CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4 Solutions

1. Use the procedure described in Lemma 1.55 to convert the regular expression

 $(((00)^*(11)) \cup 01)^*$

into an NFA.

Answer:

While the resulting NFA is correct, the language has simpler NFAs (with fewer states and transitions).

2. Use the procedure described in Lemma 1.60 to convert the following DFA M to a regular expression.

Answer: First convert DFA M into an equivalent GNFA G.

Next, we eliminate the states of G (except for s and t) one at a time. The order in which the states are eliminated does not matter. However, eliminating states in a different order from what is done below may result in a different (but also correct) regular expression. We arbitrarily choose to first eliminate state **3**. To do this, we define the set $C = \{2\}$ of states with edges directly into state **3**, and set $D = \{1, 2, t\}$ of states with edges directly from state **3**. We then need to account for paths that start in a state in C, go immediately to state **3**, and then go immediately to a state in D. Thus, we need to account for the paths

- $2 \rightarrow 3 \rightarrow 1$, which will create an arc from 2 to 1 labelled with ba;
- $2 \rightarrow 3 \rightarrow 2$, which will create an arc from 2 to 2 labelled with bb; and
- $2 \rightarrow 3 \rightarrow t$, which will create an arc from 2 to t labelled with $b\varepsilon = b$.

We combine the previous arc from 2 to 2 labelled a with the new one labelled bb to get the new label $a \cup bb$.

We next eliminate state 1. To do this, we define $C = \{s, 2\}$ as the set of states with edges directly into state 1, and $D = \{2, t\}$ as the set of states with edges directly from state 1. Thus, need to account for the following paths from a state in C, going immediately to state 1, and then immediately going to a state in D:

- $s \to 1 \to 2$, which will create an arc from s to 2 labelled with $\varepsilon(a \cup b) = a \cup b$.
- $s \to 1 \to t$, which will create an arc from s to t labelled with $\varepsilon \varepsilon = \varepsilon$.
- 2 \rightarrow 1 \rightarrow 2, which will create an arc from 2 to 2 labelled with $ba(a \cup b)$. We combine this with the existing 2 to 2 arc to get the new label $a \cup bb \cup ba(a \cup b)$.
- $2 \rightarrow 1 \rightarrow t$, which will create an arc from 2 to t labelled with $ba\varepsilon = ba$. We combine this arc with the existing arc from 2 to t to get the new label $b \cup ba$.

Finally, we eliminate state 2 by adding an arc from s to t labelled $(a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba)$. We then combine this with the existing s to t arc to get the new label $\varepsilon \cup (a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba)$.

So a regular expression for the language L(M) recognized by the DFA M is

$$\varepsilon \cup (a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba).$$

Writing this as

$$\underbrace{\varepsilon}_{\text{stay in }1} \cup \underbrace{(a \cup b)}_{1 \text{ to }2} \underbrace{(a \cup bb \cup ba(a \cup b))^*}_{(2 \text{ to }2)^*} \underbrace{(b \cup ba)}_{\text{end in }3 \text{ or }1}$$

should make it clear how the regular expression accounts for every path that starts in 1 and ends in either 3 or 1, which are the accepting states of the given DFA.

- 3. Each of the following languages is either regular or nonregular. If a language is regular, give a DFA and regular expression for it. If a language is nonregular, give a proof.
 - (a) $A_1 = \{ www \mid w \in \{a, b\}^* \}$

Answer: A_1 is nonregular. To prove this, suppose that A_1 is a regular language. Let p be the "pumping length" of the pumping lemma (Theorem 1.70). Consider the string $s = a^p b a^p b a^p b$. Note that $s \in A_1$ since $s = (a^p b)^3$, and $|s| = 3(p+1) \ge p$, so the pumping lemma will hold. Thus, we can split the string sinto 3 parts s = xyz satisfying the properties

- i. $xy^i z \in A_1$ for each $i \ge 0$, ii. |y| > 0,
- iii. $|xy| \leq p$.

