CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 2

1. For the state diagram of the DFA M below, give its formal definition as a 5-tuple.

- 2. For each of the following languages over the alphabet $\Sigma = \{a, b\}$, give a DFA that recognizes the language. Give both a state diagram and 5-tuple specification for each DFA.
 - (a) $A = \{\varepsilon, b, ab\}.$
 - (b) For any string $w \in \Sigma^*$, let $n_a(w)$ denote the number of a's in w. For example, $n_a(abaaba) = 4$. Define the language

$$B = \{ w \in \Sigma^* \mid n_a(w) \mod 3 = 1 \},\$$

i.e., $w \in B$ if and only if the number of a's in w is 3k + 1 for some $k \ge 0$.

- (c) $C = \{ w \in \Sigma^* \mid w = saba \text{ for some string } s \in \Sigma^* \}$, i.e., C consists of strings that end in aba.
- (d) $D = \overline{C}$, where C is the language in the previous part; i.e., D consists of strings that do not end in aba.
- (e) $E = \{ w \in \Sigma^* \mid w \text{ begins with } b \text{ and ends with } a \}.$
- (f) For any string $w \in \Sigma^*$, let $n_b(w)$ denote the number of b's in w. Define the language $F = \{ w \in \Sigma^* \mid n_a(w) \ge 2, n_b(w) \le 1 \}.$
- (g) $G = \{ w \in \Sigma^* \mid |w| \ge 2$, second-to-last symbol of w is $b \}$. If string $w = w_1 w_2 \cdots w_n$ where each $w_i \in \Sigma$, then the second-to-last symbol of w is w_{n-1} .
- 3. Show that, if M is a DFA that recognizes language B, swapping the accept and non-accept states in M yields a new DFA that recognizes \overline{B} , the complement of B. Conclude that the class of regular languages is closed under complementation.

- 4. We say that a DFA M for a language A is minimal if there does not exist another DFA M' for A such that M' has strictly fewer states than M. Suppose that $M = (Q, \Sigma, \delta, q_0, F)$ is a minimal DFA for A. Using M, we construct a DFA \overline{M} for the complement \overline{A} as $\overline{M} = (Q, \Sigma, \delta, q_0, Q - F)$. Prove that \overline{M} is a minimal DFA for \overline{A} .
- 5. Give a formal proof that the class of regular languages is closed under intersection.
- 6. Let $\Sigma = \{a, b, \dots, z, 0, 1, 2, \dots, 9\}$ be the alphabet consisting of lower-case Roman letters and Arabic numerals. Consider the language

 $L = \{ w \in \Sigma^* \mid w \text{ begins with a lower-case Roman letter} \}.$

- (a) Give a DFA for L. For your DFA, give both a state diagram and 5-tuple for it.
- (b) Let J be the set of valid variable names in the Java programming language. Is $L \subseteq J$? Is $J \subseteq L$? Explain your answer.