Homework 4

1. Use the procedure described in Lemma 1.55 to convert the regular expression $\left(\left((00)^{*}(11)\right) \cup\right.$ 01)* into an NFA.
2. Use the procedure described in Lemma 1.60 to convert the following DFA to a regular expression.

3. Each of the following languages is either regular or nonregular. If a language is regular, give a DFA and regular expression for it. If a language is nonregular, give a proof.
(a) $A_{1}=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$.
(b) $A_{2}=\left\{w \in\{a, b\}^{*} \mid w=w^{\mathcal{R}}\right\}$.
(c) $A_{3}=\left\{a^{2 n} b^{3 n} a^{n} \mid n \geq 0\right\}$.
(d) $A_{4}=\left\{w \in\{a, b\}^{*} \mid w\right.$ has more a 's than b 's $\}$.
(e) $A_{5}=\left\{w \in\{a, b\}^{*} \mid n_{a b}(w)=n_{b a}(w)\right\}$, where $n_{s}(w)$ is the number of occurrences of the substring $s \in\{a, b\}^{*}$ in w. For example, the string $w_{1}=$ aaabbabbaa has $n_{a b}\left(w_{1}\right)=2$ and $n_{b a}\left(w_{1}\right)=2$, so $w_{1} \in A_{5}$. Also, the string $w_{2}=a a a b b a b b a a b$ has $n_{a b}\left(w_{2}\right)=3$ and $n_{b a}\left(w_{2}\right)=2$, so $w_{2} \notin A_{5}$.
4. Suppose that language A is accepted by an NFA N, and language B is the collection of strings not accepted by some DFA M. Prove that $A \circ B$ is a regular language.
5. (a) Prove that if we add a finite set of strings to a regular language, the result is a regular language.
(b) Prove that if we remove a finite set of strings from a regular language, the result is a regular language.
(c) Prove that if we add a finite set of strings to a nonregular language, the result is a nonregular language.
(d) Prove that if we remove a finite set of strings from a nonregular language, the result is a nonregular language.
6. Consider the following statement: "If A is a nonregular language and B is a language such that $B \subseteq A$, then B must be nonregular." If the statement is true, give a proof. If it is not true, give a counterexample showing that the statement doesn't always hold.