Since the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the first set of a's, followed by ba^pba^pb . The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$\begin{aligned} x &= a^{j} \text{ for some } j \ge 0, \\ y &= a^{k} \text{ for some } k \ge 1, \\ z &= a^{m} b a^{p} b a^{p} b \text{ for some } m > 0. \end{aligned}$$

Since $a^p b a^p b a^p b = s = xyz = a^j a^k a^m b a^p b a^p b = a^{j+k+m} b a^p b a^p b$, we must have that j + k + m = p. The first property implies that $xy^2z \in A_1$, but

$$xy^{2}z = a^{j}a^{k}a^{k}a^{m}ba^{p}ba^{p}b$$
$$= a^{p+k}ba^{p}ba^{p}b$$

since j + k + m = p. Hence, $xy^2z \notin A_1$ because $k \geq 1$, and we get a contradiction. Therefore, A_1 is a nonregular language.

(b) $A_2 = \{ w \in \{a, b\}^* \mid w = w^{\mathcal{R}} \}.$

Answer: A_2 is nonregular. To prove this, suppose that A_2 is a regular language. Let p be the "pumping length" of the pumping lemma (Theorem 1.70). Consider the string $s = a^p b a^p$. Note that $s \in A_2$ since $s = s^{\mathcal{R}}$, and $|s| = 2p + 1 \ge p$, so the pumping lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the properties

- i. $xy^i z \in A_2$ for each $i \ge 0$,
- ii. |y| > 0,
- iii. $|xy| \leq p$.

Since the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the first set of a's, followed by ba^p . The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$\begin{array}{rcl} x & = & a^{j} \text{ for some } j \geq 0, \\ y & = & a^{k} \text{ for some } k \geq 1, \\ z & = & a^{m} b a^{p} \text{ for some } m \geq 0. \end{array}$$

Since $a^p b a^p = s = xyz = a^j a^k a^m b a^p = a^{j+k+m} b a^p$, we must have that j + k + m = p. The first property implies that $xy^2z \in A_2$, but

$$xy^{2}z = a^{j}a^{k}a^{k}a^{m}ba^{p}$$
$$= a^{p+k}ba^{p}$$

since j + k + m = p. Hence, $xy^2z \notin A_2$ because $(a^{p+k}ba^p)^{\mathcal{R}} = a^pba^{p+k} \neq a^{p+k}ba^p$ since $k \geq 1$, and we get a contradiction. Therefore, A_2 is a nonregular language.

(c) $A_3 = \{ a^{2n} b^{3n} a^n \mid n \ge 0 \}.$

Answer: A_3 is nonregular. To prove this, suppose that A_3 is a regular language. Let p be the "pumping length" of the pumping lemma (Theorem 1.70). Consider the string $s = a^{2p}b^{3p}a^p$. Note that $s \in A_3$, and $|s| = 6p \ge p$, so the pumping lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the properties

- i. $xy^i z \in A_3$ for each $i \ge 0$,
- ii. |y| > 0,
- iii. $|xy| \leq p$.

Since the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the first set of a's, followed by $b^{3p}a^p$. The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$\begin{aligned} x &= a^{j} \text{ for some } j \ge 0, \\ y &= a^{k} \text{ for some } k \ge 1, \\ z &= a^{m+p} b^{3p} a^{p} \text{ for some } m > 0. \end{aligned}$$

Since $a^{2p}b^{3p}a^p = s = xyz = a^j a^k a^{m+p}b^{3p}a^p = a^{j+k+m+p}b^{3p}a^p$, we must have that j + k + m + p = 2p, or equivalently, j + k + m = p, so $j + k \le p$. The first property implies that $xy^2z \in A_3$, but

$$xy^{2}z = a^{j}a^{k}a^{k}a^{m+p}b^{3p}a^{p}$$
$$= a^{2p+k}b^{3p}a^{p}$$

since j + k + m = p. Hence, $xy^2z \notin A_3$ because $k \geq 1$, and we get a contradiction. Therefore, A_3 is a nonregular language.

