Homework 3

1. Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\Sigma=\{0,1\}$.
(a) The language $\left\{w \in \Sigma^{*} \mid w\right.$ ends with 00$\}$ with three states.
(b) The language $\left\{w \in \Sigma^{*} \mid w\right.$ contains the substring 0101, i.e., $w=x 0101 y$ for some $\left.x, y \in \Sigma^{*}\right\}$ with five states.
(c) The language $\left\{w \in \Sigma^{*} \mid w\right.$ contains at least two Os, or exactly two 1 s $\}$ with six states.
(d) The language $\{\varepsilon\}$ with one state.
(e) The language $0 * 1^{*} 0 * 0$ with three states.
2. (a) Show by giving an example that, if M is an NFA that recognizes language C, swapping the accept and non-accept states in M doesn't necessarily yield a new NFA that recognizes \bar{C}.
(b) Is the class of languages recognized by NFAs closed under complement? Explain your answer.
3. Use the construction given in Theorem 1.39 to convert the following NFA N into an equivalent DFA.

4. Give regular expressions that generate each of the following languages. In all cases, the alphabet is $\Sigma=\{a, b\}$.
(a) The language $\left\{w \in \Sigma^{*}| | w \mid\right.$ is odd $\}$.
(b) The language $\left\{w \in \Sigma^{*} \mid w\right.$ has an odd number of a 's $\}$.
(c) The language $\{w \mid w$ contains at least two a 's, or exactly two b 's $\}$.
(d) The language $\left\{w \in \Sigma^{*} \mid w\right.$ ends in a double letter $\}$. (A string contains a double letter if it contains $a a$ or $b b$ as a substring.)
(e) The language $\left\{w \in \Sigma^{*} \mid w\right.$ does not end in a double letter $\}$.
(f) The language $\left\{w \in \Sigma^{*} \mid w\right.$ contains exactly one double letter $\}$. For example, baaba has exactly one double letter, but baaaba has two double letters.
5. Suppose we define a restricted version of the Java programming language in which variable names must satisfy all of the following conditions:

- A variable name can only use Roman letters (i.e., $a, b, \ldots, z, A, B, \ldots, Z$) or Arabic numerals (i.e., $0,1,2, \ldots, 9$); i.e., underscore and dollar sign are not allowed.
- A variable name must start with a Roman letter: $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}$
- The length of a variable name must be no greater than 8 .
- A variable name cannot be a keyword (e.g., if). The set of keywords is finite.

Let L be the set of all valid variable names in our restricted version of Java.
(a) Let L_{0} be the set of strings satisfying the first 3 conditions above; i.e., we do not require the last condition. Give a regular expression for L_{0}.
(b) Prove that L has a regular expression, where L is the set of strings satisfying all four conditions.
(c) Give a DFA for the language L_{0} in part (a), where the alphabet Σ is the set of all printable characters on a computer keyboard (no control characters), except for parentheses to avoid confusion.
6. Define L to be the set of strings that represent numbers in a modified version of Java. The goal in this problem is to define a regular expression and an NFA for L. To precisely define L, let the set of digits be $\Sigma_{1}=\{0,1,2, \ldots, 9\}$, and define the set of signs to be $\Sigma_{2}=\{+,-\}$. Then $L=L_{1} \cup L_{2} \cup L_{3}$, where

- L_{1} is the set of all strings that are decimal integer numbers. Specifically, L_{1} consists of strings that start with an optional sign, followed by one or more digits. Examples of strings in L_{1} are " 02 ", " +9 ", and " -241 ".
- L_{2} is the set of all strings that are floating-point numbers that are not in exponential notation. Specifically, L_{2} consists of strings that start with an optional sign, followed by zero or more digits, followed by a decimal point, and end with zero or more digits, where there must be at least one digit in the string. Examples of strings in L_{2} are " $13.231 "$, " -28 ." and ". 124". All strings in L_{2} have exactly one decimal point.
- L_{3} is the set of all strings that are floating-point numbers in exponential notation. Specifically, L_{3} consists of strings that start with a string from L_{1} or L_{2}, followed by " E " or " e ", and end with a string from L_{1}. Examples of strings in L_{3} are "-80.1E-083", "+8.E5" and "1e+31".

Assume that there is no limit on the number of digits in a string in L. Also, we do not allow for the suffixes L, l, F, f, D, d, at the end of numbers to denote types (long integers, floats, and doubles). Define Σ as the alphabet of all printable characters on a computer keyboard (no control characters), except for parentheses to avoid confusion.
(a) Give a regular expression for L_{1}. Also, give an NFA and a DFA for L_{1} over the alphabet Σ.
(b) Give a regular expression for L_{2}. Also, give an NFA for L_{2} over the alphabet Σ.
(c) Give a regular expression for L_{3}. Also, give an NFA for L_{3} over the alphabet Σ.
(d) Give a regular expression for the language L. Also, give an NFA for L over the alphabet Σ.

