
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 3 Solutions

1. Give NFAs with the specified number of states recognizing each of the following lan-
guages. In all cases, the alphabet is Σ = {0,1}.

(a) The language {w ∈ Σ∗ | w ends with 00 } with three states.

Answer:

1 2 3

0,1

0 0

(b) The language {w ∈ Σ∗ | w contains the substring 0101, i.e., w = x0101y for
some x, y ∈ Σ∗ } with five states.

Answer:

1 2 3 4 5

0,1

0 1 0 1

0,1

(c) The language {w ∈ Σ∗ | w contains at least two 0s, or exactly two 1s } with six
states.

Answer:

1

2

5

3 4

60

ε

0,1

0

1

0

0,1

1

0

1

0

1

(d) The language {ε} with one state.

Answer:

1

(e) The language 0∗1∗0∗0 with three states.

Answer:

1 2 3

0

ε

1

0

0

2. (a) Show by giving an example that, if M is an NFA that recognizes language C,
swapping the accept and non-accept states in M doesn’t necessarily yield a new
NFA that recognizes C.

Answer:

The NFA M below recognizes the language C = {w ∈ Σ∗ | w ends with 00 },
where Σ = {0,1}.

1 2 3

0,1

0 0

Swapping the accept and non-accept states of M gives the following NFA M ′:

1 2 3

0,1

0 0

Note that M ′ accepts the string 100 6∈ C = {w | w does not end with 00 }, so

M ′ does not recognize the language C.

(b) Is the class of languages recognized by NFAs closed under complement? Explain
your answer.

Answer:

The class of languages recognized by NFAs is closed under complement, which we

2

can prove as follows. Suppose that C is a language recognized by some NFA M ,
i.e., C = L(M). Since every NFA has an equivalent DFA (Theorem 1.39), there
is a DFA D such that L(D) = L(M) = C. By problem 3 on Homework 2, we

then know there is another DFA D that recognizes the language L(D). Since
every DFA is also an NFA, this then shows that there is an NFA, in particular D,

that recognizes the language C = L(D). Thus, the class of languages recognized
by NFAs is closed under complement.

3. Use the construction given in Theorem 1.39 to convert the following NFA N into an
equivalent DFA.

1 2

3

ε

a

a

a, b

b

Answer: Let NFA N = (Q,Σ, δ,1, F), where Q = {1,2,3}, Σ = {a, b}, 1 is the
start state, F = {2}, and the transition function δ as in the diagram of N . Recall
that for a subset R ⊆ Q of states, we define its ε-closure E(R) as

E(R) = { q | q can be reached from R by travelling over 0 or more ε transitions }.

To construct a DFA M = (Q′,Σ, δ′, q′0, F
′) that is equivalent to NFA N , first we

compute the ε-closure of every subset of Q = {1,2,3}.

Subset R ⊆ Q ε-closure E(R)

∅ ∅
{1} {1,2}
{2} {2}
{3} {3}

{1,2} {1,2}
{1,3} {1,2,3}
{2,3} {2,3}

{1,2,3} {1,2,3}

Then define Q′ as the power set P(Q), i.e., the set of all subsets of Q, so

Q′ = { ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} };

i.e., each state of the equivalent DFA M is a subset of states of the NFA N .

3

Recall that state 1 is the start state of the NFA N , so the start state of the equivalent
DFA M is then E({1}) = {1,2}. The set F ′ of accept states of M is

F ′ = { {2}, {1,2}, {2,3}, {1,2,3} },

i.e., each state in F ′ has at least one accept state of N .

We define the transitions in the DFA M as in the following diagram:

{1,2}

{2,3}

∅

{1,2,3}a

b

a b

a, b

b

a

Note that we left out some of the states (e.g., {1}) in P(Q) from our diagram of the
DFA M since they are not accessible from the start state {1,2}. Also, we had to add
an arc from state ∅ to itself labelled with “a, b” so that this state has an arc leaving it
corresponding to each symbol in the alphabet Σ, which is a requirement for any DFA.