(d) $A_4 = \{ w \in \{a, b\}^* \mid w \text{ has more } a \text{'s than } b \text{'s } \}.$

Answer: A_3 is nonregular. To prove this, suppose that A_4 is a regular language. Let p be the "pumping length" of the pumping lemma (Theorem 1.70). Consider the string $s = b^p a^{p+1}$. Note that $s \in A_4$, and $|s| = 2p + 1 \ge p$, so the pumping lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the properties i. $xy^i z \in A_4$ for each $i \ge 0$, ii. |y| > 0, iii. $|xy| \le p$.

Since the first p symbols of s are all b's, the third property implies that x and y consist only of b's. So z will be the rest of the b's, followed by a^{p+1} . The second property states that |y| > 0, so y has at least one b. More precisely, we can then say that

$$\begin{aligned} x &= b^{j} \text{ for some } j \ge 0, \\ y &= b^{k} \text{ for some } k \ge 1, \\ z &= b^{m} a^{p+1} \text{ for some } m \ge 0. \end{aligned}$$

Since $b^p a^{p+1} = s = xyz = b^j b^k b^m a^{p+1} = b^{j+k+m} a^{p+1}$, we must have that j + k + m = p. The first property implies that $xy^2 z \in A_4$, but

$$xy^{2}z = b^{j}b^{k}b^{k}b^{m}a^{p+2}$$
$$= b^{p+k}a^{p+1}$$

since j + k + m = p. Hence, $xy^2z \notin A_4$ because it doesn't have more *a*'s than *b*'s since $k \ge 1$, and we get a contradiction. Therefore, A_4 is a nonregular language.

(e) $A_5 = \{ w \in \{a, b\}^* \mid n_{ab}(w) = n_{ba}(w) \}$, where $n_s(w)$ is the number of occurrences of the substring $s \in \{a, b\}^*$ in w.

Answer: A_5 is regular. A regular expression for the language is $a(a \cup bb^*a)^* \cup b(b \cup aa^*b)^* \cup \varepsilon$. Another regular expression is $a(a \cup b)^*a \cup b(a \cup b)^*b \cup a \cup b \cup \varepsilon$. A DFA for the language is

There are infinitely many other correct regular expressions and DFAs for A_5 .

(f) $A_6 = \{ w \in \{a, b\}^* \mid n_a(w) \neq n_b(w) \}.$

Answer: A_6 is nonregular, which we will establish via a proof by contradiction. Suppose that A_6 were regular. Then its complement $\overline{A_6}$ is regular because the class of regular languages is closed under complementation (HW 2, problem 3), where

$$\overline{A_6} = \{ w \in \{a, b\}^* \mid n_a(w) = n_b(w) \}.$$
(1)

By arguing as on slide 1-112 of the lecture notes, we can show that $\overline{A_6}$ is nonregular (which we could also prove by applying the pumping lemma with the string $s = a^p b^p \in \overline{A_6}$), giving a contradiction, so A_6 is nonregular.

Alternatively, using an approach outlined at this link, we can also prove that A_6 is nonregular via the pumping lemma (Theorem 1.70) by carefully constructing a string $s \in A_6$ to get a contradiction. For a contradiction, suppose that A_6 is regular, and let p be the pumping length of the pumping lemma. Consider the string $s = a^p b^{p!+p}$, where $p! = p(p-1)(p-2)\cdots 1$ is p factorial, so $s \in A_6$ because $n_a(s) = p \neq p! + p = n_b(s)$. Also, $|s| = 2p + p! \geq p$, so the conclusions of the pumping lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the properties

- i. $xy^i z \in A_6$ for each $i \ge 0$,
- ii. |y| > 0,
- iii. $|xy| \leq p$.

