.
(g) $G=\left\{w \in \Sigma^{*}| | w \mid \geq 2\right.$, second-to-last symbol of w is $\left.b\right\}$. If string $w=$ $w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$, then the second-to-last symbol of w is w_{n-1}.
3. Show that, if M is a DFA that recognizes language B, swapping the accept and non-accept states in M yields a new DFA that recognizes \bar{B}, the complement of B. Conclude that the class of regular languages is closed under complementation.
4. We say that a DFA M for a language A is minimal if there does not exist another DFA M^{\prime} for A such that M^{\prime} has strictly fewer states than M. Suppose that $M=$ $\left(Q, \Sigma, \delta, q_{0}, \underline{F}\right)$ is a minimal DFA for A. Using M, we construct a DFA \bar{M} for the complement \bar{A} as $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$. Prove that \bar{M} is a minimal DFA for \bar{A}.
5. Give a formal proof that the class of regular languages is closed under intersection.
6. Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, 0,1,2, \ldots, 9\}$ be the alphabet consisting of lower-case Roman letters and Arabic numerals. Consider the language

$$
L=\left\{w \in \Sigma^{*} \mid w \text { begins with a lower-case Roman letter }\right\} .
$$

(a) Give a DFA for L. For your DFA, give both a state diagram and 5 -tuple for it.
(b) Let J be the set of valid variable names in the Java programming language. Is $L \subseteq J$? Is $J \subseteq L$? Explain your answer.