The algorithm given in the notes and textbook will always correctly construct an
equivalent DFA from a given NFA, but we don’t always have to go through all the
steps of the algorithm to obtain an equivalent DFA. For example, on this problem, we
begin by figuring out what states the NFA can be in without reading any symbols. In
this case, this is E({1}) = {1,2} since 1 is the starting state of the NFA, and the
NFA can jump from 1 to 2 without reading any symbols by taking the ε-transition.
Thus, we first create a DFA state corresponding to the set {1,2}:

{1,2}

The state {1,2} is the start state of the DFA since this is where the NFA can be
without reading any symbols. The state {1,2} is also an accepting state for the DFA
since it contains 2, which is accepting for the NFA.

Now for DFA state {1,2}, determine where the NFA can go on an a from each NFA
state within this DFA state, and where the NFA can go on a b from each NFA state

4

within this DFA state. On an a, the NFA can go from state 1 to state 3; also, the
NFA can go from state 2 to 1, and then it also can go further from 1 to 2 on the ε.
So from NFA states 1 and 2 on an a, the NFA can end up in states 1, 2, and 3, so
draw a transition in the DFA from state {1,2} to a new state {1,2,3}, which is an
accepting state since it contains 2 ∈ F :

{1,2} {1,2,3}a

Similarly, to determine where the DFA moves on b from DFA state {1,2}, determine
all the possibilities of where the NFA can go from NFA states 1 and 2 on b. From
state 1, the NFA can’t go anywhere on a b; also, the NFA can’t go anywhere from
state 2 on b. Thus, the NFA can’t go anywhere from states 2 and 3 on a b, so we add
a b-edge in the DFA from state {1,2} to a new DFA state ∅, which is not accepting
since it contains no accept states of the NFA:

{1,2}

∅

{1,2,3}a

b

Now every time we add a new DFA state, we have to determine all the possibilities of
where the NFA can go on an a from each NFA state within that DFA state, and where
the NFA can go on a b from each NFA state within that DFA state. For DFA state
{1,2,3}, we next determine where the NFA can go on an a from each of the NFA
states 1, 2 and 3. From NFA state 1, the NFA on an a can go to NFA state 3; from
NFA state 2, the NFA on an a can go to NFA state 1, and then it can also further
jump to 2 on ε; from NFA state 3, the NFA on an a can go to NFA state 2. Thus, if
the NFA is in states 1, 2 and 3, it can go on an a to states 1, 2 and 3, so we add to
the DFA an a-edge from {1,2,3} to {1,2,3}.

{1,2}

∅

{1,2,3}a

b

a

Now we determine where the b-edge from DFA state {1,2,3} goes to. To do this,
we examine what happens to the NFA from states 1, 2 and 3 on a b. If the NFA is

5

in state 1, then there is nowhere to go on a b; if the NFA is in state 2, then there is
nowhere to go on a b; if the NFA is in state 3, then the NFA can go to 2 or 3 on b.
Hence, if the NFA is in states 1, 2 and 3, the NFA on b can end in states 2 and 3.
Thus, in the DFA, draw an edge from state {1,2,3} to a new state {2,3}, which is
accepting since it contains 2 ∈ F :

{1,2}

{2,3}

∅

{1,2,3}a

b

b

a

Now do the same for DFA states {2,3} and ∅. If any new DFA states arise, then we
need to determine the a and b transitions out of those states as well. We stop once
every DFA state has an a-transition and a b-transition out of it. Accepting states
in the DFA are any DFA states that contain at least one accepting NFA state. We
eventually end up with the DFA below as before:

{1,2}

{2,3}

∅

{1,2,3}a

b

a b

a, b

b

a

For the DFA state ∅, there are no versions of the NFA currently active, i.e., all “threads”
have “crashed,” so the NFA cannot proceed and the input string will not be accepted.

6

However, according to the definition of a DFA, each state must have edges leaving it
corresponding to each symbol in the alphabet Σ. Thus, we add a loop from the DFA
state ∅ back to itself labeled with Σ, which in our case is a, b.