Since the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the a's, followed by $b^{p!+p}$. The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$x = a^{j} \text{ for some } j \ge 0,$$

$$y = a^{k} \text{ for some } k \ge 1,$$

$$z = a^{m} b^{p!+p} \text{ for some } m \ge 0.$$

with $j + k \leq p$, so

$$1 \le k \le p. \tag{2}$$

Also, we must have that

$$j + k + m = p \tag{3}$$

because $a^{p}b^{p!+p} = s = xyz = a^{j}a^{k}a^{m}b^{p!+p} = a^{j+k+m}b^{p!+p}$.

The first property of the pumping lemma states that for all $i \ge 0$, the pumped string $xy^i z$ must be in A_6 , and we will get a contradiction by showing that no matter the value of k satisfying equation (2), there will exist an $i \ge 0$ (depending on k) so that the pumped string $xy^i z \notin A_6$, which means that $n_a(xy^i z) =$ $n_b(xy^i z)$ for this value of *i* by equation (1). Now this pumped string is $xy^i z = a^j a^{ik} a^m b^{p!+p}$, with $n_a(xy^i z) = j + ik + m$ and $n_b(xy^i z) = p! + p$. To get our contradiction, we must show that for each *k* satisfying equation (2), there exists an $i \ge 0$ such that

$$j + ik + m = p! + p \tag{4}$$

so that the pumped string $xy^i z \notin A_6$ for this *i* because $n_a(xy^i z) = n_b(xy^i z)$. Now equation (3) implies that the left side of equation (4) satisfies j + ik + m = j + k + m + (i - 1)k = p + (i - 1)k, so equation (4) is equivalent to p + (i - 1)k = p! + p, which is the same as (i - 1)k = p!. Thus, for any k satisfying equation (2), taking i = 1 + (p!/k), which is an integer because $k \in \{1, 2, \ldots, p\}$, results in the pumped string $xy^i z \notin A_6$, contradicting the pumping lemma's first property. Hence, A_6 is nonregular.

(g) $A_7 = \{ a^j b^k c^l \mid j, k, l \ge 0 \text{ and if } j = 1, \text{ then } k = l \}.$

Answer: A_7 is nonregular, which we will establish via a proof by contradiction. Suppose that A_7 is regular, and consider the language L having regular expression ab^*c^* , so L is regular by Kleene's Theorem. Let $D = A_7 \cap L$, which must then be regular if A_7 is regular because the class of regular languages is closed under intersection (HW 2, problem 5). Now

$$D = A_7 \cap L = \{ ab^n c^n \mid n \ge 0 \},$$

which we will show below is nonregular, giving a contradiction, so A_7 must be nonregular.

To show that D is nonregular, we will use the pumping lemma (Theorem 1.70). For a contradiction, suppose that D is regular, and let p be the pumping length of the pumping lemma. Consider the string $s = ab^pc^p \in D$, where $|s| = 2p + 1 \ge p$, so the conclusions of the pumping lemma will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the properties

- i. $xy^i z \in A_7$ for each $i \ge 0$,
- ii. |y| > 0,
- iii. $|xy| \leq p$.

The second property implies that $y \neq \varepsilon$. Also, since the first p symbols of s are ab^{p-1} , the third property implies that y is a nonempty substring of ab^{p-1} . We can break down all of the nonempty possibilities for y into two cases: y contains a, or y does not contain a. We next show a contradiction arises in each case.

- Suppose y contains a. The first conclusion of the pumping lemma implies that $xy^0z = xz \in D$, but since y has the only a in s, the pumped-down string xz does not begin with a, so $xz \notin D$, which is a contradiction.
- Suppose that y does not contain a. Since $y \neq \varepsilon$ and y is a nonempty substring of ab^{p-1} , we must have that y has at least one b. The first property of the pumping lemma implies that $xy^0z = xz \in D$, but since y has at least one b, the pumped-down string xz has fewer b's than c's, so $xz \notin D$, which is a contradiction.

The two above cases cover all possibilities for y satisfying the three properties of the pumping lemma, and each gives a contradiction. Thus, the pumping lemma does not hold, so D is nonregular.

An interesting property about A_7 is that while it is nonregular, this cannot be proven using the pumping lemma (Theorem 1.70). In particular, there exists some p (specifically, we can take p = 3) such that for every string $s \in A_7$ with $|s| \ge p$, we can split s = xyz such that (i) $xy^i z \in A_7$ for all $i \ge 0$, (ii) $y \ne \varepsilon$, and (iii) $|xy| \le p$. To see why, write $A_7 = E \cup F$ with

$$E = \{ ab^{n}c^{n} \mid n \ge 0 \},\$$

$$F = \{ a^{j}b^{k}c^{l} \mid j, k, l \ge 0 \text{ and } j \ne 1 \},\$$

so $E \subseteq A_7$ and $F \subseteq A_7$. We can cover all possibilities for strings $s \in A_7$ with $|s| \ge p$ through two cases: either $s \in E$ or $s \in F$ (or both)

- Suppose that $s \in E$ with $|s| \ge p = 3$, so $s = ab^nc^n$ for some $n \ge 1$. We then split s as s = xyz, with $x = \varepsilon$, y = a, and $z = b^nc^n$. Note that $|xy| = |a| = 1 \le p = 3$ and $y \ne \varepsilon$, so the second and third properties of the pumping lemma hold. For each $i \ge 0$, the pumped string xy^iz is $a^ib^nc^n$, which is in $F \subseteq A_7$ for $i \ne 1$, and belongs to $E \subseteq A_7$ for i = 1, so the pumped string $xy^iz \in A_7$ for all $i \ge 0$. In other words, each string $s \in E$ with $|s| \ge p = 3$ can be split into s = xyz with all three conclusions of the pumping lemma holding.
- Suppose that $s \in F$ with $|s| \ge p = 3$, so $s = a^j b^k c^l$ for some $j, k, l \ge 0$ with $j \ne 1$. Then all possibilities for s belong to one of the following three subcases: j = 0, j = 2, and $j \ge 3$.
 - If j = 0, then $s = b^k c^l$, with $|s| \ge p$, so $s = s_1 s_2 \cdots s_n$ for some $n \ge p$ with each $s_i \in \{b, c\}$, and all b's appear before any c. Split s into s = xyz with $x = \varepsilon$, $y = s_1$, and $z = s_2 s_3 \cdots s_n$. Thus, $y \ne \varepsilon$ and $|xy| = |s_1| = 1 \le p = 3$, so the second and third properties of the pumping lemma hold. For each $i \ge 0$, the pumped string is $xy^i z = s_1^i s_2 \cdots s_n$, which can be generated by the regular expression b^*c^* , so the pumped string will always be in $F \subseteq A_7$.
 - If j = 2, then the string is $s = aab^k c^l$. We then can split s into s = xyzwith $x = \varepsilon$, y = aa, and $z = b^k c^l$. Thus, $y \neq \varepsilon$ and $|xy| = |aa| = 2 \le p = 3$, so the second and third properties of the pumping lemma hold. Now for each $i \ge 0$, the pumped string $xy^i z = (aa)^i b^k c^l$ has 2ia's at the beginning followed by $b^k c^l$, so the number of a's is never 1, implying that $xy^i z \in F \subseteq A_7$.
 - If $j \geq 3$, then the string $s = a^j b^k c^l$ has at least 3 *a*'s at the beginning. We then can split *s* into s = xyz with $x = \varepsilon$, y = a, and $z = a^{j-1}b^kc^l$. Thus, $y \neq \varepsilon$ and $|xy| = |a| = 1 \leq p = 3$, so the second and third properties of the pumping lemma hold. Now for each $i \geq 0$, the pumped string $xy^iz = a^{i+j-1}b^kc^l$ has $i+j-1 \geq 2$ a's at the beginning followed by b^kc^l , implying that $xy^iz \in F \subseteq A_7$.