4. Give regular expressions that generate each of the following languages. In all cases,
the alphabet is Σ = {a, b}. Each regular language has infinitely many correct regular
expressions, but you only need to give one.

(a) The language {w ∈ Σ∗ | |w| is odd }.

Answer: (a ∪ b)((a ∪ b)(a ∪ b))∗

(b) The language {w ∈ Σ∗ | w has an odd number of a’s }.

Answer: b∗a(ab∗a ∪ b)∗

(c) The language {w | w contains at least two a’s, or exactly two b’s }.

Answer: b∗ab∗a(a ∪ b)∗ ∪ a∗ba∗ba∗

(d) The language {w ∈ Σ∗ | w ends in a double letter }. (A string contains a double

letter if it contains aa or bb as a substring.)

Answer: (a ∪ b)∗(aa ∪ bb)

(e) The language {w ∈ Σ∗ | w does not end in a double letter }.

Answer: ε ∪ a ∪ b ∪ (a ∪ b)∗(ab ∪ ba)

(f) The language {w ∈ Σ∗ | w contains exactly one double letter }. For example,
baaba has exactly one double letter, but baaaba has two double letters.

Answer: (ε ∪ b)(ab)∗aa(ba)∗(ε ∪ b) ∪ (ε ∪ a)(ba)∗bb(ab)∗(ε ∪ a)

5. Suppose we define a restricted version of the Java programming language in which
variable names must satisfy all of the following conditions:

• A variable name can only use Roman letters (i.e., a, b, . . . , z, A, B, . . . , Z) or
Arabic numerals (i.e., 0, 1, 2, . . . , 9); i.e., underscore and dollar sign are not
allowed.

• A variable name must start with a Roman letter: a, b, . . . , z, A, B, . . . , Z

• The length of a variable name must be no greater than 8.

• A variable name cannot be a keyword (e.g., if). The set of keywords is finite.

Let L be the set of all valid variable names in our restricted version of Java.

7

(a) Let L0 be the set of strings satisfying the first 3 conditions above; i.e., we do not
require the last condition. Give a regular expression for L0.

Answer: To simplify the regular expression, we define

Σ1 = {a, b, . . . , z, A, B, . . . , Z}

Σ2 = {0, 1, 2, . . . , 9}.

Then a regular expression for L0 is

Σ1 (Σ1 ∪Σ2 ∪ ε) · · · (Σ1 ∪Σ2 ∪ ε)
︸ ︷︷ ︸

7 times

.

Note that by including the ε in each of the last parts, we can generate strings
that have length strictly less than 8.

(b) Prove that L has a regular expression, where L is the set of strings satisfying all
four conditions.

Answer: We proved in Homework 1, problem 4(b), that L is finite. Thus, L is
regular, so it has a regular expression (slide 1-95). Although the problem didn’t
ask for it, we can write a regular expression for L by listing all of the finitely
many strings in L and putting a ∪ in between each pair of consecutive strings.
This works because L is finite. (We cannot use this approach for infinite languages
because the resulting expression would then be infinitely long, which is not allowed
for a regular expression.)

(c) Give a DFA for the language L0 in part (a), where the alphabet Σ is the set of
all printable characters on a computer keyboard (no control characters), except
for parentheses to avoid confusion.

Answer: Define Σ1 and Σ2 as in part (a), and let Σ3 = Σ− (Σ1 ∪Σ2) be all
of the other characters on a computer keyboard except for parentheses. Then a
DFA for L0 is as follows:

1 2 3 4 9

0

Σ1

Σ2 ∪Σ3

Σ1 ∪Σ2

Σ3

Σ1 ∪Σ2

Σ3

• • •

Σ3

Σ

Σ

Note that out of each state, there is exactly one edge leaving the state for any
symbol from Σ, as required for a DFA.

8

6. Define L to be the set of strings that represent numbers in a modified version of Java.
The goal in this problem is to define a regular expression and an NFA for L. To
precisely define L, let the set of digits be Σ1 = { 0, 1, 2, . . . , 9 }, and define the set
of signs to be Σ2 = { +, - }. Then L = L1 ∪ L2 ∪ L3, where

• L1 is the set of all strings that are decimal integer numbers. Specifically, L1

consists of strings that start with an optional sign, followed by one or more digits.
Examples of strings in L1 are “02”, “+9”, and “-241”.

• L2 is the set of all strings that are floating-point numbers that are not in expo-
nential notation. Specifically, L2 consists of strings that start with an optional
sign, followed by zero or more digits, followed by a decimal point, and end with
zero or more digits, where there must be at least one digit in the string. Examples
of strings in L2 are “13.231”, “-28.” and “.124”. All strings in L2 have exactly
one decimal point.

• L3 is the set of all strings that are floating-point numbers in exponential notation.
Specifically, L3 consists of strings that start with a string from L1 or L2, followed
by “E” or “e”, and end with a string from L1. Examples of strings in L3 are
“-80.1E-083”, “+8.E5” and “1e+31”.

Assume that there is no limit on the number of digits in a string in L. Also, we do
not allow for the suffixes L, l, F, f, D, d, at the end of numbers to denote types (long
integers, floats, and doubles). Define Σ as the alphabet of all printable characters on a
computer keyboard (no control characters), except for parentheses to avoid confusion.

(a) Give a regular expression for L1. Also, give an NFA and a DFA for L1 over the
alphabet Σ.

Answer: A regular expression for L1 is

R1 = (+ ∪ - ∪ ε)Σ1 Σ
∗
1

where Σ1 = { 0, 1, 2, . . . , 9 } as previously defined. An NFA for L1 is

q1 q2 q3
+, -, ε Σ1

Σ1

Define Σ3 = Σ − (Σ1 ∪ Σ2) with Σ2 = { -, + }, as before. Then a DFA for
L1 is

9

1 2

3

4

Σ2

Σ1

Σ1

Σ−Σ1

Σ−Σ1

Σ1

Σ3

Σ

Notice that the DFA has more states and transitions than the NFA.

(b) Give a regular expression for L2. Also, give an NFA for L2 over the alphabet Σ.

Answer: A regular expression for L2 is

R2 = (+ ∪ - ∪ ε)(Σ1 Σ
∗
1 .Σ

∗
1 ∪ .Σ1 Σ

∗
1)

Note that the regular expression (+ ∪ - ∪ ε)Σ∗
1 .Σ

∗
1 is not correct since it

can generate the strings “.”, “+.” and “-.”, which are not valid floating-point
numbers.

An NFA for L2 is

r1 r2

r3

r4

r5
+, -, ε

Σ1

•

•

Σ1

Σ1

Σ1

(c) Give a regular expression for L3. Also, give an NFA for L3 over the alphabet Σ.

Answer: A regular expression for L3 is

R3 = (R1 ∪R2) (E ∪ e)R1

where R1 and R2 are defined in the previous parts. An NFA for L3 is

10

s1 s2

s3

s4 s5 s6 s7 s8
+, -, ε

Σ1

•

Σ1

•

Σ1

Σ1

Σ1

E, e +, -, ε Σ1

Σ1

(d) Give a regular expression for the language L. Also, give an NFA for L over the
alphabet Σ.

Answer: Note that L = L1 ∪ L2 ∪ L3, so a regular expression for L is

R4 = R1 ∪R2 ∪R3

We can construct an NFA for L by taking the union of the NFA’s for L1, L2 and
L3 using the approach on slides 1-59 to 1-61, as follows:

q1 q2 q3
+, -, ε Σ1

Σ1

r1 r2

r3

r4

r5
+, -, ε

Σ1

•

•

Σ1

Σ1

Σ1

s1 s2

s3

s4 s5 s6 s7 s8
+, -, ε

Σ1

•

Σ1

•

Σ1

Σ1

Σ1

E, e +, -, ε Σ1

Σ1

q0

ε

ε

ε

A simpler NFA for L is to take the NFA for L3 from the previous part and make
s3 and s5 also accepting states in addition to s8.

11