Thus, both cases of $s \in E$ and $s \in F$ always can be pumped to get strings still in A_7 , so there is no contradiction. In other words, A_7 is nonregular, but we cannot prove this via the pumping lemma.

To understand this, recall that if the conclusions of the pumping lemma do not hold for a given language, then the language is nonregular. While this gives a *sufficient* condition to ensure a language is nonregular, language A_7 shows that the condition is not *necessary* for nonregularity. (A *necessary and sufficient* condition for regularity is provided by the Myhill-Nerode theorem, which our class doesn't cover but appears as problem 1.52 of the Sipser book.)

4. Suppose that language A is recognized by an NFA N, and language B is the collection of strings *not* accepted by some DFA M. Prove that $A \circ B$ is a regular language.

Answer: Since A is recognized by an NFA, we know that A is regular since a language is regular if and only if it is recognized by an NFA (Corollary 1.20). Note that the DFA M recognizes the language \overline{B} , the complement of B. Since \overline{B} is recognized by a DFA, by definition, \overline{B} is regular. We know from a problem on the previous homework that \overline{B} being regular implies that its complement $\overline{\overline{B}}$ is regular. ($\overline{\overline{B}}$ is the complement of the complement of B.) But $\overline{\overline{B}} = B$, so B is regular. Since A and B are regular, their concatenation $A \circ B$ is regular by Theorem 1.23.

5. (a) Prove that if we add a finite set of strings to a regular language, the result is a regular language.

Answer: Let A be a regular language, and let B be a finite set of strings. We know from class (see page 1-95 of Lecture Notes for Chapter 1) that finite languages are regular, so B is regular. Thus, $A \cup B$ is regular since the class of regular languages is closed under union (Theorem 1.22).

(b) Prove that if we remove a finite set of strings from a regular language, the result is a regular language.

Answer: Let A be a regular language, and let B be a finite set of strings with $B \subseteq A$. Let C be the language resulting from removing B from A, i.e., C = A - B. As we argued in the previous part, B is regular. Note that $C = A - B = A \cap \overline{B}$. Since B is regular, \overline{B} is regular since the class of regular languages is closed under complement. We proved in an earlier homework that the class of regular languages is closed under intersection, so $A \cap \overline{B}$ is regular since A and \overline{B} are regular. Therefore, A - B is regular.

(c) Prove that if we add a finite set of strings to a nonregular language, the result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings. We want to add B to A, so we may assume that none of the strings in B are in A, i.e., $A \cap B = \emptyset$. Let C be the language obtained by adding B to A, i.e., $C = A \cup B$. Suppose for a contradiction that C is regular, and we now show this is impossible. Since $A \cap B = \emptyset$, we have that A = C - B. Since C and B are regular (the latter because B is finite), the previous part of this problem implies that $C - B = C \cap \overline{B}$ must be regular, but we assumed that A = C - B is nonregular, so we get a contradiction.

(d) Prove that if we remove a finite set of strings from a nonregular language, the result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings, where $B \subseteq A$. Let C be the language obtained by removing B from A, i.e., C = A - B. Suppose that C is regular, and we now show this is impossible. Since we removed B from A to get C, we must have that $C \cap B = \emptyset$, so $A = C \cup B$. Now C is regular by assumption and B is regular since it's finite, so $C \cup B$ must be regular by Theorem 1.25. But we assumed that $A = C \cup B$ is nonregular, so we get a contradiction.

6. Consider the following statement: "If A is a nonregular language and B is a language such that $B \subseteq A$, then B must be nonregular." If the statement is true, give a proof. If it is not true, give a counterexample showing that the statement doesn't always hold.

Answer: The statement is not always true. For example, we know that the language $A = \{0^j 1^j \mid j \ge 0\}$ is nonregular. Define the language $B = \{01\}$, and note that $B \subseteq A$. However, B is finite, so we know that it is regular.